Institute of Architecture of Application Systems

Enabling Dynamic Deployment of Cloud Applications
Using a Modular and Extensible PaaS Environment

Johannes Wettinger, Vasilios Andrikopoulos, Steve Strauch, Frank Leymann
Institute of Architecture of Application Systems,

University of Stuttgart, Germany
{wettinger, andrikopoulos, strauch, leymann}@iaas.uni-stuttgart.de

BIBTRX:
@inproceedings{Wettinger2013a,
author = {Johannes Wettinger and Vasilios Andrikopoulos and
Steve Strauch and Frank Leymann},
title = {Enabling Dynamic Deployment of Cloud Applications
Using a Modular and Extensible PaaS Environment},
booktitle = {Proceedings of the 6th IEEE International Conference on Cloud
Computing, CLOUD 2013, 27 June - 2 July 2013,
Santa Clara, CA, USA},
year = {2013},
pages = {478--485},
publisher = {IEEE Computer Society}
}

© 2013 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

SR = - e
st Universitat Stuttgart
*e XA
eeredt Germany

Enabling Dynamic Deployment of Cloud Applications
Using a Modular and Extensible PaaS Environment

Johannes Wettinger, Vasilios Andrikopoulos, Steve Strauch, Frank Leymann
Institute of Architecture of Application Systems (IAAS)
University of Stuttgart, Stuttgart, Germany
lastname @iaas.uni-stuttgart.de

Abstract—The Platform as a Service (PaaS) model promotes
the development and deployment of applications on top of
middleware solutions offered by the provider. Deploying an
application in this model entails both the deployment of the
application on top of the platform, but potentially also the
deployment of the middleware components required by the
application. Existing works enable the abstraction from the
underlying infrastructure and allow for the creation of generic
deployment plans for middleware components that automate
the deployment of applications. In this paper we propose a
middleware-oriented deployment approach that defines how
the deployment of middleware components can be defined in a
manner that allows to offer them as PaaS building blocks, and
enable the automatic deployment of application components on
them. We also present an evaluation of our proposal, together
with the lessons learned during this activity.

Keywords-middleware abstraction; infrastructure abstrac-
tion; middleware-oriented deployment; PaaS model; Cloud
computing

I. INTRODUCTION

As the Cloud service market is maturing, the Platform as
a Service (PaaS) model is becoming more popular with
application developers. The PaaS model, as defined by
NIST [1], provides the capability to the consumer to deploy
onto the Cloud infrastructure applications based on languages
and tools supported by the provider. In this manner, PaaS
allows application developers to pick and choose middleware
components from one or more Cloud service providers, on
top of which they can develop their application-specific logic
as application components. Deploying an application in this
context involves the deployment and wiring of the application
components across one or more middleware components.
Deployment of the middleware components themselves may
also be required in case the PaaS solution is built on top of
an Infrastructure as a Service (IaaS) service or another PaaS
solution in a nested manner (e.g., deploying a BPEL engine
on Google App Engine). This latter case is the focus of this
work.

Enabling the PaaS model in this context requires the ability
to offer middleware components that can be deployed across
different infrastructures on demand. Both IaaS and PaaS
offerings can be used for hosting these components. This
in turn, would empower application developers to define

their applications in an implementation-agnostic manner
that allows for different middleware components to be used
for their purposes. There are therefore two distinct goals
to be satisfied: /) to allow the portability of application
deployment across different Cloud infrastructures, and 2)
to enable flexibility in middleware component selection on
the application developer side through the automation of the
deployment of both application and middleware components.

Existing approaches in the literature such as [2], [3], and
[4] are geared towards deploying whole application stacks in
Virtual Machine images (VMs), following the TaaS model that
has been dominant in the Cloud service market. While useful
in their own right, the lack of separation between application
and middleware components makes such approaches not
directly applicable for the purposes of deploying application
in PaaS solutions. On the other hand, tools originating
in the DevOps community [5] such as Chef' or Puppet?,
allow for a finer degree of granularity in deploying both
application and middleware components in a flexible manner.
However, they require application developers to create their
own, application-specific deployment plans with little or
no reusability. Nevertheless, such tools can be leveraged to
deploy middleware components in a generic, reusable across
applications manner; this is the approach followed here.

