
Institute of Architecture of Application Systems,
University of Stuttgart, Germany,

lastname@iaas.uni-stuttgart.de

Using Patterns to Move the Application Data Layer
to the Cloud

Steve Strauch, Vasilios Andrikopoulos, Uwe Breitenbücher, Santiago Gómez Sáez,
Oliver Kopp, Frank Leymann

The full version of this publication has been presented at
PATTERNS 2013.

http://www.iaria.org/conferences2013/PATTERNS13.html

© 2013 Xpert Publishing Services

@inproceedings{Strauch2013,
 author = {Steve Strauch and Vasilios Andrikopoulos and Uwe Breitenbücher
 and Santiago Gómez Sáez and Oliver Kopp and Frank Leymann},
 title = {Using Patterns to Move the Application Data Layer to the Cloud},
 booktitle = {Proceedings of the 5th International Conference on Pervasive
 Patterns and Applications, PATTERNS 2013, 27 May – June 1 2013,
 Valencia, Spain},
 year = {2013},
 pages = {26-33},
 publisher = {Xpert Publishing Services (XPS)}
}

:

Institute of Architecture of Application Systems

http://www.iaria.org/conferences2013/PATTERNS13.html

Using Patterns to Move the Application Data Layer
to the Cloud

Steve Strauch, Vasilios Andrikopoulos, Uwe Breitenbücher, Santiago Gómez Sáez, Oliver Kopp, Frank Leymann
Institute of Architecture of Application Systems (IAAS),

University of Stuttgart, Stuttgart, Germany
{firstname.lastname}@iaas.uni-stuttgart.de

Abstract—Cloud services allow for hosting applications par-
tially or completely in the Cloud by migrating their components
and data. Especially with respect to data migration, a series of
functional and non-functional challenges like data confidentiality
arise when considering private and public Cloud data stores. In
this paper we identify some of these challenges and propose a
set of reusable solutions for them, organized together as a set of
Cloud Data Patterns. Furthermore, we show how these patterns
may impact the application architecture and demonstrate how
they can be used in practice by means of a use case.

Keywords—Data layer; Cloud applications; Data migration;
Cloud Data Patterns; Cloud data stores.

I. INTRODUCTION

Cloud computing has become increasingly popular with
the industry due to the clear advantage of reducing capital
expenditure and transforming it into operational costs [1]. To
take advantage of Cloud computing, an existing application
may be moved to the Cloud or designed from the beginning to
use Cloud technologies. Applications are typically built using a
three layer architecture model consisting of a presentation layer,
a business logic layer, and a data layer [2]. The presentation
layer describes the application-users interactions, the business
layer realizes the business logic and the data layer is responsible
for application data storage. The data layer is in turn subdivided
into the Data Access Layer (DAL) and the Database Layer
(DBL). The DAL encapsulates the data access functionality,
while the DBL is responsible for data persistence and data
manipulation. Figure 1 visualizes the positioning of the various
layers.

Each application layer can be hosted using different Cloud
deployment models. Possible Cloud deployment models, also
shown in Figure 1, are: Private, Public, Community, and
Hybrid Cloud [3]. Figure 1 shows the various possibilities
for distributing an application using the different Cloud types.
The “traditional” application not using any Cloud technology
is shown on the left of the figure. In this context, “on-premise”
denotes that the Cloud infrastructure is hosted inside the
company and “off-premise” denotes that it is hosted outside
the company.

In this work, we focus on the lower two layers of Figure 1,
the DAL and DBL layers of the application. Application data is
typically moved to the Cloud because of, e. g., Cloud bursting,
data analysis or backup and archiving. Using Cloud technology
leads to challenges such as incompatibilities with the database
layer previously used or the accidental disclosing of critical
data by, e. g., moving them to a Public Cloud. Incompatibilities

in the database layer may refer to inconsistencies between the
functionality of an existing traditional database layer, and the
functionality and characteristics of an equivalent Cloud Data
Hosting Solution [4]. For instance, the Google App Engine
Datastore [5] is incompatible with Oracle Corporation MySQL,
version 5.1 [6], because the Google Query Language [7]
supports only a subset of the functionality provided by SQL,
e. g., joins are not supported. An application relying on such
functionalities cannot therefore have its data store moved to the
Cloud without deep changes to its implementation. It has to be
noted here that, for the purposes of this work, we assume that
the decision to migrate the data layer to the Cloud has already
been made based on criteria such as cost, effort etc. [8], [9].

