
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

firstname.lastname@iaas.uni-stuttgart.de

Performance Optimizations for Interacting Business Processes

Sebastian Wagner, Dieter Roller, Oliver Kopp, Tobias Unger, Frank Leymann

© 2013 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{WagnerRKU2013,
author = {Wagner, S. and Roller, D. and Kopp, O. and Unger, T. and

Leymann, F.},
title = {Performance Optimizations for Interacting Business Processes},
booktitle = {2013 IEEE International Conference on}

Cloud Engineering (IC2E),
year = {2013},
pages = {210--216},
doi = {10.1109/IC2E.2013.34},
publisher = {IEEE Computer Society}

}

:

Institute of Architecture of Application Systems

Performance Optimizations for Interacting Business Processes

Sebastian Wagner, Dieter Roller, Oliver Kopp, Tobias Unger, Frank Leymann
Institute of Architecture of Application Systems

Universtät Stuttgart
Stuttgart, Germany

firstname.lastname@iaas.uni-stuttgart.de

Abstract—Choreographies describe the interaction behavior
of processes at design time: a choreography defines when
messages have to be exchanged between the involved processes
during their runtime. In the context of Web services and the
de-facto workflow language BPEL, SOAP is used to encode
the messages. When complex messages are exchanged between
the processes, this can become costly and time consuming with
respect to the overall execution time of a choreography. In
this work, we suggest three different performance optimization
techniques for workflow engines to reduce the number of mes-
sage exchanges between the interacting processes and hence, to
decrease the execution times and costs of the choreographies:
intra-engine transport, service request caching, and inline
execution. We describe how these techniques are implemented
in a workflow engine. Performance measurements are carried
out to determine the performance improvements that are
achieved with each optimization technique. We further show
that the optimizations also affect the energy consumption of
the workflow engine.

I. INTRODUCTION

Many companies use business processes to describe the
activities that have to be performed to achieve a desired
business objective such as the manufacturing of goods or
services. The processes can be modeled with a process
modeling language such as the Web Service Business Process
Execution Language 2.0 (BPEL [1]) or the Business Process
Model and Notation (BPMN [2]). We use BPEL in this paper
as it is still the de-facto standard for executable business
processes [3].

The different activities within a business process are often
not realized by just one single process but, for organizational
or complexity reasons, via several interacting processes. For
instance, if a car has to be manufactured, the activities
required to create the chassis of the car are implemented by
the car manufacturer’s business process while the activities
to create the engine are implemented in the process of the
engine manufacturer. This approach also helps to reduce the
complexity of a process as the set of activities is distributed
on several processes [4].

The interacting processes communicate with each other by
exchanging messages between their communication activities,
such as send and receive activities [5]. The collaboration
can be modeled using interconnection models, where the
publicly observable behavior of each participant is modeled

as a process and where the communication activities are
wired together by message links.

For execution the BPEL process models of a choreography
have to be deployed to a BPEL workflow engine, such as the
IBM WebSphere Process Server or the Apache Orchestration
Director (Apache ODE1). The various processes of the
choreography are either deployed and executed on the same
engine or are distributed to different engines with each engine
executing one or more process models of the choreography.
In both scenarios messages must be exchanged between the
different processes. To follow interoperability requirements,
SOAP/HTTP is used as the default transport binding [6]. With
SOAP as the encoding mechanism, message exchanges can
be costly in terms of resource consumption, in particular with
respect to CPU cycles: (i) at the sender’s side the message has
to be serialized from the BPEL engine’s internal format to
XML-based SOAP used for interoperable communication, (ii)
the message has to be transferred, and (iii) the message has
to be deserialized back to the engine’s internal format at the
receiver side. The net results are longer execution times and
less throughput compared to the execution of a single process
for the complete choreography. As typically the pay-per-use
model is applied in Cloud environments longer execution
times also result in higher costs for enacting a choreography
on a workflow engine that is hosted in the cloud.

This paper proposes three different optimization techniques
to reduce the overhead caused by message exchanges and to
enable more efficient interaction between the processes in
a single workflow engine environment. A single workflow
engine is for instance used by different collaborating parties in
a Community Cloud. The proposed optimization techniques
are applied on various levels. Intra-engine transport and
service request caching are handled at the workflow engine
level reducing the number of message exchanges; inline
execution merges the interacting process models into a single
process at the choreography level. To compare the impact
of the optimization techniques on the CPU utilization, we
implemented them on a workflow engine and conducted
performance tests whose results are also presented in this
paper. As energy efficiency becomes more and more im-
portant (“3x20 in 2020”, [7]), we also conducted energy

1http://ode.apache.org/

http://ode.apache.org/

measurements to determine the influence of the optimization
techniques on the energy consumption of the workflow
engine.