The main contributions of this work can therefore be
summarized as:

« A middleware-oriented deployment methodology, geared
towards the PaaS delivery model, that prescribes a
separation of concerns in the deployment of applications,
and focuses on decoupling the application logic from
the necessary middleware and infrastructure resources.

¢ An evaluation of this methodology through a scenario
of non-trivial complexity demonstrating the efficacy and
efficiency of our proposal.

o A set of best practices in creating deployment plans
for middleware components enabling PaaS solutions,
expressed as requirements in implementing the proposed
methodology.

The remaining of this paper is structured as follows:

! Chef: http://www.opscode.com/chef
Zpuppet: https://puppetlabs.com

Section II motivates our work by presenting a scenario
developed as part of a European Union-funded project
that is used throughout the paper. Section III surveys the
existing work to establish the State of the Art in component
deployment in the Cloud and position our work with respect
to it. Section IV presents our proposal for a middleware-
oriented deployment methodology that can be used both
to enable PaaS solutions, and to facilitate the automation
of application deployment on top of such solutions. The
methodology is evaluated in Section V based on the scenario
discussed in Section II. A set of requirements on how to
define the deployment plans for middleware components is
enumerated in Section VI as the lessons learned during the
evaluation of our methodology. Finally, Section VII concludes
the paper and presents some future work.

II. MOTIVATING SCENARIO

The European Union’s research project 4CaaSt [6] aims to
create a Cloud platform to design services and compositions
based on Cloud-aware building blocks provided by the
platform, offer them in a marketplace, and operate them at
Internet-scale. The goal of the 4CaaSt platform is to lower the
entry barrier for small and medium enterprises by offering an
advanced environment reducing the effort to create innovative
applications leveraging the benefits of Cloud computing.
In particular the 4CaaSt platform addresses the needs of
application developers and service providers. The latter are
using 4CaaSt to offer applications as a service to customers
via the 4CaaSt marketplace. An application developer utilizes
4CaaSt to build new applications by combining external and
4CaaSt platform internal building blocks and services, e.g.,
Cloud-enabled application server, workflow engine, database,
or Google Maps Web Services [7].

In the scope of 4CaaSt the Taxi Scenario has been
defined, where a service provider offers a taxi management
software as a service to different taxi companies, i.e., fenants.
Taxi company customers, who are the users of the tenant,
submit their taxi transportation requests to the company
that they are registered with. The taxi company uses the
taxi management software to contact nearby taxi drivers.
Once one of the contacted taxi drivers has confirmed the
transportation request, the taxi management software sends
a transport notification containing the estimated arrival time
to the customer. A video demonstrating the Taxi Scenario is
available at http://tiny.cc/4caast-taxi-demo.

Figure 1 provides an overview of the realization of
the Taxi Scenario. The topology consists of middleware
components, application components, and external services.
The taxi management software (back-end) is implemented as
a business process using BPEL [8] and hosted on the 4CaaSt
platform. The taxi management software leverages 4CaaSt
platform internal context integration processes to retrieve
context information from 4CaaSt platform internal Context as
a Service, which provides context information about taxi cab

Front-End Back-End
| Contextas a
Service
Application Server Application Server . J
Taxi Company A Taxi Company B BPEL Engine)
N Google Maps
ibeniice "] web Services
Cusé:'lrer Customer Provider
~
GEL (BPEL Process)
Legend
Taxi Taxi Context Integration
Drivers’ Drivers’ Processes (CIPs) :]
GUI GUI (BPEL Processes) External Services
/ Middleware
v v Component
PR @ Tenant Applicati
3 5 A pplication
Registi Registi
E - B it Sty Component

Figure 1. Overview of the Taxi Scenario

locations and taxi driver contact details. Moreover, Google
Maps Web Services [7] provide distance calculations between
the location of a taxi cab and the pick up location.

The taxi companies specific front-ends consist of a

Customer GUI and a Taxi Drivers’ GUI. The registered
customers are sending transportation requests and receiving
transport notifications. The taxi drivers are supported by a
map-based interface, which navigates them to their customer’s
location.

