
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{santiago.gomez-saez, vasilios.andrikopoulos, frank.leymann, steve.strauch}@iaas.uni-stuttgart.de

Evaluating Caching Strategies for Cloud Data Access
using an Enterprise Service Bus

Santiago Gómez Sáez, Vasilios Andrikopoulos, Frank Leymann, Steve Strauch

© 2014 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{GomezSaez2014,
 author = {Santiago G{\'o}mez S{\'a}ez and Vasilios Andrikopoulos and Frank
 Leymann and Steve Strauch},
 title = {Evaluating Caching Strategies for Cloud Data Access using an
 Enterprise Service Bus},
 booktitle = {Proceedings of the IEEE International Conference on Cloud
 Engineering (IEEE IC2E 2014)},
 year = {2014},
 pages = {289--294},
 doi = {10.1109/IC2E.2014.49},
 publisher = {IEEE Computer Society}
}

:

Institute of Architecture of Application Systems

Evaluating Caching Strategies for Cloud Data
Access using an Enterprise Service Bus

Santiago Gómez Sáez, Vasilios Andrikopoulos, Frank Leymann, Steve Strauch
Institute of Architecture of Application Systems (IAAS)

University of Stuttgart, Stuttgart, Germany

{santiago.gomez-saez, vasilios.andrikopoulos, frank.leymann, steve.strauch}@iaas.uni-stuttgart.de

Abstract—Nowadays different Cloud services enable enter-
prises to migrate applications to the Cloud. An application can
be partially migrated by replacing some of its components with
Cloud services, or by migrating one or multiple of its layers
to the Cloud. As a result, accessing application data stored off-
premise requires mechanisms to mitigate the negative impact on
Quality of Service (QoS), e.g. due to network latency. In this
work, we propose and realize an approach for transparently
accessing data migrated to the Cloud using a multi-tenant open
source Enterprise Service Bus (ESB) as the basis. Furthermore,
we enhance the ESB with QoS awareness by integrating it with
an open source caching solution. For evaluation purposes we
generate a representative application workload using data from
the TPC-H benchmark. Based on this workload, we then evaluate
the optimal caching strategy among multiple eviction algorithms
when accessing relational databases located at different Cloud
providers.

Keywords—Enterprise Service Bus (ESB); Cache; Relational
Databases; Performance Optimization

I. INTRODUCTION

The successful introduction of the Cloud computing
paradigm generated the need for Cloud-enabled applications,
i.e. applications that are migrated to the Cloud. Most of
the literature on the subject discusses Cloud migration as
the re-packaging of applications into one or more virtual
machines (VMs). However, the increasing number of available
Cloud services on the Platform as a Service (PaaS) level like
Google App Engine1 allow for the partial migration of the
application [1]. In this context it becomes possible to migrate
only some of the components of the application off-premise
(in the Cloud), e.g. its database, or some of the application
functionality, e.g. backing up of data, while the remaining of
the application remains on-premise.

Focusing in particular on the Data Layer of the application,
as defined by Fowler [2], i.e. as the data accessing, manipulation
and persistence aspect of the application, there are two different
types of migration options: in one type the usually, but not
necessarily, relational database management system (RDBMS)
used by the application is migrated as a whole to a VM and
accessed remotely by the application through conventional
means, e.g. SQL commands over a JDBC connection. The other
type relies on a predefined (usually RESTful) API provided by
a Database as a Service (DBaaS) like Amazon SimpleDB2.

1Google App Engine: http://developers.google.com/appengine/
2Amazon SimpleDB: http://aws.amazon.com/de/simpledb/

In any case, accessing the application database over a
network, and relying on exogenous to the application resources
due to hosting the database off-premise has potentially a
significant negative impact on the QoS of the application, e.g.
due to unpredictability in the network latency between the
application and the data, or to variability in the performance of
the Cloud service provider [1]. Furthermore, as discussed more
extensively in [1], migrating (any part of) the application to the
Cloud most probably involves a degree of adaptation involved.
In the best case only a degree of re-wiring may be necessary
to redirect the application to the migrated off-premise database.
In the worse case, significant changes may be required to the
application logic in order to cope with incompatibilities in the
way the data is accessed, e.g. when moving to a DBaaS from
a traditional RDBMS.