The remainder of this paper is structured as follows:
Section II provides the background information for the
optimization techniques; Section III describes the archi-
tecture of the workflow engine where the optimizations
are implemented; Section IV introduces the workflow en-
gine optimization techniques; Section V discusses how
the execution time of a choreography can be improved
by merging the process models that reside on the same
engine; Section VI presents and discusses the results of the
performance measurements; Section VII provides an overview
of related work; Section VIII finishes off by presenting the
conclusions and providing an outlook on future work.

II. PRELIMINARIES

This section provides background information about the
language constructs of BPEL and the interconnection chore-
ography modeling language BPEL4Chor [8] that is relevant
to understand the performance optimization techniques
discussed in this work.

BPEL offers different types of activities: sequence and
flow activities are considered as structured activities as they
define a control flow order on their child activities. The child
activities of a sequence activity have to be carried out in
the order they appear. For instance, in process C, depicted
Fig. 1, the first activity C1 is executed, then C2, and so on.
All activities that are encompassed by a flow activity are
performed concurrently as long as no explicit control links
are specified between them.

The activities invoke, receive and reply, collectively
called communication activities, are used to communicate
with a partner Web service that is for instance implemented
by another BPEL process. The invoke activity is used to
send messages to a partner, either as an asynchronous or
a synchronous invoke. In the asynchronous case, solely a
message is sent to a receive activity of the partner. In
the synchronous case, invoke additionally waits for a reply
message sent by the partner. This message is sent by a
reply activity following directly or indirectly the receive

activity of the partner in the control flow. In the example
choreography depicted in Fig. 1, synchronous communication
takes only place between process A and D. With all other
processes A communicates asynchronously. Technically, each
receiving activity is represented by a corresponding WSDL
operation in the Web service interface of a process. These
operations are called from the partner to send messages to
the process.

The opaque activity acts as place holder for other activities
to indicate that some business logic happens there (e. g., D2).

The communication activities of the five process models
in the example interconnection choreography in Fig. 1
are connected via seven message links m1 to m7. The

B0

Sequence

A0

Flow

Pr
oc

es
s

A

A1
Receive

A2
Assign

A3
Invoke

A6
Invoke

A4
Opaque

A7
Receive

A8
Assign

A9
Invoke

A10
Invoke

B1
Receive

B3
Invoke

Pr
oc

es
s

B

Pr
oc

es
s

C

Pr
oc

es
s

D

E0

Sequence

E1
Receive

Pr
oc

es
s

E

B2
Opaque

C0

Sequence

C1
Receive

C3
Invoke

C2
Opaque

D0

Sequence

D1
Receive

D3
Reply

D2
Opaque

E2
Opaque

A5
Receive

m1

m2

m3

m4 m5 m6

m7

Legend

Name
Type

Activity with
name & type

Control Link

Message Link

'And' Gateway

Figure 1. Example Interconnection Choreography

receive activity A1 is the only communication activity
that is not related to a message link as this activity is
called by an external partner that triggers the execution
of an instance of process model A. We use BPEL4Chor to
describe the choreography as this language provides a means
to define message links between the communication activities
of BPEL processes. BPEL4Chor is solely used to model
choreographies. During deployment time, each BPEL4Chor
process model is transformed to an executable BPEL process
model, which is deployed to the BPEL engine.

Another BPEL concept relevant for the optimization is
message correlation. As several instances of one process
model may be executed simultaneously, message correlation
ensures that messages sent by a partner are routed to the
correct process instance by the engine.

III. WORKFLOW ENGINE

The processes models of a choreography are deployed and
executed on a workflow engine, which provides the runtime
environment for the instances of the process models. We
implement the performance improvements on the Stuttgarter
Workflow Maschine (SWoM)2 developed at our institute.