The contribution of this paper is the identification of such
challenges and the description of a set of Cloud Data Patterns
as the best practices to deal with them. As defined in [10], a
Cloud Data Pattern describes a reusable and implementation
technology-independent solution for a challenge related to the
data layer of an application in the Cloud for a specific context.
For this purpose, in the following we present an initial catalog
of Cloud Data Patterns dealing with functional, non-functional
and privacy-related aspects of having the application data layer
realized in the Cloud. The Cloud Data Patterns are geared
towards the Platform as a Service (PaaS) delivery model [3].
The presented list of the patterns is a result of our collaboration
with industry partners and research projects. We do not claim
that the list of patterns is complete and we plan to expand it
in the future.Overview of Cloud Application Hosting Topologies

Traditional

Ap
pl
ic
at
io
n
La
ye
rs

Presentation
Layer

Application

Business
Layer

Data Access
Layer

Database
Layer

Presentation
Layer

Business
Layer

Data Access
Layer

Database
Layer

Private
Cloud

Community
Cloud

Deployment
Models

Hybrid Cloud

Public
Cloud

Presentation
Layer

Presentation
Layer

Business
Layer

Business
Layer

Data Access
Layer

Data Access
Layer

Database
Layer

Database
Layer

Data
Layer

Figure 1: Overview of Cloud Deployment Models and
Application Layers

26Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

The presentation of the patterns uses the format defined
by Hohpe and Woolf [11], consisting of the description of a
context where the pattern is applicable, the challenge posed,
external or internal forces that impose constraints that make the
problem difficult to solve, a proposed solution for the challenge,
detailed technical issues (as sidebars), the results of applying
the proposed solution in the defined context, an example of use,
and other patterns to be considered (next). A representative
icon and a graphical sketch of the pattern are also provided. In
addition, we show how these patterns can be used in practice
by means of a use case.

The remainder of this paper starts with providing a motivat-
ing scenario (Section II) highlighting some of the challenges
that need to be addressed in the following sections. A set of
functional Cloud Data Patterns are presented in Section III as
best practices for addressing these challenges. Sections IV and V
summarize and update some of the patterns we defined for the
same purposes in [4] and [10], respectively, but with respect to
Quality of Service and data confidentiality. Section VI discusses
the impact of applying these patterns to the application layers
and evaluates them in practice using the motivating scenario
of Section II. A presentation of related work is contained in
Section VII; conclusions and future work in Section VIII.

II. MOTIVATING SCENARIO

For purposes of an illustrative example let us consider the
case of a health insurance company in Germany. As a result of
the increase of the numbers of its clients, the company stores
their data in two data centers in different parts of Germany.
The data centers, covering geographical regions A and B,
respectively, form a private Cloud data hosting solution that
offers a uniform access point and view of the data to the
various applications used by the employees of the company.
The company is required to provide access to an external auditor
to the financial transactions processed by the company. The
auditor essentially executes a series of predefined complex
queries on the financial transactions data at irregular intervals
and reports back to the company and the responsible authorities
their findings. The health insurance company however is also
obliged by law to protect the personal data privacy and the
confidentiality of the medical record of its clients. For this
purpose, the company takes special care to anonymize the
results of the queries executed by the auditor in order to ensure
that no client information is accidentally exposed.

Providing the external auditor with direct access to the
database of the company raises a series of concerns about a)
ensuring the security of the company-internal data, and b) the
performance of the company systems, as an indirect result
of the unpredictable additional load imposed by the complex
queries executed by the auditor. As a solution to these issues, it
is proposed to use a public Cloud data hosting solution provider
and migrate a consistent replica of the financial transaction
records to the public Cloud, stripped of any personal data. The
auditing company would then be able to retrieve the necessary
information without burdening the company systems. Such a
migration to the Cloud however, even if only partial, requires
addressing different kinds of challenges: confidentiality-related
(ensuring that it is impossible to recreate the medical records
and other personal information of the company clients using the
data in the public Cloud), functionality-related (providing both

all the necessary data and the querying mechanisms for the
auditor to operate as required), and non-functional (ensuring
that the partial migration does not encumber in any way the
performance of the company systems). The following sections
discuss a series of Cloud Data Patterns that address these
issues.

III. FUNCTIONAL PATTERNS

Cloud data stores can be considered as appliances where a
fixed set of functionality is provided [12]. Cloud data stores
include SQL and NoSQL solutions [13], [14]. Each solution
is geared towards a specific application domain and therefore
does not come with all possible features. Furthermore, the
offered functionalities may be configurable but not extensible.
Functional Cloud Data Patterns provide solutions for these
challenges. More specifically:

A. Data Store Functionality Extension

The Data Store Functionality Extension pattern adds a
missing functionality to a Cloud data store.

Context: A Cloud data store does not inherently
support all functionalities usually offered by a
traditional data store. For instance, the Cloud data
store might not support data joins. The choice of
which data store to use is fixed by the application

requirements or contractual obligations and therefore it is not
possible to replace the data store with an equivalent one offering
the missing functionality.