Introducing an ESB as the messaging middleware (Fig. 1)

enables loose coupling and provides a flexible integration
solution by avoiding hard-coded point-to-point connections.
This makes the monitoring, management, and maintenance of
the taxi application easier and more effective. Furthermore,
enabling multi-tenancy at the ESB level allows multiple
taxi companies to use the same taxi application offered as
a service by a single provider. Thus, apart from allowing
taxi companies to outsource the development, deployment,
operation, and management of such an application to a service
provider, this solution also maximizes the benefits on the
provider side.

The realization shown in Fig. 1 is currently deployed

in one virtual machine (VM) using Flexiant’s Flexiscale
offering®, but it is also possible to split the deployment into
several VMs, e.g., by distributing the front-end, back-end,
and integration middleware as we have done for the purpose
of performance evaluation of ESBMT [9].

III. BACKGROUND

To deploy an application owning a complex architecture

including multiple tiers such as the Taxi Scenario described
in Section II, different approaches can be used that are
State of the Art. According to the NIST definition of Cloud
computing [1], there are three different service models:
Infrastructure as a Service (IaaS), Platform as a Service

3Flexiscale: http://www.flexiscale.com

http://tiny.cc/4caast-taxi-demo
http://www.flexiscale.com

(PaaS), and Software as a Service (SaaS). In the following,
we discuss different deployment approaches based on the
[aaS and PaaS model. Deployment is not relevant for the
SaaS model because this service model transparently exposes
software services that can be configured and used directly.

The first approach is based on the IaaS model, meaning
to encapsulate the different middleware components and
application components in virtual machine images. Today,
there are many IaaS providers that can be used to deploy
virtual machine images such as Amazon Web Services
(AWS)*. In addition, there are open source products such as
OpenStack [10] available to create an IaaS environment for
deploying virtual machine images. The Open Virtualization
Format (OVF) [11] aims to be a standardized format for such
images. For the Taxi Scenario described in Section II, a virtual
machine image can be created to host the ESB. Another image
may encapsulate the application server and the BPEL engine
of the taxi service provider (back-end). The application server
for each taxi company (front-end) can be hosted on separate
virtual machines. Alternatively, multiple application servers
can share a single virtual machine. Several approaches are
available that are focused on optimized provisioning of virtual
machines and deploying virtual machine images such as [2],
[3], and [4].

Focusing on the TaaS model, there is another deployment
approach available: instead of completely pre-installing
and pre-configuring virtual machine images, simple stan-
dard images can be used that basically provide a plain
operating system only. Then, configuration management
tooling originating in DevOps communities [5] such as
Chef’> or Puppet® can be used to install and configure
the actual middleware and application components. Scripts
are used to perform the installation and configuration [12].
To manage topologies consisting of several machines and
different components hosted on them, model-driven tooling
such as AWS CloudFormation’, AWS OpsWorks®, or Juju’
can be used. An efficient way of combining configuration
management with model-driven management is described
in [13]. In addition, there are holistic management services
available such as EnStratus [14] or RightScale [15]. These
use Chef scripts in the background to perform the actual
deployment. For the Taxi Scenario this deployment approach
implies to have at least several scripts to install and configure
all the middleware and application components that are
involved. In addition, there may be a specification that
orchestrates all these scripts.

Moving toward the PaaS model, the deployment can be
performed using existing platform offerings such as Google

4Amazon Web Services: http://aws.amazon.com

SChef: http://www.opscode.com/chef

SPuppet: https:/puppetlabs.com

7AWS CloudFormation: http://aws.amazon.com/cloudformation
8 AWS OpsWorks: http://aws.amazon.com/opsworks

9Juju: http://juju.ubuntu.com

App Engine [16] or Amazon Elastic Beanstalk [17]. The goal
of the PaaS model is to provide a platform that abstracts
from the underlying infrastructure resources and provides
“middleware as a service”. Thus, the application components
are directly hosted on the platform. To host the Taxi Scenario
using the PaaS model, several “middleware services” are
required to be exposed by the platform such as an ESB
and a BPEL engine. Such middleware services may not be
offered out of the box by PaaS providers. Consequently, a
custom PaaS environment can be built based on existing
infrastructure resources. As an example, the PaaS framework
Cloud Foundry'® enables this approach. Further, there is
research going on focused on realizing a federated multi-
Cloud PaaS environment [18].