Fig. 2 shows the architecture of the SWoM, which is
based to on the architectural principles of a workflow engine
introduced by Leymann and Roller [9]. This work focuses
on the Runtime components as they are relevant for the
performance optimization techniques. The Administration
layer contains the components providing user management
and process management functionalities, e. g., to monitor and
repair running process instances. The Buildtime components
are responsible for importing process models into the SWoM
via the Importer and for the deployment of the imported
process model via the Deployer in order to make them ready
for instantiation. Deployed and imported process models
are stored in the Buildtime Database. Each process model
is associated with a Deployment Descriptor, that allows for

2http://www.iaas.uni-stuttgart.de/forschung/projects/swom/

http://www.iaas.uni-stuttgart.de/forschung/projects/swom/

SWoM Architecture
Administration

Buildtime Runtime

Databases

NavigatorNavigator

Service Invoker Queue

Façade BeanFaçade Bean Service InvokerService InvokerImporterImporter DeployerDeployer

Runtime DatabaseBuildtime DatabaseSystem Database

User ManagementUser Management Process ManagementProcess Management......

Navigator Queue

......

Figure 2. Architecture of SWoM

example the specification of the endpoints of the partner Web
Services, or the configuration settings for the proposed engine
level optimization techniques. The Runtime Database stores
process instance data between two subsequent processing
steps. The System Database holds administrative information,
such as user authorization, authentication information, and
information about exceptional states during the runtime.

The instantiation and execution of process instances is per-
formed by the Runtime components that are implemented as
Java Enterprise Edition stateless session beans that typically
communicate with each other by exchanging messages via
message queues. The Navigator component creates instances
from process models and navigates through the process
instances using the control flow information stored in the
corresponding process models. If the navigator processes an
invoke activity, it sends, via the Service Invoker Queue, a
request message to the Service Invoker. The Service Invoker
invokes, based on the information in the request message, the
specified Web Service via an appropriate SOAP call. For a
synchronous invoke activity the Service Invoker receives the
Web service response and sends it back to the Navigator via
the Navigator Queue. Requests from external Web services
or asynchronous responses are received by the Façade Bean,
which implements the Web Service interface that is specified
for the process model.

IV. RUNTIME OPTIMIZATIONS

This section presents two runtime optimizations: intra-
engine transport (Section IV-A) and service request caching
(SectionIV-B).

A. Intra-Engine Transport

When BPEL processes exchange messages with partner
processes, these messages have to be serialized at the sender’s
side from the internal engine representation, e. g., a Java
object, to an agreed message format. At the receiver’s side
the message has to be deserialized back to the engine-
internal representation. As BPEL is strongly related to
WSDL, usually SOAP/HTTP is used: SOAP is the de-facto
format for exchanging messages between BPEL processes
and SOAP/HTTP is the binding ensuring interoperability
between services [6]. As shown by Davis et al. [10] and
Ng et al. [11], the serialization and deserialization of SOAP
messages is time and resource intensive. Overall SOAP/HTTP
implemented in Apache Axis3 is 13 times slower than using

3http://axis.apache.org/

Java RMI.
If interacting processes are deployed to the same engine

this overhead can be avoided by using intra-engine transport.
The SWoM implementation of this optimization technique
bypasses the complete JAX-WS and DOM processing by
having the Invoker calling the Navigator via the Navigator’s
local interface. Intra-engine transport can be also used if the
SWoM is deployed in a clustered environment where the
components of the SWoM are distributed on different nodes
of a WebSphere cluster; in this case the Invoker calls the
Navigator via its remote EJB interface.

Intra-engine transport can be configured in the SWoM
individually for each invoke activity. This has the benefit
that even if just a subset of processes of a choreography
is deployed on one engine, intra-engine transport can be
activated for this subset. For instance, if the processes A
and B in Fig. 1 are deployed on the same engine whereas
the other processes are distributed to different engines, intra-
engine transport can be only activated between activity pairs
A3 and B1 and B3 and A5. Note that this is different from
the technique in Oracle BPEL Process Manager [12], where
the appropriate tuning parameter optSOAPShortcutBPEL
seems to apply to the total process.

B. Service Request Caching

Caching is a well-established strategy for reducing the
number of requests made between components and for
decreasing response times. A prominent example is HTTP
caching [13].

The response time of Web service calls and the engine
internal processing can be also improved through appropriate
caching techniques. The SWoM implements, among other
caching strategies, a very attractive caching strategy: service
request caching via a client side cache, the Service Request
Cache (SRC). This cache stores response messages from
Web service calls and returns the cached result if the Web
service is called again. More precisely, if an instance of an
activity called a Web service the response of the partner is
stored in the SRC. If another instance of the same activity
is executed it retrieves the response not from the partner but
from the SRC, i. e., the partner is not called again.