In order to minimize the adaptation effort required, and
to mitigate the negative impact on the QoS of the application
by migrating its Data Layer to the Cloud, we propose the use
of an Enterprise Service Bus (ESB) solution as the means
to provide transparent data access to potentially multiple
databases migrated to the Cloud. While similar efforts, e.g. [3]
have proposed the use of ESBs in accessing data services,
they rely on wrapping the database as a Web services and
therefore require additional development effort. Furthermore,
these approaches do not utilize caching support on the level
of data requests in order to cope with network latency, as
traditionally supported by middleware solutions. The solution
we discuss in the later sections has built-in caching support,
allowing for multiple caching strategies to be selected from a
list of available ones. Since the efficiency of caching strategies
relies heavily on the nature of the application workload [4],
a major goal of this work is to provide an evaluation of the
efficiency of our proposal for one representative application
workload before generalizing the discussion across different
loads in the future.

The contributions of this work can therefore be summarized
as follows:

• The design and realization of CDASMix, a multi-tenant
aware ESB solution with caching support that enables
transparent data access to databases both on-premise
and off-premise.

• A performance evaluation of our proposal, with the
dual purpose of showing the impact of introducing
CDASMix to the performance of the application, and
identifying the optimal caching strategy for CDASMix

2014 IEEE International Conference on Cloud Engineering

978-1-4799-3766-0/14 $31.00 © 2014 IEEE

DOI 10.1109/IC2E.2014.49

289

for different deployment options across Cloud service
providers.

• A set of initial findings stemming from this evaluation,
that can be valuable for related efforts.

The remaining of this paper is structured as follows:
Section II discusses the architecture and implementation of our
proposal. Section III discusses the methodology, experimental
setup and results, and the most important findings of the
evaluation of our proposal. Section IV summarizes related
work. Finally, Section V concludes with future work.

II. CDASMIX: CLOUD DATA ACCESS SUPPORT IN

SERVICEMIX

In this section we present Cloud Data Access Support
in ServiceMix (CDASMix), an architecture and implementa-
tion approach enabling transparent data access to relational
databases both on-premise and off-premise. We reuse and
extend ESBMT, a multi-tenant aware ESB solution [5], as the
basis for the design and realization of our approach. ESBMT

enhances the Apache ServiceMix 4.3 JBI container 3 with multi-
tenant communication support for service endpoints deployed in
the ESB, and multi-tenant aware dynamic endpoint deployment
capabilities. As ESBMT focuses on enabling multi-tenancy at
the communication level between application services rather
than on application’s data access, the remaining of this section
describes the extensions realized for CDASMix.

The ESBMT provides a Web UI and a Web services API in
order to offer customization, administration, and management
functionalities to its users [5]. The Web services API was
extended with a set of operations for configuring the transparent
data access. No modifications on the Web UI were required.
The Business Logic layer of ESBMT enables role-based access
control for administration and management of the JBI Container
Instance Cluster in the Resources layer [5]. The realization of
transparent Cloud data access support in CDASMix does not
require architectural modifications on this layer, but extensions
for enabling administration and persistence of information
related to the tenant’s off-premise data stores are needed. The
Resources Layer of CDASMix consists of a set of registries
and multiple JBI containers which constitute a JBI Container
Instance Cluster. CDASMix uses the existing ESBMT registries
described in [5]. The service registry database schema has been
extended to store Cloud data access management information
in a tenant aware manner. SQL statements Routing support
required this extension to include both connection-related
information and database-specific information, e.g. remote
database URL and database schema details respectively.