For both the IaaS model and the PaaS model, the structure
and behavior of a complex application consisting of different
types of components and multiple tiers can be specified
by a higher-level model-driven approach. The goal is to
have a holistic model for a particular Cloud service to be
used to deploy the service. Two examples to realize this
approach are the Topology and Orchestration Specification
for Cloud Applications (TOSCA) [19] and Blueprints [20].
Whereas TOSCA is an emerging standard [21], Blueprints are
originating in the 4CaaSt project [6]. In addition, there are
commercial products available that implement the model-
driven approach. An example for these products is the
IBM SmartCloud Orchestrator'!. The goal of the model-
driven approach is to enable top-down modeling by starting
with a higher-level model for the Cloud service. To enable
the deployment of such a model, scripts may have to be
attached to the model to perform the actual deployment of
the middleware and application components.

The approach proposed in the following section is not
isolated from the deployment approaches described before;
it is meant to be combined with these to specify both the
lower-level aspects (scripts and platform services) and the
higher-level aspects (service topology) of a particular Cloud
service.

IV. PROPOSED METHODOLOGY

Based on the discussion in the previous section, automating
the deployment of applications in Cloud environments
revolves around two types of approaches:

1) Top-down approaches that start with an abstract appli-
cation topology and resolve it into concrete deployment
plans by adding application-specific logic in the deploy-
ment (e.g., TOSCA and Blueprint-based approaches).

2) Bottom-up approaches that propose the composition of
existing deployment plans (usually, but not necessarily
defined for one infrastructure solution) as the means to
deploy an application stack (DevOps-oriented tools).

10Cloud Foundry: http://www.cloudfoundry.org
I'IBM SmartCloud Orchestrator: http://ibm.co/CPandO

Application

Middleware

Infrastructure

Figure 2.

Top-down approaches enforce a middleware abstraction
allowing for flexibility in choosing which middleware so-
lution to be incorporated. In the case of the Taxi Scenario
for example, starting from a Blueprint description of the
application the application developer may choose for the
application server component (Fig. 1) either an application
server such as JOnAS'2, or a simple servlet container such
as Apache Tomcat'3. Application-specific logic pertaining to
how the application components (e.g., Taxi Company A/B
WAR files) should be deployed, configured, and wired for
communication in the chosen server for a chosen infrastruc-
ture solution can then be semi-automatically generated. In
this respect, top-down approaches promote flexibility, but
require additional effort that will need to be replicated across
different applications.

Bottom-up approaches on the other hand promote a view of
infrastructure abstraction, that minimizes the effort required
for deployment, configuration, and wiring. This is achieved
through the definition of generic deployment plans on the
level of both application and middleware components that
can then be reused for different applications across different
infrastructures. Some configuration and wiring effort may be
required for application-specific components, but this could
ideally be folded in the deployment plans for the components.
While these approaches focus on reusability, the available
component options for the application developer are limited
to the ones that deployment plans have already been defined
for, reducing flexibility in application design.

Addressing the gap between the two types of approaches,
we propose a methodology to deploy the Taxi Scenario and

12J0nAS: http://jonas.ow2.org
13 Apache Tomcat: http://tomcat.apache.org

Legend

|

Application
Component

1

Middleware
Component

J

Deployment
Plan

1

Xaa$ Solution
Infrastructure

abstraction

|

Hosted on

Interacts with

Middleware-oriented Deployment Methodology

other Cloud services in a way that we gain the benefits of
the PaaS model and minimize its drawbacks. Our goal is to
have generic middleware components that can be hosted
on different infrastructures, on top of which application
components defined in abstract application topologies can
be deployed. The middleware components shall be reusable,
meaning that the very same components can be used to
deploy similar application components such as WAR files
for a completely different Cloud service. Consequently, these
generic middleware components can be used to build a
modular and extensible PaaS environment without sticking
to a particular PaaS provider or framework. A model-driven
approach can be used to wire the involved components. In
order to leverage the benefits of both top-down and bottom-up
approaches, we combine them in a best-of-breed manner.