The cached response is also available for activity instances
that base on the same activity model but belong to different
process instances. Assume for instance that caching is
activated for the invoke activity A9 in our example process
model A depicted in Fig. 1. Only for the first activity instance
A9’ of activity A9 a Web service call to an instance of activity
model D1 is carried out. All requests from further instances
of activity A9 that belong to other process instances A’, A”
etc. are served from the SRC.

Service request caching can also reduce the number of
process instances that are created if the partner Web service
is a process that is instantiated by the calling process. The
reason is the implicit process instance creation in BPEL

http://axis.apache.org/

where an instance of a process model is created if an instance
creating receive such as the activity D1 of process model
D receives a message. Hence, if the response of an instance
of D1 is cached, no further instance of process model D is
created as no message is sent any more to activity D1.

When the Navigator executes the invoke activity, it calls
the Service Invoker to perform the synchronous SOAP call of
the partner Web service. The Service Invoker in turn calls its
Service Request Cache Manager (SRCM) with the request.
The SRCM checks if the request is flagged cachable. This and
the invalidation time of the response message belonging to
a cachable request is described in the deployment descriptor
for each invoke activity model. If the request is marked
as cachable, the SRCM checks if a request message with
the same payload was already cached before and if the
invalidation time of the request has not expired yet. The cache
is a simple in-memory data store that persists the request
messages and the corresponding response messages. In case
there is a match, the cached response message belonging
to the request is returned to the Navigator by the Service
Invoker. In case there is no match or if the invalidation time
has expired, the Service Invoker performs a Web service
call. The response from the Web service is passed to the
Navigator and also to the SRCM which stores the request
and the returned response in the SRC.

Service request caching has been proposed among others
by many authors. Schmidt et. al [14] propose such a cache
for the enterprise service bus (ESB) [15]. An appropriate
cache mediation pattern for service invocation is presented
in [16]. Xue [17] shows how the dynamic cache of IBM
WebSphere can be exploited for service request caching in
IBM Process Server.

The implementation the SWoM has taken provides several
advantages: First, the information is managed in the engine’s
internal format so that no transformation of the responses
external format into the engine internal one is required;
second, the implementation does not rely on any proprietary
application server functions, and third by attaching the request
caching information to the appropriate invoke activity
provides for better granularity and to cater more precisely
to the requirements of the business process.

V. INLINE EXECUTION

In contrast to the optimization techniques described
before, here, we present a technique that is exploited during
deployment time, i. e., before the choreography is deployed
to the engine: all process models of a choreography that
are executed on the same engine are consolidated (merged)
into one process model. This provides two performance
advantages: (i) no message exchanges are required anymore
and (ii) the number of process instances is reduced which
saves resources required for process instance creation and
execution.

Synch. / Asynch. Consolidation (short
Paper)

m

Fragment B Fragment A

 S
Opaque

S
Invoke

S 
Opaque

 RC
Opaque

RC
Receive

RC
Opaque

RP
Reply

 RC
Opaque

SYN
Assign

RC
Opaque

Fragment ABsyn

and

RP
Opaque

SYN'
Assign

RP
Opaque

and'

m

Fragment B Fragment A Fragment ABasyn

 S
Opaque

S
Invoke

S 
Opaque

 RC
Opaque

RC
Receive

RC
Opaque

 S
Opaque

SYN
Assign

S 
Opaque

 RC
Opaque

RC

Opaque

and'

and

Legend

A: activity before
 activity A

A: activity after
 activity A

 S
Opaque

S 
Opaque

Figure 3. Consolidation of Asynchronous Interactions

The process consolidation we introduced in [18] merges
two or more complementing process models that are members
of the same choreography into a new single process model.
The process models of the choreography in Fig. 1 are comple-
menting each other as each process model contributes to the
business objective to be achieved by the choreography. The
basic idea of process consolidation is that the communication
activities and their associated message links imply certain
control flow relations between the activities of the interacting
process models. Hence, the communicating activities such as
invoke or receive are used as merge points. This means
that these implicit control flow relations are “materialized”
to explicit control flow relations between the activities. The
aim of the consolidation is to keep the control flow relations
between the different activities of the merged process models.