Challenge: How can a Cloud data store provide a missing
functionality?

Forces: The missing (but required) functionality might be
implemented in the business layer. An example of missing func-
tionality are joins. Implementation of the missing functionality
on a higher application layer requires all data to be retrieved
from the database layer and leads to increased network load.

Solution: A component implements the required function-
ality as an extension of the data store, either by offering an
additional functionality, or by adapting one or more of the
existing functionalities offered by the data store. The extension
component is placed within the Cloud infrastructure of the
Cloud data storage. A low distance (in terms of network
performance) ensures low latency between the extension and
the data store.

Sidebars: The additional or extended functionality code has
to be wrapped into an application, which can be hosted in the
Cloud. The access to the data store of the Cloud provider from
this application is done via the API supplied by the provider.
The code in the data access layer has to be adjusted accordingly,
denoted by “Data Access Layer*” in Figure 2 case (a). This
means that each data access call using the required functionality
has to be replaced by a call to the component implementing
the corresponding data store functionality extension.

Results: The Cloud data store functionality is extended.
Assuming all additional functionality required (and not provided
by the Cloud data store) can be implemented within the
component implementing the functionality extension, there
is no adjustment or modification of the business layer required.

27Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Sketch Data Store Functionality Extension / Emulator for Stored Procedures

Traditional

Presentation
Layer

Application

Business
Layer

Data Access
Layer*

Private
Cloud

Community
Cloud

Deployment
Models

Public
Cloud

Database
Layer

Database
Layer*

Legend

Dataflow

Migration

Modified Component *

A
p

p
lic

at
io

n
 L

ay
er

s
(a) (b)

Figure 2: Sketch of (a) Data Store Functionality Extension and (b) Emulator of Stored Procedures

Example: The database layer of an application built on
Oracle Corporation MySQL version 5.1 [6], is moved to Google
App Engine Datastore [5] by Google Inc. As a result, the
database layer functionality is incompatible, because the Google
Query Language [7] supports only a subset of the functionality
provided by SQL, e. g., join functionality is not supported.
As the application requires join functionality, this additional
functionality has to be provided by the component implementing
the join functionality.

Next: In case functionality for stored procedures has to be
added, the “Emulator of Stored Procedures” pattern has to be
considered.

B. Emulator of Stored Procedures

The Emulator of Stored Procedures pattern is a special
case of the Data Store Functionality Extension pattern see
case (b) in Figure 2, where an extension component is built
outside the data store, containing a set of predefined groups
of commands to be executed by the data store. While this is
a very common mechanism in traditional data stores, many
Cloud data stores do not support it natively. Due to its ubiquity
and usefulness we therefore define a separate pattern for it.

Context: Stored procedures “are application pro-
grams that execute within the database server
process” [15]. A Cloud data store does not
inherently support stored procedures as most
traditional data stores do. Changing the provider

of the Cloud data store might not be an option, because of
other advanced features provided or due to specific customer
requirements.

Challenge: How can a Cloud data store not supporting
stored procedures provide such functionality?

Forces: To keep network traffic low, the number of requests
to the database layer should be minimized. Thus, the stored
procedure code should not run on-premise, but within the Cloud
infrastructure of the Cloud data store.

Solution: An emulator of stored procedures is placed within
the Cloud infrastructure of the Cloud data storage. A low
distance (measured in terms of network performance) ensures
low latency between the emulator and the data store and reduces
communication overhead.

Sidebars: The stored procedure code has to be wrapped
into an application, which can be hosted in the Cloud. The
access to the data store of the Cloud provider is done via the
API supplied by the provider. The code of the data access
layer has to be adjusted accordingly, denoted by “Data Access
Layer*” in Figure 2 case (b). This means that each call to the
stored procedure has to be replaced by a call to the emulator.

Results: Instead of emulating the stored procedure func-
tionality in the business layer, the functionality is provided as
an application in the Cloud. The number of requests from the
data access layer to the database layer is reduced as the work
is done by the stored procedure emulator. Assuming the data
transfer between nodes in the provider’s Cloud infrastructure
is free and the stored procedure emulator is hosted there, then
costs are also reduced.

Example: The database layer of an application built on
Microsoft SQL Server with stored procedures is moved to
Microsoft SQL Azure Database. As Microsoft SQL Azure
does not support full text search stored procedures [16], this
functionality has to be emulated.

Next: In case more functionality has to be added, the “Data
Store Functionality Extension” pattern has to be considered.

