
Institute of Architecture of Application Systems,
University of Stuttgart, Germany,

lastname@iaas.uni-stuttgart.de, info@thobach.de

Migrating Application Data to the Cloud Using
Cloud Data Patterns

Steve Strauch, Vasilios Andrikopoulos, Thomas Bachmann, Frank Leymann

This publication and contributions have been presented at
CLOSER 2013

CLOSER 2013 Web site: http://closer.scitevents.org

© 2013 SciTePress. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the SciTePress.

@inproceedings{Strauch2013,
 author = {Steve Strauch and Vasilios Andrikopoulos and Thomas Bachmann and
 Frank Leymann},
 title = {Migrating Application Data to the Cloud Using Cloud Data
 Patterns},
 booktitle = {Proceedings of the 3rd International Conference on Cloud
 Computing and Service Science, CLOSER 2013,
 8-10 May 2013, Aachen, Germany},
 year = {2013},
 pages = {36-46},
 publisher = {SciTePress}
}

:

Institute of Architecture of Application Systems

http://closer.scitevents.org/

Migrating Application Data to the Cloud using Cloud Data Patterns

Steve Strauch, Vasilios Andrikopoulos, Thomas Bachmann and Frank Leymann
Institute of Architecture of Application Systems, University of Stuttgart, Stuttgart, Germany

lastname@iaas.uni-stuttgart.de, info@thobach.de

Keywords: Application Data Migration, Cloud Data Patterns, Cloud Migration Scenarios, Application Refactoring.

Abstract: Taking advantage of the capabilities offered by Cloud computing requires either an application to be built
specifically for it, or for existing applications to be migrated to it. In this work we focus on the latter case,
and in particular on migrating the application data. Migrating data to the Cloud creates a series of technical,
architectural and legal challenges that the State of the Art attempts to address. We organize such efforts into a
set of migration scenarios and connect them with a list of reusable solutions for the application data migration
in the form of patterns. From there we define an application data migration methodology and we demonstrate
how it can be used in practice.

1 INTRODUCTION

Cloud computing has become increasingly popular
with the industry due to the clear advantage of reduc-
ing capital expenditure and transforming it into op-
erational costs (Armbrust et al., 2009). To take ad-
vantage of Cloud computing, an existing application
may be moved to the Cloud (Cloud-enabling it) or de-
signed from the beginning to use Cloud technologies
(Cloud-native application). Applications are typically
built using a three layer architecture pattern consist-
ing of a presentation layer, a business logic layer,
and a data layer (Fowler et al., 2002). The presenta-
tion layer describes the application-users interactions,
the business layer realizes the business logic and the
data layer is responsible for application data storage.
The data layer is in turn subdivided into the Data Ac-
cess Layer (DAL) and the Database Layer (DBL). The
DAL encapsulates the data access functionality, while
the DBL is responsible for data persistence and data
manipulation. Figure 1 visualizes the positioning of
the various layers.

Each application layer can be hosted using differ-
ent Cloud deployment models. Possible Cloud de-
ployment models, also shown in Figure 1, are: Pri-
vate, Public, Community, and Hybrid Cloud (Mell
and Grance, 2009). Figure 1 shows the various pos-
sibilities for distributing an application using the dif-
ferent Cloud types. The “traditional” application, not
using any Cloud technology, is shown on the left of
the figure. In this context, “on-premise” denotes that
the Cloud infrastructure is hosted inside the company

and “off-premise” denotes that it is hosted outside the
company.

In this work we focus on the lower two layers of
Figure 1, the DAL and DBL layers of the application.
Application data is typically moved to the Cloud be-
cause of e. g., Cloud bursting, data analysis or backup
and archiving. The migration of the Data Layer to the
Cloud includes two main steps to be considered: mi-
gration of the DBL to the Cloud, and adaptation of
the DAL to enable Cloud data access. This separation
of concerns allows for taking into consideration exist-
ing applications for migration that could potentially
keep their business logic (partially) on-premises and
use more than one Cloud data store provider at the
same time. It has also to be noted here that, for the
purposes of this work, we assume that the decision to
migrate the data layer to the Cloud has already been
made based on criteria such as cost, effort etc. (Tak

Overview of Cloud Application Hosting Topologies

Traditional

Ap
pl
ic
at
io
n
La
ye
rs

Presentation
Layer

Application

Business
Layer

Data Access
Layer

Database
Layer

Presentation
Layer

Business
Layer

Data Access
Layer

Database
Layer

Private
Cloud

Community
Cloud

Deployment
Models

Hybrid Cloud

Public
Cloud

Presentation
Layer

Presentation
Layer

Business
Layer

Business
Layer

Data Access
Layer

Data Access
Layer

Database
Layer

Database
Layer

Data
Layer

Figure 1: Overview of Cloud Deployment Models and Ap-
plication Layers.

36

et al., 2011; Menzel and Ranjan, 2012; Andrikopou-
los et al., 2012).

As previously discussed (Strauch et al., 2012b),
using Cloud technology leads to challenges such as
incompatibilities with the database layer previously
used, or even accidental disclosing of critical data by
e. g., moving them to a Public Cloud. For this pur-
pose, in (Strauch et al., 2012b), a set of Cloud Data
Patterns is identified addressing these challenges us-
ing the format defined by Hohpe and Woolf (Hohpe
and Woolf, 2003). A Cloud Data Pattern describes a
reusable and implementation technology-independent
solution for a challenge related to the data layer of an
application in the Cloud for a specific context.