In the following we focus on the required extensions of
each instance of the JBI container cluster in order to enable
transparent Cloud data access support (Fig. 1). JBI containers
provide integration support with external services via various
protocols and message processing facilities such as routing,
as in traditional ESB solutions. ESBMT, and by extension
CDASMix, is based on the OSGi Framework 4 in order to
allow components to be deployed in a loosely coupled manner.
The ServiceMix solution at the core of ESBMT is equipped

3Apache ServiceMix: http://servicemix.apache.org
4OSGi Version 4.3: http://www.osgi.org/Download/Release4V43/

for this purpose with several OSGi components which realize
the ESB functionality complying to the JBI specification. For
example, the ServiceMix-HTTP Binding Component (BC)
supports interactions with external services via HTTP, and the
Apache Camel 5 Service Engine (SE) realizes a set of known
Enterprise Integration Patterns [6]. The Normalized Message
Router (NMR) provides integration support between JBI and
OSGi components within the ESB through a message-based
interface. JBI components provided by ServiceMix support
multiple communication protocols (e.g. HTTP, JMS, etc.) by
marshaling and demarshaling protocol-specific messages into a
standardized internal Normalized Message Format (NMF) [7].
Nevertheless, database system native communication protocols
are not supported, as they are solution-specific.

We focus our approach on providing communication support
for a well known and widely used RDBMS, MySQL 6. The
same approach however can be used to provide support for
other systems such as PostgresSQL 7. Figure 1 zooms in the
architecture of one ESB instance in the cluster in order to
illustrate how transparent message routing and transformation
of application data requests was realized for enabling trans-
parent access through one physical endpoint in CDASMix
to potentially multiple backend data stores. The developed
MySQL Proxy is an OSGi component that implements an
OSGi- and JBI-compliant version of a Java-based MySQL
proxy and serves as the physical endpoint to communicate via
the native communication protocol of MySQL. We extended
and integrated the existing open source Java-based MySQL
Proxy in Myosotis Tungsten Connector8 for this purpose. The
MySQL Proxy is fully integrated with the JBI container via
the Normalized Message Routing (NMR) API. A Cache Cluster
ensures high performance of SQL read operations in CDASMix
by dynamically generating cache keys based on the information
type received in the MySQL Proxy, and by deleting cache
records when SQL statements involve data modification. For
the realization we reused and extended Ehcache 2.6.0 9 by
integrating it into CDASMix also as an OSGi bundle. The
ESBMT Camel SE 2011.11 (denoted as SMX-Camel-mt in
Fig. 1) provides multi-tenancy and integration support between
the JBI environment and the Enterprise Integration Patterns
realizations of Apache Camel. A custom Camel component
named CamelcdasmixJDBC was developed in CDASMix in
order to dynamically connect to off-premise data sources
via multiple database system communication protocols. The
CamelcdasmixJDBC component is accessed through a Camel
endpoint in the SMX-Camel OSGi component (Fig. 1). The
utilization of the SMX-Camel OSGi component enables loading
of CamelcdasmixJDBC component packages during runtime,
e.g. in order to support a new database system.

Focusing on caching, the version of Ehcache currently used
supports three popular cache eviction algorithms: Least Recently
Used (LRU), Least Frequently used (LFU), and First In First Out
(FIFO). LRU deletes the element with the last used timestamp,
LFU the element with the least number of hits, and the FIFO
algorithm deletes the elements from the cache in the same

5Apache Camel: http://camel.apache.org
6MySQL: http://www.mysql.com
7PostgresSQL: http://www.postgresql.org
8Tungsten Replicator: http://myosotis.continuent.org
9Ehcache: http://ehcache.org

290

Presentation

Business
Logic

Resources

Web Service API

Configuration Registry Manager

Tenant Registry Manager

Service Registry Manager

JBI Container Manager

Service Assembly Manager

Service Registry
Database Cluster

Configuration
Registry Database

JBI Container
Instance Cluster

Access Layer

Web UI

Tenant Registry
Database

Message Broker

OSGi Environment

JBI Environment

us
er

Standardized Interfaces for Service Engines

Standardized Interfaces for Binding Components

Normalized Message Router

External
Application

SMX-Camel
-mt

MySQL
Proxy

SMX-
Camel

Camel
cdasmixJDBC

Backend Cloud Data Store Provider

Legend

Message Flow

OSGi Component

JBI Component

NMR API

Instance 1 Instance 1 Instance 1

Cache Cluster

Figure 1. Architecture of an ESB Instance in CDASMix

order they were put into the cache [8]. The effectiveness of
these algorithms in comparison to the absence of cache, and
to the direct accessing of off-premise data sources (without
CDASMix intervention), is discussed in the following section.