In a first step, each process to be merged is put into the
consolidated process as a child of a flow activity. Thereby,
it is ensured that each variable unique in each process model
is still unique in the consolidated process model. Then merge
operations are applied in the consolidated process model to
materialize the control flow links from the message links.

An asynchronous invoke activity creates a message from
a variable and sends this message. The message is received by
a receive activity and stored in the designated variable. The
merge operation replaces the invoke activity by an assign

activity copying the value from the variable used by the
invoke activity to the variable used by the receive activity
(Fig. 3). The receive activity is deleted and the control
links are modified to go directly from the predecessor to the
successor of the receive activity. An additional control link
is added from the assign activity to the successor of the
receive activity. This ensures that the assign is executed
when the former invoke would happen and that the successor
of the former receive is executed after both the former
invoke would have been finished and the predecessors of
the former receive activity would have been finished.

In the synchronous case, the invoke activity also creates
a message from an input variable and sends it to a receive

activity. In contrast to the asynchronous case, the invoke

activity does not complete. It has to wait until the reply

activity created the reply message from a variable and sent it
back to the invoke activity where it is stored in an output
variable. To emulate this behavior, two assign activities are
added to the consolidated process model. One for copying

Synch. / Asynch. Consolidation (short
Paper)

m

Fragment B

 S
Opaque

S
Invoke

S 
Opaque

 RC
Opaque

RC
Receive

RC
Opaque

RP
Reply

 RC
Opaque

SYN
Assign

RC
Opaque

Fragment ABsyn

and

RP
Opaque

SYN'
Assign

RP
Opaque

and'

m

Fragment B Fragment A Fragment ABasyn

 S
Opaque

S
Invoke

S 
Opaque

 RC
Opaque

RC
Receive

RC
Opaque

 S
Opaque

SYN
Assign

S 
Opaque

 RC
Opaque

RC

Opaque

and'

and

Legend

A: activity before
 activity A

A: activity after
 activity A

 S
Opaque

S 
Opaque

Fragment A

Figure 4. Consolidation of Synchronous Interactions

Flow

A
Receive

B
Assign

A4
Opaque

G
Assign

H
Assign

D2
Opaque

Optimize

Flow

C
o

n
so

lid
at

e
P

ro
ce

ss
 P

In
lin

e

A
Receive

B
Assign

C
Assign

D
Assign

A4
Opaque

F
Assign

G
Assign

H_out
Assign

I
Assign

E
Assign

H_in
Assign

B2
Opaque

C2
Opaque

D2
Opaque

E2
Opaque

E2
Opaque

B2
Opaque

C2
Opaque

TODO: Use different colors and names for merged processs model

P
ro

ce
ss

 P
In

lin
e

Figure 5. Consolidated Process Model P Inline of Example Choreography

the input variable to the respective variable written by the
receive before and one for copying the content of the
variable where the reply message was created from to the
former output variable of the invoke activity. Control links
are modified accordingly. The consolidation for synchronous
invoke activities is depicted in Fig. 4.

Fig. 5 shows the process model P Inline that results from
the consolidation of all process models of the example
choreography depicted in Fig. 1. The activities A4, B2
and C2 in the original choreography can be performed
simultaneously; this is also possible in P Inline. Additionally,
P Inline ensures that activity D2 is always performed before
E2. Due to the synchronous communication between process
model A and D the activity D2 was always executed before
activity E2. As an assign activity can perform multiple
assignments, several consecutive assign activities that
result from the synchronous and asynchronous consolidation
operations were replaced by one single assign activity

VI. EVALUATION

In the following the impact of the performance optimiza-
tion techniques is evaluated by measuring the CPU load and
energy consumption generated by the SWoM when it executes
the instances of deployed processes models. The CPU load
is measured instead of the throughput of process instances
per time unit, as we also want to determine the impact of
the optimizations techniques on the energy consumption of
the test server. If we measured the maximal throughput of
process instances in the SWoM, we would not be able to
make a statement about the energy consumption as it would
be constantly high because of the high CPU load during the
whole test run. However, if we are able to reduce the CPU
load with the optimizations techniques, also the maximal

throughput of process instances can be increased as the engine
can handle a larger amount of process instance with a lower
CPU load. Database I/O related performance measurements
are neglected here as the operations required for message
exchanges affect more the CPU than the databases. This is
especially true for short running processes that are almost
only performed in-memory.