IV. NON-FUNCTIONAL PATTERNS

We previously investigated non-functional patterns with
focus on providing solutions for ensuring an acceptable Quality
of Service (QoS) level by means of scalability in case of
increasing data read or data write load [17]. In the following,
we provide an overview on these non-functional patterns
focusing on their context, challenge, and solution. When
considering the data rather than the database system, there
are two scaling options available: vertical and horizontal data

28Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

scaling. Vertical data scaling can be achieved by moving the
data to a more powerful database system, which offers better
performance, advanced functionalities, or both. Horizontal data
scaling is based on partitioning the data according to functional
groups [18]. Examples for functional groups are European
customers and American customers. Each functional group
may be itself distributed among different database systems to
increase search speed. This method is also called sharding [19].

A. Local Database Proxy

The Local Database Proxy enables read scalability by
requiring a master/multiple slave model and forwarding read
requests to any read replica.

Context: A Cloud data store does not inherently
support horizontal scalability for data reads.
When the data read load of the application
permanently increases, e. g., due to increased
user acceptance and usage, a mechanism for

horizontally scaling read requests is required. Additionally,
the business logic of processing user requests is also moved to
the Cloud.

Challenge: How can a Cloud data store not supporting
horizontal data read scalability provide that functionality?

Solution: The Cloud data store is configured using a single
master/multiple slave model. The master handles data writes
and the slaves are used as replicas serving read requests only. In
case the application has to deal with stale data, the replication
of data may be lazy. A proxy component is locally added below
each data access layer. All requests from each data layer are
routed through the respective proxy. The proxy routes data read
requests to any slave and write requests to the master.

B. Local Sharding-Based Router

The Local Sharding-Based Router enables read and
write scalability by requiring the independent splitting and
distributing of data into functional groups and forwarding read
and write requests to the corresponding shard.

Context: A Cloud data store does not inherently
support horizontal scalability for data reads and
writes. When the data read load of the application
permanently increases, e. g., due to increased user
utilization, a mechanism for horizontally scaling

read requests to the data store is required. Furthermore, a
permanent high data update rate of the application requires
also horizontally scaling for data writes. The business logic of
processing user requests is moved to the Cloud.

Challenge: How can a Cloud data store not supporting
horizontal data read and write scalability provide that function-
ality?

Solution: The data to be stored in the Cloud are split
horizontally. This means that tables with many rows are split
into several data stores. Each data store is assigned a distinct
number of rows of the original table. This technique is called
“sharding” [19]. A dedicated sharding-based router is added
locally below each data access layer. All requests from each
data layer are routed through the respective sharding-based

router. The local sharding-based router forwards data read and
write requests to the appropriate Cloud data store.

V. CONFIDENTIALITY PATTERNS

In our previous work [10], we presented Cloud Data Patterns
for confidentiality. They deal with data that have to be kept
private and secure, commonly referred to as “critical data”. In
the following, we present and update these patterns focusing
on their context, challenge, and solution.

A. Confidentiality Level Data Aggregator

Critical data can be categorized into different confidentiality
levels. As data are not always categorized by confidentiality, or
categorized using different confidentiality categorizations, the
confidentiality level has to be harmonized. The Confidentiality
Level Data Aggregator provides one confidentiality level
for data from different sources with potentially different
confidential categorizations on different scales.

Context: The data formerly stored in one tradi-
tionally hosted data store is separated according
to the different confidentiality levels and stored in
different locations. The business layer is separated
into the traditionally hosted part processing the

critical data, and the part hosted in the public Cloud processing
the non-critical data. As the application accesses data from
several data sources, the different confidentiality levels of the
data items have to be aggregated to one common confidentiality
level. This builds the basis for avoiding disclosure of critical
data by passing it to the public Cloud.

Challenge: How can data of different confidentiality levels
from different data sources be aggregated to one common
confidentiality level?

Solution: An aggregator retrieves data from all Cloud data
stores. The aggregator is placed within the Cloud infrastructure
of the Cloud data storage with the highest confidentiality
level. Since it must be able to process data with the highest
confidentiality level, it may not be placed where data with a
lower level of confidentiality reside. As a consequence, the
aggregator has to be placed in a location where the demands
of the highest confidentiality level are fulfilled.

B. Confidentiality Level Data Splitter

The Confidentiality Level Data Splitter splits data according
to pre-configured privacy levels. This is required when an
application writes data to multiple data stores with different
confidentiality levels.

Context: The data formerly stored in one tradi-
tionally hosted data store is separated between
data stores with different confidentiality levels.
As the application writes data to several data
stores, the data have to be categorized and split

according to their confidentiality level. This builds the basis
for avoiding disclosure of critical data when storing them in
the public Cloud.

Challenge: How can data of one common confidentiality
level be categorized and split into separate data parts belonging
to different confidentiality levels?

29Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Solution: A splitter is placed within the infrastructure of
the data access layer of the application. Thus, additional data
movement, network traffic, and load can be minimized. The
splitter writes data to all Cloud data stores. As the splitter
processes data with the highest confidentiality level, it has
to be placed in a location where the demands of the highest
confidentiality level are fulfilled.