For existing PaaS offerings such as Google App En-
gine, developers have to follow a particular programming
model because the platform may not expose all features
of the underlying technologies [16]. Reasons for this may
be security risks or scalability issues. The methodology
described in this section does not restrict the programming
model in general. These restrictions completely depend
on the underlying middleware components that realize a
particular PaaS environment. As an example, a scalable
middleware component may not expose features that prevent
it from scaling. Consequently, it depends on the actual use
case which middleware components to choose, considering
the restrictions regarding the programming model and the
properties of the middleware components involved such as
scalability or security.

Figure 2 summarizes the main concepts of our middleware-
oriented deployment methodology. The figure is centered
around a three level view of Cloud applications: an ap-

plication model level focusing on application components
such as the GUISs in the Taxi Scenario, a middleware level
that consists of components facilitating the operation of
applications (e.g., the application server and ESBMT) together
with their generic deployment plans, and an infrastructure
level that represents the XaaS solution actually used to host
the application.

Following this view, the automation of the deployment
of an application on a Cloud infrastructure consists of two
major tasks:

o The definition of an abstract topology of the application
that distinguishes between application components im-
plementing the application logic (not reusable), and
middleware components to support the application
components (with an emphasis on their reusability).

o The creation of a set of generic deployment plans
for various middleware components that can be stored
and reused for multiple applications across different
infrastructures. These plans are defined in a generic
manner that allow for the deployment, configuration,
and wiring of application components on top of them
on an application-specific basis.

Application deployment can then be seen either as the
selection of suitable middleware components for the given
set of application components (in a top-down manner), or as
the composition of available middleware components in a
given infrastructure to support the application components
(bottom-up manner). In any case, the resulting software stack
can then be deployed in the infrastructure solution of the
developer’s choice.

In the following section we explain how our proposal

works in practice by using the Taxi Scenario to evaluate our
proposal.

V. EVALUATION

The purpose of the evaluation described in this section
is to point out the benefits of the methodology described
in Section IV compared to the State of the Art approaches
discussed in Section III. This evaluation is done based on
the Taxi Scenario outlined in Section II.

A. Evaluation Setting

As described in Fig. 1, the application components involved
in the Taxi Scenario require several middleware components
on which they are hosted. We deploy the Taxi Scenario in
two variants. The first variant is shown in Fig. 3 and uses
JOnAS version 5.3.0-M4 as an application server to host
both the front-end and the back-end. The second variant,
shown in Fig. 4, uses Apache Tomcat version 6.0.24 as a
servlet container instead of JOnAS. The other middleware
components and application components are the same. Con-
sequently, the two variants differ in a single middleware
component only: JOnAS application server versus Apache
Tomcat servlet container.

Legend Front-End Back-End
External
Services Taxi Companies Taxi Service Provider

and CIPs

BPEL Processes H
Orchestra
BPEL Engine

Middleware
Component

Application (Taxi
Component Drivers’ Customer
GUIs GUIs

S

Middleware Abstraction

N
Registries I

PostgreSQL] JOnAS

Database Server

Infrastructure Abstraction

@ucture as a Service (Flexiscale, Amazon, HP Cloud)

Figure 3.

Deployment of the Taxi Scenario using JOnAS

Legend

Front-End Back-End

External

Services Taxi Companies Taxi Service Provider

and CIPs
Component

Application Taxi
Component Drivers’ Customer BPEL Processes
GUIs GUIs
Middleware Abstraction
) p Orchestra
Registries I BPEL Engine
Apache Tomcat]

PostgreSQL
Database Server Servlet Container

Middleware

AN

Infrastructure Abstraction

Infrastructure as a Service (Flexiscale, Amazon, HP Cloud)

Figure 4. Deployment of the Taxi Scenario using Apache Tomcat

Whereas the integration of the application components
from an architecture point of view is realized using Web
service technology [22], the actual deployment of all the
components and their wiring is realized using Chef. For this
purpose, we created configurable Chef cookbooks consisting
of recipes (scripts) to provide generic deployment plans
for the middleware components. Following the 4CaaSt
deployment approach [23], each cookbook provides four
deployment recipes that are executed in the given order:

1) Deploy-PIC deploys the actual middleware component,
also called “Platform Instance Component” (PIC) in
4CaaSt terminology.

2) Start-PIC starts the middleware component.

3) Deploy-AC deploys the application components (AC)
hosted on top of the middleware.

4) Start-AC starts the application components that are
running on top of the middleware.