III. EVALUATION

A. Methodology

In this work we focus on measuring the impact of intro-
ducing an ESB between the application and its migrated data
to off-premise Cloud services, and on introducing multiple
caching strategies to ameliorate negative performance effects.
In general, the best caching strategy is the one that minimizes
the end-to-end client latency of the application. Therefore, we
do not only measure the latency (e.g. in terms of throughput or
response time), but also the performance of the cache eviction
algorithm (e.g. cache hit rate vs. cache miss rate).

The caching strategy selection when accessing data in a
multi-tier architecture is heavily dependent on the application
workload [4]. CDASMix is meant to be used for databases that
are accessed transparently over the network. For the purposes of
this work we therefore focus the workload generation towards
maximizing the data volume transfered through CDASMix,
effectively simulating a read-intensive application [9], i.e. an
application that mostly executes complex read operations in its
database system. The TPC-H10 benchmark provides a set of
complex queries for a predefined database schema. However, the
benchmark does not include a load driver, and the queries are
not distributed across a predefined workload. Therefore, in order
to evaluate CDASMix we generate an application workload
reusing a fixed set of N TPC-H queries, but organizing them
towards building a discrete uniform workload distribution,

10Transaction Processing Performance Council: http://www.tpc.org

VM0 (Flexiscale)

Apache JMeter
2.9 CDASMix

MySQL 5.1

TPC-H

Amazon RDS
MySQL 5.1 instance

VM1 (Amazon EC2)

MySQL 5.1

D1 D2 D3
E3 E2 E1

Legend

Message Flow

Measurement Point
Throughput and
Transfer Rate

Built-in Cache

E

TPC-H

TPC-H

Figure 2. Overview of the Experimental Setup

where each query has a probability of 1/N of being included
in the workload.

In addition, three main scenarios are taken into consideration
in this evaluation, based on different Cloud infrastructures
where the database can be deployed, as shown in Fig. 2:

I. in an RDBMS on the same VM as CDASMix (VM0
on Flexiscale11);

II. in an RDBMS hosted on a VM of a different Cloud
provider (CDASMix on VM0 (Flexiscale) and MySQL
hosted on Amazon EC2 12 (VM1)); and

III. in a DBaaS solution (Amazon RDS 13) with the
CDASMix hosted on VM0.

For each of the scenarios, we first compare the direct access
to the database, with a transparent access to the database through

11Flexiant Flexiscale: http://www.flexiscale.com
12Amazon EC2: http://aws.amazon.com/ec2/
13Amazon RDS: http://aws.amazon.com/rds/

291

CDASMix without caching support enabled (see Fig. 2). In a
second step, we enable caching support in CDASMix, and
evaluate the effect on performance of the available cache
eviction algorithms: LRU, LFU, and FIFO. Performance is
measured in terms of average throughput (Req./s) and average
cache hit ratio (% cache hit). For simplifying the discussion,
one tenant is used across all scenarios.

B. Experimental Setup

The TPC-H benchmark provides a set of operations for
generating different volumes of data, and a set of complex
queries for a predefined database schema. For this evaluation,
a sample data of 1GB was created, and imported into the
relational database systems deployed in Flexiscale and Amazon,
and into a database instance deployed on Amazon RDS. In
terms of load driving, we generate a workload of 100 queries
from 5 original queries14. Each query of the workload retrieves
a data volume of approximately 2.5MB from the database
system.