C. Filter of Critical Data

The Filter of Critical Data ensures that no confidential
data are disclosed to the public. The filter enforces that no
data leaves the private Cloud by filtering out critical data.

Context: The private Cloud data store contains
both critical and non-critical data. To prevent
disclosure of the critical data, it has to be enforced
that the critical data do not leave the private Cloud.
The logic implemented in the business layer is

split into one part processing critical and one part processing
non-critical data. The party implementing and/or hosting the
business logic for processing the non-critical data cannot be
trusted.

Challenge: How can data-access rights be ensured when
moving the database layer into the private Cloud together with
a part of the business layer, as well as a part of the data access
layer to the public Cloud?

Solution: A filter for the critical data is placed within the
infrastructure of the private Cloud data store. All requests to
the private Cloud data store have to be directed to the filter.
The private Cloud data store is only reachable through the filter.
Requests for critical data originating off-premises are denied
by the filter.

D. Pseudonymizer of Critical Data

The Pseudonymizer of Critical Data implements
pseudonymization. Pseudonymization is a technique to provide
a masked version of the data to the public while keeping the
relation to the non-masked data in private [20]. This enables
processing of non-masked data in the private environment
when required.

Context: The private Cloud data store contains
critical and non-critical data. The business layer
is partially moved to the public Cloud and needs
access to data. The logic implemented in the
business layer is split into one part requiring

critical data, and one where critical data in pseudonymized
form is sufficient for processing. The party implementing and/or
hosting the business logic for processing pseudonymized data
may not be trusted. Furthermore, passing critical data may be
restricted by compliance regulations. It also is required to be
able to relate the pseudonymized data processing results from
the public business layer back to the critical data.

Challenge: How can a private Cloud data store ensure
passing critical data in pseudonymized form to the public
Cloud?

Solution: A pseudonymizer of data is placed within the
infrastructure of the private Cloud data storage. All requests
to the private Cloud data storage have to be directed to the
pseudonymizer. The private Cloud data storage is only reachable
by the pseudonymizer. Results of requests for critical data
originating off-premises are pseudonymized.

E. Anonymizer of Critical Data

The Anonymizer of Critical Data implements
anonymization [20]. Anonymization is a technique to
provide a reduced version of the critical data to the public
while ensuring that it is impossible to relate the reduced
version to the critical data.

Context: The private Cloud data store contains
both critical and non-critical data. The business
layer is partially moved to the public Cloud and
needs access to data. To prevent disclosure and
misuse, the critical data are anonymized before

being passed to the public Cloud. The logic implemented in the
business layer is split into one part requiring critical data, and
one where critical data in anonymized form are sufficient for
processing. The party implementing and/or hosting the business
logic for processing the anonymized data cannot be trusted.
It is not required to be able to relate the anonymized data
processing results from the public business layer back to the
critical data.

Challenge: How can a private Cloud data store ensure
passing critical data in anonymized form to the public Cloud?

Solution: An anonymizer is placed within the infrastructure
of the private Cloud data store. All requests to the private Cloud
data store have to be directed to the anonymizer. The private
Cloud data store is only reachable through the anonymizer.
Results of requests for critical data originating off-premises
are anonymized.

For more details on these patterns, the interested reader is
referred to [10]. In the following sections we combine these
patterns with the ones we defined in Section III and Section IV
in order to demonstrate how they can be used in practice.

VI. CLOUD DATA PATTERNS IN PRACTICE

Table I provides an overview of the impact created by the
application of the patterns presented in the previous sections
to the various application layers. Table I distinguishes between
the layer the patterns are supposed to be realized in, and the
ones that may require additional modifications as a result of
applying them.

As the functional patterns are used in order to add additional
functionality to a Cloud data store, they are realized in the
database layer. In case the extended functionality should be
used for a data request, the request has to go through the
realization of the functional pattern. Thus, adaptations of the
data access layer are also required.

Non-functional and confidentiality patterns are supposed
to be realized in the data access layer. The confidentiality
patterns Confidentiality Level Data Aggregator, Filter of Critical
Data, Pseudonymizer of Critical Data, and Anonymizer of

30Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

TABLE I: Relation between Cloud Data Patterns and Application Architecture Layers

Cloud Data Patterns / Application Layers Business Layer Data Access Layer Database Layer

Data Store Functionality Extension � 4 ♦
Emulator of Stored Procedures � 4 ♦
Local Database Proxy � 4♦ 4
Local Sharding-Based Router � 4♦ 4
Confidentiality Level Data Aggregator 4 4♦ �
Confidentiality Level Data Splitter � 4♦ �
Filter of Critical Data 4 4♦ �
Pseudonymizer of Critical Data 4 4♦ �
Anonymizer of Critical Data 4 4♦ �

Legend: � has no impact on, ♦ is realized in, 4 requires adaptations to

Critical Data require also adaptations of the business layer of
the application. This is because, by realizing the corresponding
patterns, the business logic might not have the same view on
the data as before since the business layer has to deal with data
in aggregated, filtered, pseudonymized or anonymized form.