A. Test Setup

The process models are deployed on a SWoM hosted on
a 64 bit IBM WebSphere V 7.0 with 8 GB RAM that uses an
IBM DB2 Enterprise Edition V 9.5 as database backend. The
operating system used is Windows 7 64 bit Edition installed
on a Intel Quad Core 3 GHz Processor with 8 GB memory
Windows, WebSphere, and DB2 with Buildtime and Runtime
database are installed on different disk drives.

The execution of a test run is started from a JAX-WS
client application that performs Web service calls to the
processes that have to be tested in order to instantiate them.
The client is installed on a Windows 7 IBM Thinkpad T60p
with 4 GB memory. The client machine is connected to the
server hosting the SWoM via a 54 Mbit wireless network.
The client application is controlled with a test drive file that
defines the different test cases. For each test case the process
model to be tested (called) is specified and the number of
requests sent to that process model. Each request results
in a new process instance that has to be executed by the
SWoM. Moreover, it can be also defined how many parallel
requests are simulated by the client application, i. e., how
many process instances have to be executed simultaneously.

To measure the CPU load on the server, we use the
Windows performance monitor that samples every second
and is using a window of 480 seconds to determine the CPU
load average. The energy consumption is determined with
the energy measuring device Voltcraft Energy Logger 40004

that is attached to the power supply of the server and plugged
into a socket. The device constantly records the effective
power in Watt that is load by the server per minute.

B. Test Procedure

To perform a test case, the test client sends constantly
9.92 request per second to the SWoM. Each request creates
an instance of process model A of our example choreography
and thus implicitly also one instance of each of the process
models B to D. Hence, a test client request results in 5 process
instances. When the inline optimization is tested, only the
consolidated process model P Inline is instantiated, thus only
one process instance is created per test client request.

One test case is executed for 40 minutes as preliminary
tests have shown that the machine becomes stable after
approximately 25 minutes. It can be assumed that garbage
collection is stabilized and all caches are in a fairly stable

4http://www.conrad.com/VOLTCRAFT-ENERGY-LOGGER-4000-
ENERGY.Unit.htm?websale7=conrad-int&pi=125335

http://www.conrad.com/VOLTCRAFT-ENERGY-LOGGER-4000-ENERGY.Unit.htm?websale7=conrad-int&pi=125335
http://www.conrad.com/VOLTCRAFT-ENERGY-LOGGER-4000-ENERGY.Unit.htm?websale7=conrad-int&pi=125335

Table I
PERFORMANCE AND ENERGY CONSUMPTION TEST RESULTS

Test Runs Average CPU
Load [%]

Performance
Improvement [%]

Average Total Energy
Consumption [Watt]

Average Engine Energy
Consumption [Watt]

Energy Consumption
Improvement [%]

Idle 1 - 115 - -
Full Load 97 - 185 70 -
No optimization 64 reference 175 60 reference
Intra-Engine Transport 18 72 144 29 52
Inline Execution 13 80 138 23 61
Service Request Caching 58 9 166 51 15

state. The readings of the CPU load and the energy consump-
tion have been selected at the end of the test. We use two
readings to smooth out any possible variations. If no major
differences have been found between the two readings, so
the results can be assumed to be sound and solid.

The results of the test runs are shown in Table I. The
different rows denote the different test runs. The first row
specifies the CPU load and the energy consumption for an
idle engine that does not execute any process instances. In
the second row measurements are specified for a SWoM that
is fully loaded (4,380 process instances per minute). The
third row contains the CPU load and the energy consumption
for a non-optimized SWoM that receives 9.92 requests per
second from the test client and thus executes 2976 process
instances per minute (9.92 request per second · 60 s · 5
instances per request). The CPU load of 64% and the energy
consumption of 176 Watts serve as reference values for the
performance and energy improvements resulting from the
applied optimizations techniques.

Apparently, lower CPU load and energy consumption
values are better as this indicates that the SWoM can
handle the test client requests more efficiently due to the
applied performance technique. One column specifies the
total consumption of the test server while the other one uses
the energy consumption measured in the idle mode as offset,
i. e., it only shows the energy consumed by the engine. The
column “Energy Consumption Improvement [%]” always
refers to the average engine energy consumption for the
non-optimized execution.