Both variants are deployed on three different IaaS offerings,
namely Amazon Web Services, Flexiscale, and HP Cloud.
All middleware components and application components
are deployed on a single VM with two CPU cores and four

gigabytes of RAM. Ubuntu Server 10.04 LTS (64-bit version)
is the operating system installed on the VM. The ESBMT
implementation is based on Apache ServiceMix 3.4.0 and
PostgreSQL 9.1 [9]. In addition, Orchestra 4.9.0-M3 provides
the BPEL engine to execute the business processes.

B. Results and Lessons Learned

Table I shows the number of deployment plans that are
required for the Taxi Scenario with and without middleware
abstraction. In the case of not applying middleware abstrac-
tion, twice as many deployment plans (Chef cookbooks) have
to be created because a separate deployment plan is required
for each application component. Of course, the cookbooks
enabling middleware abstraction are more complex because of
their generality. However, the generality makes them reusable
for many other deployment scenarios. For this evaluation
both deployment variants are performed with middleware
abstraction, i.e., creating generic Chef cookbooks, because
this is the goal of our middleware-oriented deployment
methodology.

Middleware components can be exchanged transparently
without modifying the application components or other
middleware components. In this evaluation we exchanged
JOnAS with Apache Tomcat. The Deploy-AC recipe that
is part of the deployment plan attached to the application
server middleware component takes care of deploying the
application components. Consequently, the application com-
ponents are completely decoupled and do not refer to a
specific middleware component. The middleware abstraction
further enables the usage of the same generic Deploy-AC
recipe of a particular middleware component to deploy other
application components of the same type (e.g., WAR files or
BPEL process models).

Furthermore, following this approach deployment plans are
not bound to a specific IaaS provider. This is due to the fact
that Chef runs on any kind of virtual machine. Furthermore,
Chef cookbooks can be created in a way so that the same
cookbook runs on multiple operating systems by using a
domain-specific language that is platform-independent [12].
This enables the infrastructure abstraction, so the deployment
plans are reusable across different infrastructures.

Table II summarizes our measurements for the deployment
time of the Taxi Scenario in both variants. The measurements
show a trend that the deployment using Apache Tomcat
is faster. This behavior does not depend on a particular
TaaS provider. We conclude that this is because Apache
Tomcat is a simple servlet container, whereas JOnAS as an
application server is a more complex middleware compo-
nent. Consequently, the deployment time depends on the
choice of middleware components. The differences in the
deployment time regarding the IaaS providers is due to their
internal resource management, which is out of scope of our
evaluation.

Table I
DEPLOYMENT PLANS REQUIRED

With middleware abstraction Without middleware abstraction

ESBMT ESBMT
PostgreSQL PostgreSQL
JOnAS JOnAS

Taxi Driver GUI
Customer GUI
Apache Tomcat
Taxi Driver GUI
Customer GUI
Orchestra

BPEL Process

Apache Tomcat

Orchestra

Sum: 5 deployment plans Sum: 10 deployment plans

VI. DERIVED REQUIREMENTS

In the following, we present and discuss an initial list
of requirements for enabling the middleware-oriented de-
ployment methodology. We derive these requirements from
the evaluation and lessons learned described in the previous
section:

R1 Middleware-orientation: To enable middleware abstrac-
tion, deployment plans are always bound to middleware
components. Application components do not have de-
ployment plans attached. These are also deployed using
the deployment plans of the middleware components.
The plans are generic and not application-specific, so
different application components of a particular type
(e.g., WAR files) can be deployed.

Ro Composable deployment plans: Instead of implement-
ing a monolithic artifact such as a huge script to
perform the deployment of an application, composable
deployment plans shall be implemented. These plans
are focused on deploying specific middleware and
application components and thus can be recombined
and reused for different deployment scenarios.

Rs Configurable deployment plans: To make deployment
plans reusable for different deployment scenarios they
have to be configurable, e.g., by parameterization. Thus,
configuration parameters shall not be hard-coded inside
these plans.

Table 11
DEPLOYMENT MEASUREMENTS

Taxi Scenario Deployment with JOnAS with Apache Tomcat
on Amazon Web Services 589 sec. 523 sec.
on Flexiscale 512 sec. 434 sec.
on HP Cloud 476 sec. 378 sec.