Towards minimizing the network latency and establishing
the evaluation baseline of hosting the application stack in the
same system as CDASMix, Apache JMeter15 is used for load
driving purposes in VM0. The workload is then imported into
the load driver, and the JDBC connections are configured using
the MySQL Connector/J (5.1.22) to submit the queries. In the
case of direct connections to MySQL on Flexiant/Amazon EC2
and Amazon RDS, the loader has to be configured separately
to address the various endpoints of the databases (connections
D1, D2 and D3 in Fig. 2). When CDASMix is used, JMeter
is configured only once with an ESB endpoint (connection
E in Fig. 2) and the redirection of the queries to the various
databases through connections E1 to E3 uses the configuration
mechanisms offered by CDASMix. JMeter is set up to measure
the elapsed time for each request to be processed, out of which
we calculate the average throughput of the load in executed
transactions per second.

In terms of the experimental setup shown in Fig. 2, the
virtual machine VM0 (8GB RAM, 4 CPUs AMD Opteron 2GHz
with 512KB cache) hosted in the Flexiscale infrastructure runs
Ubuntu 10.04 Linux OS. Deploying CDASMix and JBIMulti2
in VM0 also required the deployment of the JOnAS 5.2.2
application server (for JBIMulti2), and the PostgreSQL 9.1.1
database (for the registries). The maximum JVM memory heap
size of the ServiceMix process was set to 1GB. In the same VM,
a MySQL 5.1.67 database system with an internal cache size of
16MB was installed. The My-SQL built-in cache in the database
systems deployed in VM1 and VM0 use an LRU eviction
algorithm incorporating a midpoint insertion strategy. In the
Amazon AWS Cloud infrastructure, both the Amazon EC2 VM
and the Amazon RDS database are hosted in the eu-west-1a
availability zone. An m1.xlarge EC2 instance running the
Ubuntu 12.04.2 LTS OS was created, and MySQL 5.1.67
database system was deployed on it, with an internal cache
size of 16MB. In Amazon RDS, a db.m1.xlarge instance
was created, running a MySQL 5.1.69 engine version, as the
MySQL 5.1.67 engine version is not available.

14Generated Load: https://santiago.studiforge.informatik.uni-stuttgart.de/svn/
publications/IC2E14/queries4Load/generatedLoad 5-100.csv

15Apache JMeter: http://jmeter.apache.org

C. Experimental Results

Figures 3 and 4 summarize our throughput and hit rate
measurements, respectively, for all scenarios discussed in the
evaluation’s methodology. With respect to throughput, the
following conclusions can be drawn from Fig. 3:

• Using CDASMix for transparent data access without
any caching (NoCache cases in Fig. 3) always results
to worse performance compared to directly accessing
the database (through a JDBC connection). This is
due to additional processing performed by CDASMix.
However, use of caching improves performance signif-
icantly in all scenarios.

• LFU appears to be the more successful eviction
algorithm in the MySQL-based scenarios (Fig. 3a) but
yields slightly worse results than the other two when
used in conjunction with Amazon RDS (Fig. 3b).

• For the case where the database is basically on-premise
(Scenario I), even with caching enabled the throughput
is (around 50%) worse when CDASMix is used.
However, using LFU reduces the latency to almost
10%. In the presence of network latency (Scenarios II
and III), the use of caching results in better throughput
when compared to the direct connection (Scenario II)
and/or the absence of caching (Scenario III).

• Based on the measurements shown in Fig. 3b, we
can conclude that RDS implements an unspecified
caching strategy which appears to be more effective for
the generated workload. Adding (SQL) updates to the
workload results in significantly less throughput; further
investigation is required in this direction. Furthermore,
the effect of network latency appears to be less in
this scenario, due to the data-intensive nature of the
service i.e. being optimized for data transfers instead
of computation (as in the case of using IaaS solution
in the other scenarios). As a result, all three eviction
algorithms produce very similar results.