The contribution of this work is focused on:

1. analyzing the State of the Art in migrating appli-
cations, and in particular application data to the
Cloud, and organizing these efforts into a set dis-
tinct migration scenarios with particular charac-
teristics,

2. mapping the identified Cloud Data Patterns with
the migration scenarios as best practices in order
to deal with each of the scenarios,

3. providing an application data migration method-
ology based on the scenario/pattern mapping, and
demonstrating its applicability by means of an il-
lustrative case.

The remainder of this paper is organized as fol-
lows: Section 2 discusses a motivating scenario that
will be used throughout the paper. Section 3 presents
the existing work on migrating the application and ap-
plication data and Section 4 organizes it into migra-
tion scenarios. Section 5 summarizes the Cloud Data
Patterns that were identified in (Strauch et al., 2012b)
and (Strauch et al., 2012a) and highlights their key
points. Section 6 then discusses the mapping between
scenarios and patterns, and the application data mi-
gration methodology that is based on this mapping.
The motivating scenario from Section 2 is refactored
in order to demonstrate our proposal in practice. Fi-
nally, Section 7 concludes the paper and discusses fu-
ture work.

2 MOTIVATING SCENARIO

For purposes of an illustrative example let us con-
sider the case of a Health Insurance Company (HIC)
in Germany. As a result of the increase of the num-
bers of its clients, the company stores their data in two
data centers in different parts of Germany. The data
centers, covering geographical regions A and B, re-
spectively, form a Private Cloud data hosting solution.

This Private Cloud acts as a uniform access point and
offers a unified view of the data to the various appli-
cations used by the employees of the company. The
company is required to provide access to an Exter-
nal Auditing Company (EAC) to audit the financial
transactions processed by the company. EAC exe-
cutes a series of predefined complex queries on the
financial transactions data at irregular intervals and
reports back to HIC and the responsible authorities
their findings. HIC however is also obliged by law to
protect the personal data privacy and confidentiality
of the medical record of its clients. For this purpose,
the company takes special care to anonymize the re-
sults of the queries executed by the auditor in order to
ensure that no client information is accidentally ex-
posed.

Providing EAC with direct access to the database
of HIC raises a series of concerns about ensuring the
security of the company-internal data, and the perfor-
mance of the company systems, as an indirect result
of the unpredictable additional load imposed by the
complex queries executed by the auditor. As a so-
lution to these issues, it is proposed to use a Public
Cloud data hosting solution provider and migrate a
consistent replica of the financial transaction records
to the Public Cloud, stripped (to the extent that it is
possible) of any personal data. The auditing company
would then be able to retrieve the necessary informa-
tion without burdening the company systems. Such
a migration to the Cloud however, even if only par-
tial, requires addressing different kinds of challenges:
confidentiality-related (ensuring that it is impossible
to recreate the medical records and other personal in-
formation of the company clients using the data in the
Public Cloud), functionality-related (providing both
all the necessary data and the querying mechanisms
for EAC to operate as required), and non-functional
(ensuring that the partial migration does not encum-
ber in any way the performance of HIC’s systems). In
the following we discuss how Cloud Data Migration
Scenarios and Patterns can be used in conjunction to
address such issues.

3 BACKGROUND

Data migration can either be seen as part of the mi-
gration of the whole application, or as the migration
of only the Data Layer. For this purpose, in the fol-
lowing we investigate not only the State of the Art on
use cases for application migration to the Cloud, in-
cluding which types of applications are suitable for
migration to the Cloud, but also use cases for data-
base layer migration only. Some of the cases include

Migrating�Application�Data�to�the�Cloud�using�Cloud�Data�Patterns

37

also migration of application from the Cloud back to a
traditional on-premises model. Based on this analysis
in Section 4 we derive specific Cloud Data Migration
Scenarios.

Application Migration. Amazon proposes a phase-
driven approach for Cloud application migration,
which includes one phase focusing on data migra-
tion (Varia, 2010). The data migration is done in two
steps: selection of the Amazon AWS service, and mi-
gration of the data. Furthermore, Amazon provides
recommendations regarding which of their data and
storage services best fit for storing a specific type
of data, e.g., Amazon Relational Database Service
(Amazon RDS)1. Apart from that, Amazon describes
three application migration use cases (Varia, 2010):

� Marketing and collaboration Web sites.

� Digital asset management solution using batch
processing pipelines.

� Claims processing systems using back-end pro-
cessing workflows.

Microsoft identifies the following eight types of
applications to be considered for migration to the
Cloud (Microsoft Azure, 2012):

1. SaaS applications

2. Highly-scalable Web sites

3. Enterprise applications

4. Business intelligence and data warehouse applica-
tions

5. Social or customer-oriented applications

6. Social (online) games

7. Mobile applications

8. High performance or parallel computing applica-
tions

Microsoft also provides a step-by-step migration
guideline for migrating local MS SQL Server
databases to Azure SQL Database Service mainly
consisting of two phases: database schema migration
supported by a wizard, and migration of the data itself
based on command-line tools (Lee et al., 2009).