As patterns are related to each other — to be considered as
a whole and to be composable [11], we have chosen the form of
a piece of a puzzle for the pattern icons. Whether two or more
Cloud Data Patterns are composable depends on the semantics
and functionality of each of the patterns. Moreover, the specific
requirements and context of the needed solution effect whether
a composition of patterns is required. Thus, we do not claim
that all Cloud Data Patterns are composable with each other.
A deeper investigation under which conditions a composition
of Cloud Data Patterns is possible, and what are the resulting
semantics, is required. The investigation and results leading to
a Cloud Data Pattern language are part of our future work.

In the following, we discuss how the functional, non-
functional, and confidentiality patterns can be used in practice
based on the motivating scenario introduced in Section II.
Figure 3 provides an overview of the realization of the scenario
using Cloud Data Patterns. More specifically, in order to provide
horizontal scalability for reads and writes to the data of the
clients and their transactions, the Local Sharding-Based Router
pattern is used. The data are separated between the two data
centers according to geographical location.

The Google App Engine Datastore is chosen for outsourcing
the storage of the data on financial transactions, configured
accordingly. The client information and their corresponding
medical records are critical data to be kept only in the
company’s private Cloud. Financial transactions information
will appear both in the private and in the public Cloud. In order
to keep both the data stored in the private data store and the
one outsourced to the public Cloud consistent, data updates and
inserts should be done in parallel to both the private and the
public part of the database layer. However, only a part of the
financial data is necessary for the auditing (e. g., client names
can be removed) and the remaining can be pseudonymized
before moving to the public Cloud (e. g., bank account numbers
replaced by serial IDs). A composition of the Filter of Critical
Data and the Pseudonymizer of Critical Data is used to fulfill
both requirements. The filter is configured so that only data
on financial transactions pass it. After passing the filter, the
information on financial transactions is pseudonymized before

it is stored in the public Cloud. Storage of data on the auditing
company side can be done either in a private Cloud or in the
traditional manner; this is out of the scope of our discussion.

Due to the challenges identified in the motivating example
regarding the data access of the auditing company, the query
results must not contain any relations concerning clients
and their corresponding medical records or personal data.
Therefore, this information has to be completely deleted before
passing the query results to the auditing company (instead of
simply obfuscating this relation by using pseudonymization).
In addition, the queries to be executed by the auditor have to
be agreed upon in advance. For these purposes, the realization
uses a composition of the Anonymizer of Critical Data and the
Emulator of Stored Procedures patterns. The emulator is used
to predefine and restrict the data queries allowed to be executed
by the auditing company. The Anonymizer of Critical Data
additionally ensures the removal of any critical information
from the results of the queries. A combination of functional,
non-functional, and confidentiality patterns can therefore be
used in tandem to address the requirements of the use case
posed by the motivating scenario.

VII. RELATED WORK

Pattern languages defining reusable solutions for recurring
challenges in architecture have been first proposed by Christo-
pher Alexander [21]. A series of well-established patterns
have been previously identified concerning, e. g., software
engineering [22], enterprise integration [11] and application
architecture [2]. Such general works do not consider building
or migrating the database layer in the Cloud. Nevertheless, we
reuse the pattern format defined by Hohpe and Woolf [11] for
describing our Cloud Data Patterns.

Petcu [23] proposes Cloud usage patterns for Cloud-based
applications based on existing use cases. Fehling et al. [24]
and Pallmann [25] provide high-level architectural patterns to
design, build, and manage applications using Cloud services.
None of these works discusses patterns for building and/or
moving the data layer to the Cloud. Adler [12] provides
contributions regarding best practices for scalable applications
in the Cloud. In this paper we reuse some of the results
presented in [12] to form the non-functional patterns presented
in Section IV.

ARISTA Networks, Inc. [26] provides seven patterns for
Cloud computing of which only one (the Cloud Storage pattern)

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Evaluation Scenario

Traditional / Cloud Private Cloud

Deployment Models
Public Cloud

A
p

p
lic

at
io

n
 L

ay
er

s

External
Auditing
Company

External Cloud
Data Store
Provider

Health
Insurance
Company

Database
Layer*

Data Access
Layer

Database Layer

Region A

Data Access
Layer

Legend

Dataflow

Partial Migration

Modified

*

Region B

Data
 Layer

Component

Figure 3: Realization of motivating scenario using Cloud Data Patterns (Data Layer)

deals with data in the Cloud. Nock [27] provides patterns for
data access in enterprise applications, without however treating
Cloud data stores in the same manner as we do.