The measured hit rate is similar for all three algorithms
across all scenarios (Fig. 4) and depends on the load used. In
the work load that we generated, repetition of queries is (on
purpose) low, which results relatively often in evicting items
from the cache (almost 20% of the time). The most successful
strategy for MySQL-based scenarios (LFU) has actually the
worse hit rate from all algorithms, but relies extensively on the
caching strategy implemented by MySQL (LRU). The impact
of our findings is discussed in the following.

D. Discussion

Going back to the original goal of this work, the previous
results have positively demonstrated that a) it is indeed
possible to use an ESB solution in order to enable transparent
access to data that are migrated off-premise (in the Cloud),
and b) in order to achieve acceptable, and in some cases
better performance, caching plays the most important role.
Caching effectively ameliorates the impact of network latency
introduced by the migration of the database, and becomes more
important as latency varies unpredictably over time. However,
choosing the appropriate caching strategy depends heavily on
the application(s) workload. The reported results concerning

292

0,0334

0,0206

0,0161

0,0125

0,0287

0,0250

0,0300

0,02690,0277

0,0240

0,0000

0,0050

0,0100

0,0150

0,0200

0,0250

0,0300

0,0350

I II

Th
ro

ug
hp

ut
�(r

eq
ue

st
s/

se
c)

Direct

NoCache

LRU

LFU

FIFO

(a) Scenarios I & II (MySQL in IaaS solutions)

0,3014

0,0205
0,0328 0,0324 0,0328

0,0000

0,0500

0,1000

0,1500

0,2000

0,2500

0,3000

0,3500

III

Th
ro

ug
hp

ut
�(r

eq
ue

st
s/

se
c)

Direct

NoCache

LRU

LFU

FIFO

(b) Scenario III (DBaaS)

Figure 3. Throughput in Requests per Second for all Scenarios

78,19%

81,95%

80,68%

75,96% 75,71%

77,58%

80,39%

79,30% 79,36%

72,00%

73,00%

74,00%

75,00%

76,00%

77,00%

78,00%

79,00%

80,00%

81,00%

82,00%

83,00%

I II III

H
it�

Ra
te

�(%
)

LRU

LFU

FIFO

Figure 4. Average Hit Rate Per Scenario

the efficiency of the LFU eviction algorithm are applicable
only to applications with read-heavy workloads. Generalizing
our findings requires different type of loads also to be taken
into consideration.

Furthermore, by introducing caching on the level of
CDASMix, i.e. between the application and its database, we
have basically implemented a two-level caching system with
different caching strategies per level. In the case of Scenarios
I and II, for example, our measurements show that LRU (on
MySQL side) works more efficiently in tandem with LFU
(at CDASMix), rather than with any other strategy. LFU at
CDASMix however seems to antagonize the caching strategy
implemented by Amazon RDS and does not produce better
results than e.g. FIFO. It becomes therefore important to be able
to identify the appropriate, meaning complementary, caching
strategies for CDASMix and the RDBMS or DBaaS used.
Further investigation is required for e.g. PostgresSQL and
Google SQL.

IV. RELATED WORK

Accessing Cloud data services through an ESB is currently
supported by the JBoss Enterprise Data Service Platform16, by
means of exposing databases as data Web services that can
be accessed through an ESB [3]. However, vendor-specific

16JBoss Data Services Platform: http://www.redhat.com/products/
jbossenterprisemiddleware/data-services

communication protocols supported by relational database
systems, e.g. MySQL, PostgreSQL, Oracle, usually realized in
standardized APIs, e.g. JDBC17, are not supported. Applications
accessing these data services should either be adapted to use
them, or designed specifically for them. CDASMix allows
applications to interact with both on- and off-premise databases
through the ESB in their native communication protocol with
minimum adaptations required. Other ESB technologies, e.g.
Fuse ESB18, and integration frameworks such as Apache
Camel19, support configuration of connections to external
relational database systems for internal processing and routing
purposes. However, incoming (client-side) connections are not
configurable in such technologies. CDASMix minimizes the
required modifications in the application’s upper layers when
migrating its data to the Cloud.