Furthermore, Cunningham specifies the following
four general scenarios when an application is suitable
for migration to the Cloud (Cunningham, 2010):

1. The application is used only in predefined periods.

2. The rapid increase in the need for resources can-
not be compensated by buying new hardware.

1http://aws.amazon.com/rds/

3. The application load can be anticipated, e.g.,
for seasonal businesses, allowing to optimize re-
source utilization.

4. In case of unanticipated load, the load increases
without prior indication.

Laszewski et al. (Laszewski and Nauduri, 2011)
identify five scenarios for migration of a legacy ap-
plication to the Cloud: rewrite/re-architect the appli-
cation, changing the platform, automated conversion
using suitable tools, emulation, e.g., through Service-
Oriented Architecture enablement and Web services,
and data modernization. Data modernization entails
the migration of the database to the Cloud and it
is therefore directly relevant for this work. Finally,
Armbrust et al. identify the following types of ap-
plications as drivers for Cloud computing (Armbrust
et al., 2009):

� Mobile interactive applications

� Parallel batch processing

� Business analytics as a special case of batch pro-
cessing

� Extension of computationally-intensive desktop
applications

Data Migration. With respect to the migration of
the database layer in particular, Microsoft identifies
the following migration scenarios where only the
database layer is migrated to the Cloud and the other
layers are kept hosted traditionally (Lee et al., 2009):

1. Web applications.

2. Applications only used by departments or smaller
working groups within a company.

3. Data hubs, where the data is mirrored, e.g., on the
laptops of employees, and regularly synchronized
with the data store in the Cloud.

Especially for the first two scenarios, the performance
issues and complexity due to the potential latency
challenges after the migration of the database layer
to the Cloud have to be considered.

Informatica2 is an SaaS provider for secure data
migration, data replication and data synchronization
into the Cloud. The user configures the synchroniza-
tion and migration service via a Web interface and the
data migration is done using locally installed secure
agents and encryption.

Different solutions and approaches can therefore
be used for migrating application data to the Cloud. In
the following section we organize them into distinct
migration scenarios with particular characteristics.

2http://www.informatica.com

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

38

Table 1: Cloud Data Migration Scenarios Overview.

Migration Scenario Migration Direction (Traditional or Cloud)

Database Layer Outsourcing Traditional �! Cloud
Using Highly-Scalable Data Stores Traditional/Cloud �! Cloud
Geographical Replication Traditional/Cloud �! Cloud
Sharding Traditional/Cloud �! Cloud
Cloud Bursting Traditional/Cloud ! Cloud
Working on Data Copy Traditional �! Cloud
Data Synchronization Traditional ! Cloud
Backup Traditional/Cloud �! Cloud
Archiving Traditional/Cloud �! Cloud
Data Import from the Cloud Cloud �! Traditional/Cloud

4 CLOUD DATA MIGRATION
SCENARIOS

Table 1 summarizes the Cloud Data Migration Sce-
narios we derived from the State of the Art as dis-
cussed in the previous section. The table also iden-
tifies the direction of data migration (from/to the tra-
ditional to/from any Cloud-based deployment model
in Fig. 1). The migration scenarios Backup, Archiv-
ing, and Data Import from the Cloud can be applied
independently from the migration of an application to
the Cloud. All other scenarios have been derived from
the types of applications and use cases for application
migration to the Cloud.

Database Layer Outsourcing is the complete or
partial migration of the local, traditionally hosted
database layer to the Cloud without changing the type
of the data store, e.g., relational, NoSQL, or Binary
Large Object (BLOB) data store. An example of a
complete Database Layer Outsourcing of a relational
data store is the migration of a local MySQL database
to Amazon RDS with MySQL configuration.

The migration scenario Using Highly-Scalable
Data Stores assumes that before migration the data
are hosted in a non highly-scalable relational data
store, which might be hosted traditionally, or in a
Cloud environment. The data in this scenario are mi-
grated to a NoSQL or BLOB data store. Two ex-
amples taken from the industry are the media con-
tent delivery company Netflix (Anand, 2010) and the
Web information company Alexa (Amazon.com, Inc.,
2011). Both of them migrated their data from a re-
lational data store to a NoSQL (AmazonSimpleDB3)

3http://aws.amazon.com/simpledb/

and BLOB data store (Amazon S34) in the Cloud for
the purpose of achieving better scalability.

For latency critical applications, the data are
moved as near as possible either to the user, or to
the processing logic in order to reduce data access
latency. The Geographical Replication migration
scenario considers replicating the database layer for
static data, as in the case of content delivery networks,
or for data changing dynamically using, e.g., read
replicas or read-write replicas. This migration sce-
nario implies that the different replicas have to be kept
consistent by realizing synchronization mechanisms.
An example for replication of static data is Amazon
CloudFront5 and an example for replication of data
changing dynamically is Microsoft Azure SQL used
with its Data Sync functionality (Redkar and Guidici,
2011).

In contrast to the previous scenario, Sharding dis-
tributes the data into disjoint groups without requir-
ing synchronization between the different data stores
(shards) (Pritchett, 2008). The distribution can be ei-
ther done geographically or based on the functional
grouping of the data. Guidelines for the realization of
a solution considering sharding are available for Mi-
crosoft Azure SQL6 and Amazon RDS7.