Intra-engine transport reduces the CPU load to perform the
2976 process instances per minute by 72% and the energy
consumption is reduced by 52% as no SOAP messages have
to be transferred between the processes instances.

The inline execution of the choreography is the most
powerful optimization technique, even though the CPU load is
5% and the energy consumption is just 9% lower compared to
intra-engine transport. The difference results from the reduced
number of process instances created per test client request
and also from the reduced number of activities executed in
P Inline compared to the original choreography.

The testing of the service request caching was carried out
with a slightly modified version of process model A that
invokes the synchronous Web Service always with the same
request in order to guarantee cache hits. We conducted the

test with a varied the number of cache expiry time-outs. A
saving of 9% was observed. The energy consumption is 15%
lower. With the sheer number of requests that are carried out,
varying the cache expiry time has no impact on the results.
If, for example, a cache expiry rate of 1 minute is chosen,
then only one out of 554 (60·9.92) invocations results in a
cache miss. Compared to the other optimization techniques,
the improvements are significantly lower as service request
caching can be only activated for the synchronous invoke

activity A9. We also evaluated service request caching with
another process that was used by Bianculli et al. [19]
for benchmarking different workflow engines. This process
contains 5 sequential synchronous invoke activities that call
simple Web service mocks that do nothing except returning
default output data. There, we could measure a throughput
improvement of 105%.

VII. RELATED WORK

The number of benchmarks for workflow engines is fairly
low. LabFlow-1 [20] is the first benchmark in this field
and studies the impact of databases on the performance of
workflow engines. However, the authors argue that this is
more a database benchmark than a workflow benchmark.
We are not able to make a statement about how this
benchmark would perform with the SWoM as the structure
of the workflows used in LabFlow-1 was not provided by
authors. The benchmark by Weikum et al. [21] compares
the performance of different commercial workflow engines.
The benchmark measured the throughput of the engines and
also studied the impact of database accesses on the engine
performance. In this benchmark the maximum measured
throughput was 400 process instances per hour on a SUN
Sparc10 system. Bianculli et al. [19] developed a benchmark
to determine how different workflow engines, such as
Apache ODE and ActiveVOS, handle structured activities
such as sequence and flow. We used this benchmark as
second benchmark for evaluating the service request cache
performance improvements.

Information about performance optimization techniques in
workflow engines is also very limited. Chapter 7 in the Oracle
Application Server Performance Guide [12] lists a a parameter
that controls the bypassing of SOAP processing. As pointed
out, it seems to apply only to the process level and not to the
individual activities within the process model. Furthermore,

the actual implementation has not been disclosed nor are
any performance comparison figures available. Regarding
service request caching in the context of service invocation
Schmidt et. al [14] propose such a cache for the enterprise
service bus [15]. An appropriate cache mediation pattern for
service invocation is presented in [16]. Xue [17] shows how
the dynamic cache of IBM WebSphere can be exploited for
service request caching in IBM Process Server.

FastSOA [22] is an architecture and software coding prac-
tice centred around XML data serialization and Web services
in general. It does not address performance optimizations in
BPEL engines as we do.

VIII. CONCLUSION AND OUTLOOK

In this paper we proposed optimization techniques for
interacting business processes that are part of a choreography:
Intra-engine transport, service request caching and inline
execution. With intra-engine transport, processes that are
deployed on same engine do not use the SOAP/HTTP
stack to exchange messages. Instead, the communication,
message serialization and deserialization overhead is avoided
by passing the information directly in its engine internal
format between the components of the engine via local Java
calls. Service request caching reduces the message exchanges
between interacting processes or a partner Web services
in general that are called synchronously by caching the
results from previous invocations. Inline Execution merges
all interacting process models that have to be executed on
the same engine into one single process model. This avoids
message exchanges and the number of activities performed as
the communication activities for inter process communication
are not needed any more. Additionally, the number of process
instances is reduced.

To compare the performance gains resulting from the three
optimization techniques we implemented the techniques in
a workflow engine prototype and conducted CPU load and
energy consumption measurements. Apparently, a higher CPU
load results in more energy consumption. In our evaluation
it turned out that inline execution is the most effective
optimization technique followed by the intra-engine transport
that generates slightly more CPU load. Service request
caching had the lowest effect as our example choreography
contains just one synchronous call. For other choreographies
that contain more synchronous than asynchronous calls, a
significant improvement by factor two could be measured.
In summary, our measurements have shown that message
exchanges between interacting processes make up the largest
share of the generated CPU load.