Caching strategies and replication have been widely in-
vestigated in the scope of Web applications [4], [10], [11].
Caching dynamic Web content reduces the latency when
getting both application data, and application Web pages [9].
Nowadays, Web applications do not statically retrieve the Web
page’s content, but dynamically create Web pages based on
business specific requirements, e.g. customized Web pages
based on predefined user preferences. In [4] the importance of
characterizing the application’s workload prior to the selection
of the caching strategy in order to scale Web applications is
remarked. Furthermore, in [9] an approach for dynamically
caching Web pages at the front-end of a multi-tier J2EE
architecture is presented. However, the utilization of an ESB
as the application’s data access layer is not considered in these
works, and therefore caching support is realized within the
different servers hosting the application tiers, rather than in
Message-Oriented Middleware (MOM) components. Caching
support in middleware systems aims to reduce the complexity
of realizing caching in the application logic. In [12] a cache
mediation pattern for MOM is proposed as a reusable solution
for accelerating service responses. However, caching strategy
definitions or developer guidelines towards selecting the most
appropriate caching strategy are not included in their proposal.
Furthermore, multi-tenancy awareness is not considered. The

17JDBC: http://www.oracle.com/technetwork/java/javase/jdbc/index.html
18Fuse ESB: http://fusesource.com/products/enterprise-servicemix/
19Apache Camel JDBC: http://camel.apache.org/jdbc.html

293

integrated caching solution in CDASMix realizes multi-tenancy
support atop of the original caching operations by dynamically
creating multi-tenant aware cache keys.

Different Cloud aware benchmarks have been created to
evaluate several features such as elasticity [13] and performance
isolation [14]. To the extent of our knowledge, there is no
commonly agreed benchmarking approach for evaluating Cloud-
enabled middleware components such as an ESB. In [5]
we extended an ESB-specific benchmark to enable multi-
tenancy awareness. However, neither the benchmark nor the
workload are suitable for evaluating CDASMix. Transaction
processing and relational database benchmarks are available
for evaluation purposes, e.g. the TPC-* benchmarks from the
Transaction Processing Performance Council. For example, the
TPC-W benchmark generates Web application workload by
emulating Web browsers [15], and TPC-H evaluates accessing
large data volume through complex queries. The evaluation of
transparently accessing migrated data in the Cloud through an
ESB, and therefore the evaluation of performance improvement
when utilizing different intermediate caching strategies, is not
yet covered by such benchmarks. RadarGun20 is a Cache
Benchmark Framework which focuses specifically on caching
solutions, but not on accessing data remotely, e.g. via an
ESB using relational database system communication protocols.
Therefore, we chose to generate an artificial workload using
sample data from the TPC-H benchmark, use Apache JMeter
as the driver for this load, and configure different caching
strategies in CDASMix.

V. CONCLUSIONS AND FUTURE WORK

In the previous sections we presented and evaluated an
approach for transparently accessing data stored both on-
or off-premise (i.e. in the Cloud) through an ESB solution.
We proposed an architectural approach for accessing data
in relational database systems, e.g. MySQL, PostgreSQL,
etc., through an existing multi-tenant aware ESB solution
(ESBMT). The adaptation of the ESBMT to allow applications
to communicate with its database(s) required modifications
to it, including the realization of a MySQL Proxy supporting
the native MySQL communication protocol, database-aware
routing and connection components, and caching mechanisms
to mitigate the latency introduced by the network and routing
operations. The resulting solution, CDASMix, allows applica-
tions to communicate using JDBC with it, while transparently
redirecting their (SQL) requests to databases either on-premise
or off-premise.

For evaluation purposes we generated a read-heavy ap-
plication workload using sample data and queries from the
TPC-H benchmark, and specified multiple scenarios for several
Cloud services and caching strategies. We observed an expected
performance degradation when using CDASMix compared to
direct accessing the database from the application. However,
we demonstrated that the performance degradation is mitigated,
and in some cases overturned, when caching support is
enabled. Furthermore, we went a step further, and found
for the used database system and generated workload the
most appropriate cache eviction algorithms’ combination for
effectively coordinating a two level cache formed by the

20RadarGun: http://github.com/radargun/radargun

CDASMix cache and the built-in MySQL cache. This finding
however cannot be replicated when using Amazon RDS as the
remote database, indicating the use of an unspecified caching
mechanism at the DBaaS side.