Cloud Bursting is the temporary outsourcing of
the database layer to the Cloud in order to use ad-
ditional resources for off-loading of peak loads, be-
cause the available on-premise resources are not suf-

4http://aws.amazon.com/s3/
5http://aws.amazon.com/cloudfront/
6http://social.technet.microsoft.com/wiki/contents/

articles/1926.how-to-shard-with-windows-azure-sql-
database.aspx

7http://aws.amazon.com/articles/0040302286264415

Migrating�Application�Data�to�the�Cloud�using�Cloud�Data�Patterns

39

ficient. Typical cases where Cloud bursting is applied
are seasonal businesses like Christmas shopping out-
lets. A realization of a solution based on this scenario
can be implemented using Microsoft Azure SQL used
with its Data Sync functionality (Redkar and Guidici,
2011).

The migration scenario Working on Data Copy re-
quires the creation of a complete or partial copy of the
database layer in the Cloud for the purpose of avoid-
ing additional load on the production system by, e.g.,
running complex data analysis. As NoSQL data stores
are highly scalable and thus are able to handle addi-
tional load in parallel to the production process in the
general case the source and target data store for this
migration scenario are relational data stores. An ex-
ample of this migration scenario are data warehouse
applications operating on non-live data.

Data Synchronization enables a set of users to
work in parallel and temporarily off-line while shar-
ing relatively up-to-date data without latency for the
data access. The database layer is copied into the
Cloud and a synchronization mechanism is realized.
Each user works on a local replica of the database
layer which is regularly synchronized with the data-
base layer in the Cloud. A detailed example for Data
Synchronization is provided in (Lee et al., 2009). The
sales staff are working on local copies of customers
data and lists of company product prices on their lap-
tops. The data are regularly synchronized in the back-
ground when the employees of the company are con-
nected to the Web.

In order to fulfill compliance regulations such as
SOX (United States Congress, 2002) it is required to
keep business data and store them over a fixed pe-
riod of time. These data provide a snapshot at a spe-
cific point in time and serve as a save point to re-
turn to, e.g., in case of data loss. Especially when
using Cloud providers it is recommended to regu-
larly backup your data as you have no direct control
over the data when stored on the infrastructure of the
Cloud provider (Badger et al., 2012). Backup there-
fore constitutes a particular case of data migration to
the Cloud, occurring at predefined intervals. An ex-
ample backup solution in the Cloud is provided by
Datacastle8. Archiving also creates a complete copy
of the database layer to the Cloud, but serving a differ-
ent purpose than Backup. The usage of archived data
is not foreseen in case of errors or data loss, but for
analysis and as evidence in court cases (Consultative
Committee for Space Data Systems, 2002). Amazon
provides the Cloud archiving service Glacier 9 for this
purpose.

8http://www.datacastlecorp.com
9http://aws.amazon.com/glacier/

Several Cloud services are offering access to data
via an API. Thus, the database layer of the Cloud ser-
vice can be partially or completely imported to the
local data center in order to minimize the latency for
data access during processing. Examples for Cloud
services enabling the migration scenario Data Import
from the Cloud are governments providing their data
in a machine readable format like Open Data10 and
services publishing data such as Twitter 11 in order to
enable social media monitoring.

5 CLOUD DATA PATTERNS

In order to provide support when migrating applica-
tion data to the Cloud there is a clear need for de-
scribing reusable solutions to overcome the recurring
challenges such as incompatibilities on an abstract
and technology independent level as patterns. For
this purpose, in previous work (Strauch et al., 2012a;
Strauch et al., 2012b) an initial list of reusable and
technology independent solutions for the identified
challenges was proposed in the form of Cloud Data
Patterns. A Cloud Data Pattern describes a reusable
and implementation technology-independent solution
for a challenge related to the Data Layer of an ap-
plication in the Cloud for a specific context (Strauch
et al., 2012b).

These patterns have been identified as part of the
work in various EU research projects, and especially
during the collaboration with industry partners. The
identified patterns are also based on literature research
focusing on available reports from companies that al-
ready migrated their application data to the Cloud and
adapted their application accordingly, e.g., by Net-
flix (Anand, 2010). Additionally, guidelines and best
practices on how to design and build applications in
the Cloud, e.g., for enabling scalability (Adler, 2011),
are also taken into consideration. The patterns are fur-
thermore based on requirements and challenges con-
cerning adaptation of applications for the Cloud en-
vironment (Andrikopoulos et al., 2012) and manage-
ment of these applications in the Cloud (Conway and
Curry, 2012).

So far, three categories of Cloud Data Patterns
have been identified:
1. Functional Patterns
2. Non-functional Patterns
3. Confidentiality Patterns

Confidentiality patterns can be considered a subcate-
gory of the non-functional patterns; they are treated

10http://www.opendata-network.org
11http://dev.twitter.com/docs/streaming-api/methods

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

40

Table 2: Cloud Data Patterns Summary.

Category Name Icon Challenge

Functional

Data Store Functionality
Extension

How can a Cloud data store provide a missing
functionality?

Emulator of Stored
Procedures

How can a Cloud data store not supporting stored
procedures provide such functionality?

Non-
functional

Local Database Proxy
How can a Cloud data store not supporting hori-
zontal data read scalability provide that function-
ality?

Local Sharding-Based
Router

How can a Cloud data store not supporting hori-
zontal data read and write scalability provide that
functionality?

Confidentiality

Confidentiality Level
Data Aggregator

How can data of different confidentiality levels
from different data sources be aggregated to one
common confidentiality level?