Schumacher et al. [28] present reusable solutions for secur-
ing applications, but do not deal with data pseudonymization,
data anonymization, and data filtering. Hafiz [29] presents a pri-
vacy design pattern catalog consisting of nine patterns achieving
anonymity by mixing data with data from other sources instead
of providing a general pseudonymization, anonymization, or
filtering pattern. Creese et al. [30] consider design patterns
for data protection of Cloud services. Romanosky et al. [31]
describe privacy patterns applicable for online interactions.
Schumacher [32] introduces an approach for mining security
patterns from security standards and presents two patterns for
anonymity and privacy. These works do not consider building a
data layer in the Cloud or migrating an existing one there; some
of the mechanisms identified however (e. g., pseudonymization)
are reused in the Cloud Data Patterns we propose.

Finally, Schuemmer [33] presents patterns filtering personal
information to establish boundaries for interactions between
users utilizing collaborative systems. Our patterns are more
general in the sense that they are not limited to filtering of
personal data.

VIII. CONCLUSIONS AND FUTURE WORK

This work presented a set of reusable solutions to face the
challenges of moving the data layer to the Cloud or designing
an application using a data store in the Cloud. The challenges
and proposed solutions were organized as a non-exhaustive
catalog of Cloud Data Patterns focusing on the PaaS delivery
model. These patterns are the result of our collaboration with
industry partners and research projects. Patterns for functional,
non-functional, and confidentiality issues were discussed and
shown how they can be combined in order to address a use
case in practice.

The presentation of the patterns focused on the design
issues, rather than the underlying technical challenges, in

order to ensure their applicability across different technological
platforms. This means that issues requiring a deeper technical
insight, like for example scalability, are not covered sufficiently
in the scope of this work. Nevertheless, these are issues we
are currently looking into. For example, in the discussion in
Section VI, implementing the Local Sharding-Based Router as
a single component may result in a bottleneck for scalability,
or even to a complete failure of the data access/database layer
connection. A possible scalability enabling mechanism, and a
counter-measure to single points of failure is to implement each
pattern using a hot-pool of pattern realizations in the Cloud.
A hot-pool consists of multiple instances of the realization
component and a watchdog. Such issues and their possible
solutions are investigated as part of a larger scale evaluation
of our patterns using an industrial case study. Toward this
direction, we also plan to formalize a general composition
method of Cloud Data Patterns and expand our catalog with
identified patterns presented here.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from projects 4CaaSt (grant agreement no. 258862) and Allow
Ensembles (grant agreement no. 600792) part of the European
Union’s Seventh Framework Programme (FP7/2007-2013), and
the BMWi-project Cloud-Cycle (01MD11023). We thank Tobias
Unger for his valuable input.

REFERENCES

[1] M. Armbrust et al., “Above the Clouds: A Berkeley View of Cloud
Computing,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-28, 2009.

[2] M. Fowler, Patterns of Enterprise Application Architecture. Addison-
Wesley Professional, November 2002.

[3] P. Mell and T. Grance, “Cloud Computing Definition,” National Institute
of Standards and Technology, July 2009.

[4] S. Strauch, O. Kopp, F. Leymann, and T. Unger, “A Taxonomy for Cloud
Data Hosting Solutions,” in Proceedings of the International Conference
on Cloud and Green Computing (CGC ’11). IEEE Computer Society,
Dezember 2011, pp. 577–584.

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

[5] Google, Inc., “Google App Engine Datastore,” 2011.
[6] Oracle Corporation, “MySQL,” 2011, http://www.mysql.com 31.03.2013.
[7] Google, Inc., “Google App Engine GQL Reference,” 2011, https://code.

google.com/intl/en/appengine/docs/python/datastore/gqlreference.html
31.03.2013.

[8] B. C. Tak, B. Urgaonkar, and A. Sivasubramaniam, “To Move or Not
to Move: the Economics of Cloud Computing,” in Proceedings of
the 3rd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’11. Berkeley, CA, USA: USENIX Association, 2011.

[9] M. Menzel and R. Ranjan, “CloudGenius: Decision Support for Web
Server Cloud Migration,” in Proceedings of WWW ’12. New York, NY,
USA: ACM, 2012, pp. 979–988.

[10] S. Strauch, U. Breitenbücher, O. Kopp, F. Leymann, and T. Unger,
“Cloud Data Patterns for Confidentiality,” in Proceedings of CLOSER’12.
SciTePress, April 2012, pp. 387–394.

[11] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 2003.