Ry Distributed deployment: Different components of a
single application can be distributed across several
machines. Thus, the corresponding deployment compo-
nents need to be created in a way that they can deploy
an application in a distributed manner. Consequently,
different application components can be hosted on
different machines.

Rs Modularity: Middleware components including their
deployment plans shall be designed and created in a
modular fashion: each “module” represents a particular
middleware component. This enables separation of
concerns. The goal is to combine a set of middleware
components to establish a PaaS environment that can
host applications which require the corresponding
middleware.

Rg Extensibility: To enable the evolution, refinement, and
adaptation of middleware components, their design
and deployment plans shall foster extensibility. This is
key to cover new features of updated versions of the
middleware.

R~ Portability: Deployment plans shall be realized in a
platform-independent manner to enable infrastructure
abstraction. This increases the degree of portability, so
they can be used to deploy middleware on different
platforms, e.g., on different variants of Linux.

VII. CONCLUSION AND FUTURE WORK

The previous sections discussed our proposal for enabling
middleware components as building blocks in a PaaS solution.
The existing work has been identified either as focused
on deploying whole application stacks (top-down), or as
DevOps tools that enable reusability but require additional
effort by application developers to define them (bottom-up).
Our proposal bridges the gap between the two approaches
by proposing the clean separation between middleware and
application components, with different requirements for their
deployment. Plans for the deployment of middleware and
application components are proposed to be as generic as
possible, allowing for flexibility in selecting and deploying
them as part of a bigger application. As shown by our
evaluation, this approach significantly decreases the number
of plans required for the deployment of an application. We
also show that, overall, the time in deploying an application
stack using our approach depends not only on the underlying
infrastructure solution, but also on the selected components.
Flexibility in selecting middleware components can therefore
be seen as crucial for performance purposes.

In terms of future work, a more thorough evaluation of
our proposal across more platforms and deployment tools
(e.g., Puppet) is currently underway. Part of this evaluation is
a comparison of the elapsed deployment time for application-
specific deployment plans, i.e., those without middleware
abstraction in Table I, against the performace of enacting the
middleware-oriented deployment plans reported in Table II.

This would allow us to evaluate the possible overhead of our
proposal. The creation of a repository of reusable middleware
components providing access to application developers would
further contribute towards the direction of evaluating our
proposal using different applications in practice.
Furthermore, two aspects not covered by this paper are
also under investigation. Firstly, the possibility of enabling
dynamic wiring between application and middleware compo-
nents, meaning that the dependencies between components
are resolved during deployment. Currently, we use a static
wiring approach, i.e., we express explicitly these dependen-
cies in the application model. Secondly, scalability of the
application has been so far out of the scope of this discussion.
Both the mechanisms required to be implemented by the
middleware components, and the mechanisms offered by the
underlying infrastructure have to be taken into consideration.
Beyond enriching our methodology, incorporating these
aspects is expected to result into further requirements on the
deployment plan definition of middleware components.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the 4CaaSt project (http://www.4caast.eu) part of the Eu-
ropean Union’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. 258862.

REFERENCES

[1] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing,” 2009.

[2] P. Pawluk, B. Simmons, M. Smit, M. Litoiu, and S. Mankovski,
“Introducing STRATOS: A Cloud Broker Service,” in Cloud
Computing (CLOUD), 2012 IEEE 5th International Confer-
ence on, 2012, pp. 891-898.

[3] S.Zaman and D. Grosu, “An Online Mechanism for Dynamic
VM Provisioning and Allocation in Clouds,” in Cloud Com-
puting (CLOUD), 2012 IEEE 5th International Conference
on, 2012, pp. 253-260.

[4

[

M. Bjorkqvist, L. Chen, and W. Binder, “Opportunistic Service
Provisioning in the Cloud,” in Cloud Computing (CLOUD),
2012 IEEE 5th International Conference on, 2012, pp. 237—
244,

[5] S. Nelson-Smith, Test-Driven Infrastructure with Chef.
O’Reilly Media, Inc., 2011.