Confidentiality Level
Data Splitter

How can data of one common confidentiality level
be categorized and split into separate data parts
belonging to different confidentiality levels?

Filter of Critical Data

How can data-access rights be kept when moving
the Database Layer into the private Cloud and a
part of the Business Layer and a part of the data
access layer into the public Cloud?

Pseudonymizer of
Critical Data

How can a private Cloud data store ensure passing
critical data in pseudonymized form to the public
Cloud?

Anonymizer of Critical
Data

How can a private Cloud data store ensure passing
critical data only in anonymized form to the public
Cloud?

separately however due to their importance to the
Data Layer. Table 2 provides an overview of the iden-
tified and described Cloud Data Patterns so far.

Functional Cloud Data Patterns like Data Store
Functionality Extension and Emulator of Stored Pro-
cedures provide reusable solutions for challenges re-
lated to offered functionality by Cloud data stores and
services. In case the type of data store changes dur-
ing the migration, e.g., from RDBMS to NoSQL, or
BLOB store, it might be not sufficient to emulate
or add additional functionality by using Functional
Cloud Data Patterns. For example, there may be no
equivalent database schema, the consistency model
may change from strict to eventual consistency (Vo-
gels, 2009), and ACID transactions may not be sup-
ported.

Non-Functional Cloud Data Patterns focus on
providing solutions for ensuring an acceptable Qual-
ity of Service (QoS) level by means of scalability in

case of increasing data read of data write load. There
are two options for this purpose: vertical and hor-
izontal data scaling (Pritchett, 2008; Zawodny and
Balling, 2004). Elasticity with respect to data reads is
normally achieved by data replication (Buretta, 1997)
using read replicas with a master/slave configuration.
This is because when write replicas (several master
databases) are used, the performance might decrease
depending on the consistency model (strict or even-
tual consistency (Vogels, 2009)).

Confidentiality Cloud Data Patterns provide solu-
tions for avoiding disclosure of confidential data (Ta-
ble 2). Confidentiality includes security and privacy.
With respect to confidentiality, we consider the data to
be kept secure and private as critical data such as busi-
ness secrets of companies, personal data, and health
care data, for instance. The personal data and account
information of the customers as part of the billing
data of HIC, for example, have to be pseudonymized

Migrating�Application�Data�to�the�Cloud�using�Cloud�Data�Patterns

41

or anonymized before migrating the billing data to
the Public Cloud. In this case, the actual people
the data is about (HIC customers), and the owner
and user of the data (HIC and EAC, respectively) are
clearly distinguished. The migration of anonymized
or pseudonymized data to the Cloud therefore does
not effect the management of the identity of users of
Cloud data hosting solutions, e.g., in large-scale Pub-
lic Cloud environments. The interested reader is re-
ferred to (Strauch et al., 2012a; Strauch et al., 2012b)
for an in-depth discussion on these patterns.

6 PATTERN-BASED
APPLICATION REFACTORING

In this section we first introduce the mapping of
Cloud Data Migration Scenarios to Cloud Data Pat-
terns (Section 6.1). Afterwards we propose a step-by-
step methodology for the migration of the data layer
to the Cloud covering all migration scenarios and us-
ing the patterns (Section 6.2). Finally, we apply the
methodology to the application introduced in the mo-
tivating scenario focusing on application architecture
refactoring using the patterns (Section 6.3).

6.1 Mapping Scenarios to Patterns

Table 3 provides an overview on how Cloud Data Mi-
gration Scenarios map to Cloud Data Patterns. In or-
der to avoid repetition, in the following we discuss the
mapping of the migration scenario Database Layer
Outsourcing to the various patterns in detail and for
the other scenarios we focus on explaining the dif-
ferences compared to the mapping of this migration
scenario.

All patterns are applicable for the scenario Data-
base Layer Outsourcing depending on the specific
conditions of the required solution. As no change of
the data store type takes place, but there might be a
change of the product, potential incompatibilities, e.g.
regarding realization of data types, or missing func-
tionalities used before, like stored procedures, have
to be added or emulated using the functional patterns.
In case the DBL is completely moved to the Cloud,
a solution to reduce the latency for data access is to
host read replicas locally and to use a Local Data-
base Proxy to forward data reads to these replicas
instead of querying the DBL in the Cloud for every
read request. In order to scale both data writes and
reads, a Sharding-Based Router can be used to enable
sharding in case it is not supported by the Cloud data
store(s) chosen for migration.

When the database layer is migrated to the pub-
lic Cloud, it has to be decided which critical data
will not be moved to the Cloud, e.g., as business se-
crets. The patterns Confidentiality Level Data Aggre-
gator and Confidentiality Level Data Splitter enable
the differentiation and harmonization of the confiden-
tiality level of different data sets from potentially dif-
ferent domains and different data sources. The other
confidentiality patterns enable filtering of critical data
that have to stay locally in case the database layer
is only partially migrated to the Cloud, and remov-
ing or masking the critical data by anonymization or
pseudonymization before moving them to the public
Cloud.

As in the migration scenario Using Highly-
Scalable Data Stores the data in the DBL can also
be only partially migrated, the non-functional pat-
terns might be applicable as in the fist migration sce-
nario. Thus, there are no differences in the pattern
mapping compared to the migration scenario Data-
base Layer Outsourcing. The usage of the Sharding-
Based Router is not typical for the migration scenario
Geographical Replication since sharding the data dis-
jointly distributes them, instead of replicating them.
When combining replication and sharding however,
e.g., by sharding some write replicas that are more of-
ten accessed, this pattern is also applicable.