Of particular interest to our future investigation is to
include in CDASMix components to support NoSQL database
systems specific communication protocols, e.g. JSON over
HTTP supported in Amazon DynamoDB, etc. Furthermore, at
the caching level we plan to extend the set of cache eviction
algorithms actually supported by the multi-tenant aware caching
component, investigate towards distributed caching mechanisms
when enabling horizontal scalability of CDASMix, and optimize
the performance of the integrated cache solution, e.g. based on
eliminating noise in large cache systems. We also plan to extend
the evaluation methodology towards analyzing and identifying
different application workloads for scalability purposes using for
example RadarGun20, an open source benchmarking framework
for distributed caches.

ACKNOWLEDGMENTS

This work is funded by the FP7 EU-FET project 600792 AL-
LOW Ensembles and the BMBF-project ECHO (01XZ13023G).

REFERENCES

[1] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch, “How to Adapt
Applications for the Cloud Environment,” Computing, vol. 95, no. 6, pp.
493–535, 2013.

[2] M. Fowler et al., Patterns of Enterprise Application Architecture.
Addison-Wesley Professional, 2002.

[3] Red Hat, Inc, “Gap Analysis: The Case for Data Services,” 2011.

[4] S. Sivasubramanian, G. Pierre, M. van Steen, and G. Alonso, “Analysis
of Caching and Replication Strategies for Web Applications,” Internet
Computing, IEEE, vol. 11, no. 1, pp. 60–66, 2007.

[5] S. Strauch, V. Andrikopoulos, S. Gómez Sáez, and F. Leymann, “ESBMT:
A Multi-tenant Aware Enterprise Service Bus,” International Journal of
Next-Generation Computing, vol. 4, no. 3, pp. 230–249, 2013.

[6] Gregor Hohpe and Bobby Woolf, Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions. Addison-
Wesley Professional, 2003.

[7] T. Rademakers and J. Dirksen, Open-Source ESBs in Action. Greenwich,
CT, USA: Manning Publications Co., 2008.

[8] J. Handy, The Cache Memory Book, 2nd ed. Morgan Kaufmann, 1998.

[9] S. Bouchenak, A. Cox, S. Dropsho, S. Mittal, and W. Zwaenepoel,
“Caching Dynamic Web Content: Designing and Analysing an Aspect-
Oriented Solution,” in Proceedings of Middleware’06. Springer, 2006,
pp. 1–21.

[10] M. Rabinovich and O. Spatscheck, Web Caching and Replication.
Addison-Wesley, 2001.

[11] D. Wessels, Web Caching. O’Reilly & Associates, Inc., 2001.

[12] F. Y. Rao, R. Fang, Z. Tian, E. Lane, H. Srinivasan, T. Banks, and L. He,
“Cache Mediation Pattern,” in Proceedings of OOPSLA’05, 2005.

[13] P. Brebner, “Is Your Cloud Elastic Enough?: Performance Modelling
the Elasticity of Infrastructure as a Service (IaaS) Cloud Applications,”
in Proceedings of ICPE’12, 2012, pp. 263–266.

[14] R. Krebs, C. Momm, and S. Kounev, “Metrics and Techniques for Quan-
tifying Performance Isolation in Cloud Environments,” in Proceedings
of QoSA’12. ACM, 2012, pp. 91–100.

[15] D. A. Menascé, “TPC-W: A Benchmark for E-Commerce,” Internet
Computing, IEEE, vol. 6, no. 3, pp. 83–87, 2002.

All links were last followed on January 22, 2014.

294

	cover-IEEE
	Foliennummer 1

	INPROC-2014-02