[6] 4CaaSt Consortium, “4CaaSt Project Website.” [Online].
Available: http://www.4caast.eu

[7] Google, Inc., “Google Maps API Web Services.” [Online].
Available: http://developers.google.com/maps/documentation/
webservices

[8] A. Alves et al., “Web Services Business Process Execution
Language Version 2.0,” Comitee Specification, 2007.

http://www.4caast.eu
http://www.4caast.eu
http://developers.google.com/maps/documentation/webservices
http://developers.google.com/maps/documentation/webservices

(91

(10]
(11]

[12]

(13]

(14]

[15]

(16]

S. Strauch, V. Andrikopoulos, S. G. Saez, F. Leymann, and
D. Muhler, “Enabling Tenant-Aware Administration and Man-
agement for JBI Environments,” in Proceedings of SOCA’12.
IEEE Computer Society Conference Publishing Services, 2012,
pp- 206-213.

K. Pepple, Deploying OpenStack. O’Reilly Media, 2011.

DMTF, “Open Virtualization Format Specification (OVF)
Version 2.0.0,” 2013. [Online]. Available: http://www.dmtf.
org/standards/ovf

S. Giinther, M. Haupt, and M. Splieth, “Utilizing Internal
Domain-Specific Languages for Deployment and Maintenance
of IT Infrastructures,” Very Large Business Applications
Lab Magdeburg, Fakultit fiir Informatik, Otto-von-Guericke-
Universitdt Magdeburg, Tech. Rep., 2010.

J. Wettinger, M. Behrendt, T. Binz, U. Breitenbiicher, G. Bre-
iter, F. Leymann, S. Moser, 1. Schwertle, and T. Spatzier,
“Integrating Configuration Management with Model-Driven
Cloud Management Based on TOSCA,” in Proceedings of
the 3rd International Conference on Cloud Computing and
Services Science (CLOSER), 2013.

enStratus Networks, Inc., “Cloud DevOps: Achieving Agility
Throughout the Application Lifecycle,” 2012.

RightScale, Inc., “Chef with RightScale,” 2012.
[Online]. Available: http://www.rightscale.com/solutions/
managing-the-cloud/chef.php

D. Sanderson, Programming Google App Engine.
Media, 2009.

O’Reilly

[17]

(18]

[19]

(20]

(21]

[22]

(23]

J. Vliet, F. Paganelli, S. Wel, and D. Dowd, Elastic Beanstalk.
O’Reilly Media, 2011.

F. Paraiso, N. Haderer, P. Merle, R. Rouvoy, and L. Seinturier,
“A Federated Multi-Cloud PaaS Infrastructure,” in Cloud Com-
puting (CLOUD), 2012 IEEE 5th International Conference
on. IEEE, 2012, pp. 392-399.

T. Binz, G. Breiter, F. Leymann, and T. Spatzier, ‘“Portable
Cloud Services Using TOSCA,” Internet Computing, IEEE,
vol. 16, no. 3, pp. 80-85, 2012.

M. Papazoglou and W. van den Heuvel, “Blueprinting the
Cloud,” Internet Computing, IEEE, vol. 15, no. 6, pp. 74-79,
2011.

OASIS, “Topology and Orchestration Specification for Cloud
Applications (TOSCA) Version 1.0, Committee Specification
Draft 04,” 2012. [Online]. Available: http://docs.oasis-open.
org/tosca/TOSCA/v1.0/csd04/TOSCA-v1.0-csd04.html

E. Christensen, F. Curbera, G. Meredith, S. Weerawarana et al.,
“Web Services Description Language (WSDL) 1.1,” 2001.

S. Garcia-Gémez, M. Jiménez-Ganan, Y. Taher, C. Momm,
F. Junker, J. Bir6, A. Menychtas, V. Andrikopoulos, and
S. Strauch, “Challenges for the Comprehensive Management
of Cloud Services in a PaaS Framework,” Scalable Computing:
Practice and Experience (SCPE), vol. 13, no. 3, pp. 201-213,
November 2012.

All links were last followed on May 3, 2013.

http://www.dmtf.org/standards/ovf
http://www.dmtf.org/standards/ovf
http://www.rightscale.com/solutions/managing-the-cloud/chef.php
http://www.rightscale.com/solutions/managing-the-cloud/chef.php
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd04/TOSCA-v1.0-csd04.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd04/TOSCA-v1.0-csd04.html