In future works, we plan to do perform measurements
with long-running choreographies that run for hours or
longer. There, the state of the process instances has to be
persisted in the database resulting in a larger impact of the
database I/O operations on the overall performance and on
the energy consumption. Further, we want to measure the

concrete influence of message correlation in asynchronous
communication scenarios on the performance.

ACKNOWLEDGEMENT

This work was partially funded by the BMWi projects
Migrate! (01ME11055) and CloudCycle (01MD11023).

REFERENCES

[1] OASIS, Web Services Business Process Execution Language
Version 2.0 – OASIS Standard, 2007.

[2] Object Management Group (OMG), Business Process Model
and Notation (BPMN) Version 2.0, 2011, OMG Document
Number: formal/2011-01-03.

[3] F. Leymann, “BPEL vs. BPMN 2.0: Should You Care?” in
BPMN, 2010.

[4] V. Gruhn and R. Laue, “Complexity metrics for business
process models,” in BIS, 2006, pp. 1–12.

[5] C. Peltz, “Web Services Orchestration and Choreography,”
IEEE Computer, vol. 36, no. 10, pp. 46–52, 2003.

[6] The Web Services-Interoperability Organization, “Ws-i
basic profile version 2.0,” Sep 2010, http://www.ws-
i.org/Profiles/BasicProfile-2.0.html.

[7] Council of the European Union, “Brussels european council,
presidency conclusions,” Mar 2007, 7224/1/07, Rev 1.

[8] G. Decker et al., “Interacting services: From specification to
execution,” DKE, vol. 68, no. 10, pp. 946–972, Apr. 2009.

[9] F. Leymann and D. Roller, Production workflow: concepts
and techniques. Prentice Hall PTR, 2000.

[10] D. Davis and M. P. Parashar, “Latency performance of soap
implementations,” in CCGRID, 2002.

[11] A. Ng, S. Chen, and P. Greenfield, “An Evaluation of
Contemporary Commercial SOAP Implementations,” in AWSA,
2004.

[12] Oracle BPEL Process Manager Performance Tuning,
Oracle, 2012, http://docs.oracle.com/cd/B32110-
01/core.1013/b28942/tuning-bpel.htm.

[13] R. Fielding et al., Hypertext Transfer Protocol – HTTP/1.1,
1999, http://tools.ietf.org/html/rfc2616.

[14] M.-T. Schmidt, B. Hutchison, P. Lambros, and R. Phippen,
“The Enterprise Service Bus: Making service-oriented archi-
tecture real,” IBM Systems Journal, vol. 44(4), 2005.

[15] D. A. Chappel, Enterprise Service Bus. O’Reilly Media,
2004.

[16] F. Y. Ran et al., “Message Oriented Middleware Cache Pattern –
a Pattern in a SOA Environment,” in Fourth ”Killer Examples”
for Design Patterns and Objects First Workshop (OOPSLA
05, 2005.

[17] Jun Xue, “Caching web services to improve the performance
of business solutions in WebSphere Process Server,” 2010.

[18] S. Wagner, O. Kopp, and F. Leymann, “Towards Choreography-
based Process Distribution In The Cloud,” in CCIS, 2011,
Conference Paper.

[19] D. Bianculli, W. Binder, and M. L. Drago, “Automated
performance assessment for service-oriented middleware: a
case study on BPEL engines,” in WWW, 2010.

[20] A. J. Bonner, A. Shrufi, and S. Rozen, “Labflow-1: A database
benchmark for high-throughput workflow management,” in
EDBT, 1996.

[21] M. Gillmann, R. Mindermann, and G. Weikum, “Benchmark-
ing and configuration of workflow management systems,” in
CoopIS, 2000, pp. 186–197.

[22] F. Cohen, FastSOA: The Way to Use Native XML Technology to
Achieve Service Oriented Architecture Governance, Scalability,
and Performance. Morgan Kaufman Publ Inc, 2007.

http://www.ws-i.org/Profiles/BasicProfile-2.0.html
http://www.ws-i.org/Profiles/BasicProfile-2.0.html
http://docs.oracle.com/cd/B32110-01/core.1013/b28942/tuning-bpel.htm
http://docs.oracle.com/cd/B32110-01/core.1013/b28942/tuning-bpel.htm
http://tools.ietf.org/html/rfc2616