A non-typical use of the Local Database Proxy
pattern for the scenario Sharding can be applied in
case, e.g., some shards that are more often accessed
via read are replicated for read scalability. The Lo-
cal Sharding-based Router might be even used in the
scenario Sharding in order to keep the sharding in the
database layer transparent for the business layer to
avoid adaptations to the business logic. In the Work-
ing on Data Copy scenario, data analysis is performed
on the complete or partial copy of the database layer,
instead of the actual data. As such, the non-functional
patterns are not applicable for this scenario.

None of the Cloud Data Patterns are applicable
in the Backup scenario, because the purpose of this
scenario is to restore the latest, saved state of the sys-
tem as fast as possible in case an error or outage oc-
curs. No further processing on the backup data takes
place. Thus, in such a time critical situation even
the usage of the Pseudonymizer of Critical Data is
to much overhead that delays restoring the latest sta-
tus. The Pseudonymizer of Critical Data however can
be used in the scenario Archiving to save even critical
data, e.g. personal data, in the public Cloud. The re-
lation of the masked data to the original data has to
be stored separately and safely in order to avoid re-
vealing and to be able to revert the masking of the
data before the archived data can be used. All other

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

42

Table 3: Scenario/Pattern Mapping.

Functional Non-functional Confidentiality

D
at

a
St

or
e

Fu
nc

tio
na

lit
y

E
xt

en
si

on

E
m

ul
at

or
of

St
or

ed
Pr

oc
ed

ur
es

L
oc

al
D

at
ab

as
e

Pr
ox

y

L
oc

al
Sh

ar
di

ng
-b

as
ed

R
ou

te
r

C
on

fid
en

tia
lit

y
L

ev
el

D
at

a
A

gg
eg

ra
to

r

C
on

fid
en

tia
lit

y
L

ev
el

D
at

a
Sp

lit
te

r

Fi
lte

ro
fC

ri
tic

al
D

at
a

Ps
eu

do
ny

m
iz

er
of

C
ri

tic
al

D
at

a

A
no

ny
m

iz
er

of
C

ri
tic

al
D

at
a

Database Layer Outsourcing X X X X X X X X X

Using Highly-Scalable Data
Stores

X X X X X X X X X

Geographical Replication X X X (X) X X X X X

Sharding X X (X) (X) X X X X X

Cloud Bursting X X X X X X X X X

Working on Data Copy X X – – X X X X X

Data Synchronization X X X X X X X X X

Backup – – – – – – – – –
Archiving – – – – – – – X –
Data Import from the Cloud – – – – (X) (X) (X) (X) (X)

Legend: X: applicable, (X) : might be applicable, – : not applicable

patterns are not applicable to scenario Archiving, as
there will be no further processing on the data after it
has been archived.

As the user has no impact on the API offered by
the Cloud service to import data, the functional and
non-functional patterns are not relevant for the mi-
gration scenario Data Import from the Cloud. The
confidentiality patterns might be applicable depend-
ing on the goal of using the imported data. Thus, the
data might be filtered, anonymized, pseudonymized,
categorized or harmonized based on pre-defined con-
fidentiality levels before they are imported.

6.2 Cloud Data Migration

In this section we propose a methodology for migra-
tion of the database layer to the Cloud and adaptation
of the data access and business layer accordingly. The
methodology entails the following steps:

1. Identify relevant Cloud Data Migration Scenario.

2. Describe desired Cloud data store.

3. Select suitable Cloud Data Store.

4. Identify the applicable patterns to solve incompat-
ibilities and to refactor the application.

5. Refactor the application by adapting the database
layer and upper architectural layers while imple-
menting the identified patterns.

6. Migrate the data to the selected Cloud Data Store.
First of all the Cloud Data Migration Scenario has

to be identified. Therefore, the specific requirements
of the solution needed have to be mapped to the char-
acteristics of the migration scenarios defined in Sec-
tion 4. Afterwards, the functional and non-functional
requirements such as data store type and read/write
throughput of the desired Cloud data store have to
be defined. By mapping this set of requirements to
the specifications provided by the Cloud data store
providers, a specific Cloud data store can be selected.
This step can be automated, e.g., by querying a Cloud
data store repository containing the concrete proper-
ties of available Cloud data stores.

In order to identify the patterns to be used to
solve incompatibilities and refactor the application,
the non-functional and functional requirements of the
database layer used before migration have to be spec-
ified. The comparison and mapping of these require-

Migrating�Application�Data�to�the�Cloud�using�Cloud�Data�Patterns

43

Evaluation Scenario

Traditional / Cloud Private Cloud

Deployment Models
Public Cloud

A
p

p
lic

at
io

n
 L

ay
er

s
External
Auditing
Company

External Cloud
Data Store
Provider

Health
Insurance
Company

Database
Layer*

Data Access
Layer

Database Layer

Region A

Data Access
Layer

Legend

Dataflow

Partial Migration

Modified

*

Region B

Data
 Layer

Component

Figure 2: Refactoring of motivating scenario using Cloud Data Patterns (Data Layer).

ments of the database layer previously used, to the
defined requirements for the desired Cloud data store
lead to the identification of potential conflicts and in-
compatibilities. The mapping of the identified mi-
gration scenario to the corresponding patterns (Sec-
tion 6.1) should be used for orientation and limiting
the number of patterns to be considered for applica-
tion refactoring. Based on the characteristics of the
Cloud Data Patterns, and on the specific conditions
when they can be applied (Section 5), the patterns
to solve the incompatibilities and conflicts have to be
chosen.