[12] B. Adler, “Building Scalable Applications In the Cloud:
Reference Architecture & Best Practices, RightScale Inc.”
2011, http://www.rightscale.com/info center/white-papers/
building-scalable-applications-in-the-cloud.php 31.03.2013.

[13] C. Strauch, “NoSQL Databases,” February 2011, http://www.
christof-strauch.de/nosqldbs.pdf 31.03.2013.

[14] Stefan Edlich, “List of NoSQL Databases,” July 2011, http://
nosql-database.org 31.03.2013.

[15] P. A. Bernstein, Principles of Transaction Processing (Morgan Kaufmann
Series in Data Management Systems), 2nd ed. Morgan Kaufmann,
2006.

[16] Microsoft, “System Stored Procedures (SQL Azure Database),”
August 2011, http://msdn.microsoft.com/en-us/library/ee336237.aspx
31.03.2013.

[17] S. Strauch, V. Andrikopoulos, U. Breitenbücher, O. Kopp, and F. Ley-
mann, “Non-Functional Data Layer Patterns for Cloud Applications,”
in Proceedings of the 4th IEEE International Conference on Cloud
Computing Technology and Science (CloudCom’12). IEEE Computer
Society Press, Dezember 2012, pp. 601–605.

[18] K. Küspert and J. Nowitzky, “Partitionierung von Datenbanktabellen,”
Informatik-Spektrum, vol. 22, pp. 146–147, 1999.

[19] J. Zawodny and D. Balling, High Performance MySQL: Optimization,

Backups, Replication, Load-balancing, and More. O’Reilly & Asso-
ciates, Inc. Sebastopol, CA, USA, 2004.

[20] Federal Ministry of Justice, “German Federal Data Protection Law,” De-
cember 1990, http://www.gesetze-im-internet.de/bdsg 1990/ 31.03.2013.

[21] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language.
Towns, Buildings, Construction. Oxford University Press, 1977.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Longman, October 1994.

[23] D. Petcu, “Identifying Cloud Computing Usage Patterns,” in 2010 IEEE
International Conference on Cluster Computing Workshops and Posters
(CLUSTER WORKSHOPS). IEEE, October 2010.

[24] C. Fehling, F. Leymann, R. Retter, D. Schumm, and W. Schupeck,
“An Architectural Pattern Language of Cloud-based Applications,” in
Proceedings of PLoP’11. ACM, October 2011.

[25] D. Pallmann, “Windows Azure Design Patterns,” 2011, http://www.
windowsazure.com/en-us/develop/net/architecture/ 31.03.2013.

[26] ARISTA Networks, Inc., “Cloud Networking: Design Patterns for Cloud-
Centric Application Environments,” January 2009.

[27] C. Nock, Data Access Patterns: Database Interactions in Object Oriented
Applications. Prentice Hall Professional Technical Reference, February
2008.

[28] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann,
and P. Sommerlad, Security Patterns: Integrating Security and Systems
Engineering. Wiley, 2006.

[29] M. Hafiz, “A Collection of Privacy Design Patterns,” in Proceedings of
PLoP’06, New York, NY, USA, 2006.

[30] S. Creese, P. Hopkins, S. Pearson, and Y. Shen, “Data Protection-Aware
Design for Cloud Services,” in Proceedings of CloudCom’09, 2009, pp.
119–130.

[31] S. Romanosky, A. Acquisti, J. Hong, L. F. Cranor, and B. Friedman,
“Privacy Patterns for Online Interactions,” in Proceedings of PLoP’06.
ACM, 2006.

[32] M. Schumacher, “Security Patterns and Security Standards,” in Proceed-
ings of the 7th European Conference on Pattern Languages of Programs
(EuroPLoP), July 2002.

[33] T. Schuemmer, “The Public Privacy–Patterns for Filtering Personal
Information in Collaborative Systems,” in Proceedings of the Conference
on Human Factors in Computing Systems (CHI’04), 2004.

33Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

http://www.mysql.com
https://code.google.com/intl/en/appengine/docs/python/datastore/gqlreference.html
https://code.google.com/intl/en/appengine/docs/python/datastore/gqlreference.html
http://www.rightscale.com/info_center/white-papers/building-scalable-applications-in-the-cloud.php
http://www.rightscale.com/info_center/white-papers/building-scalable-applications-in-the-cloud.php
http://www.christof-strauch.de/nosqldbs.pdf
http://www.christof-strauch.de/nosqldbs.pdf
http://nosql-database.org
http://nosql-database.org
http://msdn.microsoft.com/en-us/library/ee336237.aspx
http://www.gesetze-im-internet.de/bdsg_1990/
http://www.windowsazure.com/en-us/develop/net/architecture/
http://www.windowsazure.com/en-us/develop/net/architecture/

	cover-XpertPublishingServices
	Foliennummer 1

	patterns_2013_2_20_70035