After the patterns to be applied have been identi-
fied, the actual application refactoring can take place
by implementing the patterns and thus adapting the
database layer and upper architectural layers accord-
ingly. This is because the adaptation of the database
layer (and/or data access layer) by using Cloud Data
Patterns may require adaptations of the business layer
as well. For example the usage of confidentiality pat-
terns for filtering, anonymization, or pseudonymiza-
tion creates a different view on the data for the busi-
ness layer by retrieving the application data in an ag-
gregated format in comparison to the original data-
base layer. Finally, the data themselves have to be
migrated to the selected Cloud data store, including
the necessary DB schema creation. Existing tools and
services like the ones discussed in Section 3 can be
used for this purpose.

6.3 Refactoring the Motivating Scenario

In the following, we discuss how the functional, non-
functional, and confidentiality patterns can be used in

practice to realize the application based on the mo-
tivating scenario introduced in Section 2 and refac-
tor the application accordingly. As discussed in Sec-
tion 2, HIC has to provide access to EAC to audit
the financial transactions processed by the company
while avoiding additional load on the system. This es-
sentially means that only the data on financial transac-
tions have to be replicated. Furthermore, EAC can do
no changes to the actual application data and therefore
no synchronization is required. These specific condi-
tions on the required solution lead to the choice of the
migration scenario Geographical Replication in the
first step of the methodology (Section 6.2). Thus, the
database layer of the HIC is partially replicated in the
public Cloud by focusing on the financial transactions
only.

In the following we focus on identifying the pat-
terns to be used and on the refactoring of the applica-
tion based on the requirements described in the moti-
vating scenario. According to the mapping of the sce-
nario Geographical Replication to Cloud Data Pat-
terns (Table 3) all patterns are potentially applicable
to this scenario. Figure 2 provides an overview of the
refactored application and realization of the scenario
using Cloud Data Patterns.

More specifically, in order to provide horizon-
tal scalability for reads and writes to the data of the
clients and their transactions, the Local Sharding-
Based Router pattern is used. The data is separated
between the two data centers according to the geo-
graphical location. The Google App Engine Datastore
is chosen for replicating the data on financial transac-
tions, configured accordingly. The client information
and their corresponding medical records are critical

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

44

data to be kept only in the company’s private Cloud.
Financial transactions information will appear both in
the private and in the public Cloud. In order to keep
both the data stored in the private data store and the
one outsourced to the public Cloud consistent, data
updates and inserts should be done in parallel to both
the private and the public part of the database layer.

However, only a part of the financial data is nec-
essary for the auditing (e. g., client names can be re-
moved) and the remaining can be pseudonymized be-
fore moving to the public Cloud (e. g., bank account
numbers replaced by serial IDs). A composition of
the Filter of Critical Data and the Pseudonymizer of
Critical Data is used to fulfill both requirements. The
filter is configured so that only data on financial trans-
actions pass it. After passing the filter, the informa-
tion on financial transactions is pseudonymized be-
fore it is stored in the public Cloud. Storage of data
on the auditing company side can be done either in a
private Cloud or in the traditional manner; this is out
of the scope of this discussion.

Due to the challenges identified in the motivat-
ing scenario regarding the data access of the audit-
ing company, the query results must not contain any
relations concerning clients and their corresponding
medical records or personal data. Therefore, this in-
formation has to be completely deleted before pass-
ing the query results to the auditing company (in-
stead of simply obfuscating this relation by using
pseudonymization). In addition, the queries to be ex-
ecuted by the auditor have to be agreed upon in ad-
vance. For these purposes, the realization uses a com-
position of the Anonymizer of Critical Data and the
Emulator of Stored Procedures patterns. The emula-
tor is used to predefine and restrict the data queries
allowed to be executed by the auditing company. The
Anonymizer of Critical Data additionally ensures the
removal of any critical information from the results of
the queries.

A combination of functional, non-functional, and
confidentiality patterns can therefore be used in tan-
dem by the proposed methodology to address the re-
quirements of the use case posed by the motivating
scenario.

7 CONCLUSIONS AND FUTURE
WORK

In the previous sections we discussed the need for
supporting the migration of application data to the
Cloud. A number of technical, architectural and legal
issues related to this effort were identified by means
of a motivating scenario. The State of the Art in mi-

grating applications and application data to the Cloud
was then analyzed for best practices and associated
challenges, and it was organized into ten distinct data
migration scenarios. These scenarios cover differ-
ent aspects of data migration to and from the Cloud
and include, among others, outsourcing the database
layer, replication of data to reduce latency, Cloud
bursting, and synchronization. A set of Cloud Data
Patterns as reusable solutions to common migration-
related challenges was then briefly summarized, and a
mapping between the identified scenarios and the pat-
terns was presented. An application data migration
methodology was then introduced based on this map-
ping, and the motivating scenario application used in
the beginning of the paper was refactored to demon-
strate the applicability of our work.

Neither the list of the migration scenarios, nor the
one of the patterns is claimed to be complete. Further
effort in augmenting and refining both scenarios and
patterns is required in the future. Providing tooling
support for applying the application data migration
methodology discussed in Section 6 could provide
significant help in this direction. A decision support
system built for this purpose, in the manner of work
like (Menzel and Ranjan, 2012) and (Khajeh-Hosseini
et al., 2012), could be an important contribution on its
own, guiding practictioners and researchers through
the migration of their application to the Cloud. Fi-
nally, the discussion in this work has to be positioned
within a larger framework dealing with the migration
of applications to the Cloud, and the adaptations that
could result from this migration.

ACKNOWLEDGEMENTS

The research leading to these results has re-
ceived funding from the 4CaaSt project (http://
www.4caast.eu) part of the European Union’s Seventh
Framework Programme (FP7/2007-2013) under grant
agreement no. 258862.

REFERENCES

Adler, B. (2011). Building Scalable Applications In the
Cloud: Reference Architecture & Best Practices,
RightScale Inc.

Amazon.com, Inc. (2011). AWS Case Study: Alexa.
Anand, S. (2010). Netflix’s Transition to High-Availability

Storage Systems.
Andrikopoulos, V., Binz, T., Leymann, F., and Strauch, S.

(2012). How to Adapt Applications for the Cloud En-
vironment. Springer Computing.

Migrating�Application�Data�to�the�Cloud�using�Cloud�Data�Patterns

45

Armbrust, M. et al. (2009). Above the Clouds: A Berke-
ley View of Cloud Computing. Technical Report
UCB/EECS-2009-28, EECS Department, University
of California, Berkeley.

Badger, L., Grance, T., R., P.-C., and Voas, J. (2012). Cloud
Computing Synopsis and Recommendations - Recom-
mendations of the National Institute of Standards and
Technology. NIST Special Publication 800-146.

Buretta, M. (1997). Data Replication: Tools and Tech-
niques for Managing Distributed Information. John
Wiley & Sons, Inc.

Consultative Committee for Space Data Systems (2002).
Reference Model for an Open Archival Information
System (OAIS).

Conway, G. and Curry, E. (2012). Managing Cloud Com-
puting: A Life Cycle Approach. In Proceedings of
CLOSER’12. SciTePress.

Cunningham, S. R. (2010). Windows Azure Applica-
tion Profile Guidance. Custom E-Commerce (Elastic-
ity Focus) Application Migration Scenario.

Fowler, M. et al. (2002). Patterns of Enterprise Application
Architecture. Addison-Wesley Professional.

Hohpe, G. and Woolf, B. (2003). Enterprise Integration
Patterns: Designing, Building, and Deploying Mes-
saging Solutions. Addison-Wesley Longman Publish-
ing Co., Inc. Boston, MA, USA.

Khajeh-Hosseini, A., Greenwood, D., Smith, J. W., and
Sommerville, I. (2012). The Cloud Adoption Toolkit:
Supporting Cloud Adoption Decisions in the Enter-
prise. Software: Practice and Experience, 42(4):447–
465.

Laszewski, T. and Nauduri, P. (2011). Migrating to the
Cloud: Oracle Client / Server Modernization. Else-
vier Science.

Lee, J., Malcolm, G., and Matthews, A. (2009). Overview
of Microsoft SQL Azure Database.

Mell, P. and Grance, T. (2009). Cloud Computing Defini-
tion. National Institute of Standards and Technology,
Version 15.

Menzel, M. and Ranjan, R. (2012). CloudGenius: Decision
Support for Web Server Cloud Migration. In Proceed-
ings of WWW ’12, New York, NY, USA. ACM.

Microsoft Azure (2012). Generic Migration Scenarios and
Case Studies.

Pritchett, D. (2008). BASE: An ACID Alternative. Queue,
6(3):48–55.

Redkar, T. and Guidici, T. (2011). Windows Azure Platform.
Apress.

Strauch, S., Andrikopoulos, V., Breitenbücher, U., Kopp,
O., and Leymann, F. (2012a). Non-Functional Data
Layer Patterns for Cloud Applications. In Proceedings
of CloudCom’12. IEEE Computer Society Press.

Strauch, S., Breitenbücher, U., Kopp, O., Leymann, F., and
Unger, T. (2012b). Cloud Data Patterns for Confiden-
tiality. In Proceedings of CLOSER’12. SciTePress.

Tak, B. C., Urgaonkar, B., and Sivasubramaniam, A.
(2011). To Move or Not to Move: The Economics of
Cloud Computing. In Proceedings of HotCloud’11,
Berkeley, CA, USA. USENIX Association.

United States Congress (2002). Sarbanes-Oxley Act (SOX).

Varia, J. (2010). Migrating your Existing Applications to
the AWS Cloud. A Phase-driven Approach to Cloud
Migration.

Vogels, W. (2009). Eventually Consistent. Communications
of the ACM, 52(1):40–44.

Zawodny, J. and Balling, D. (2004). High Performance
MySQL: Optimization, Backups, Replication, Load-
balancing, and More. O’Reilly & Associates, Inc. Se-
bastopol, CA, USA.

All links were last followed on February 5, 2013.

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

46

	cover-SciTePress
	Foliennummer 1

	CLOSER_2013_77_CR

