
Institute of Architecture of Application Systems, University of Stuttgart, Germany,
{strauch, andrikopoulos, gomez-saez, leymann}@iaas.uni-stuttgart.de

Transparent Access to Relational Databases in the Cloud
Using a Multi-Tenant ESB

Steve Strauch, Vasilios Andrikopoulos, Santiago Gómez Sáez, Frank Leymann

These publication and contributions have been presented at
CLOSER 2014

CLOSER 2014 Web site: http://closer.scitevents.org

© 2014 SciTePress. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the SciTePress.

@inproceedings{Strauch2014,
 author = {Steve Strauch and Vasilios Andrikopoulos and G{\'o}mez S{\'a}ez,
 Santiago and Frank Leymann},
 title = {Transparent Access to Relational Databases in the Cloud Using a
 Multi-Tenant ESB},
 booktitle = {Proceedings of the 4th International Conference on Cloud
 Computing and Service Science, CLOSER 2014,
 03-05 April 2014, Barcelona, Spain},
 year = {2014},
 pages = {5--14},
 publisher = {SciTePress}
}

:

Institute of Architecture of Application Systems

http://closer.scitevents.org/

Transparent Access to Relational Databases in the Cloud using a
Multi-tenant ESB

Steve Strauch, Vasilios Andrikopoulos, Santiago Gómez S´aez and Frank Leymann
Institute of Architecture of Application Systems, University of Stuttgart, Stuttgart, Germany

{strauch, andrikopoulos, gomez-saez, leymann}@iaas.uni-stuttgart.de

Keywords: Data Access Layer, Relational Databases, Enterprise Service Bus (ESB), Multi-tenancy.

Abstract: In the last years Cloud computing has become popular among ITorganizations aiming to reduce their opera-
tional costs. Applications can be designed to run in the Cloud, or can be partially or completely migrated to
it. Migrating the data layer of an application to the Cloud, however, implies that existing applications might
need to be adapted in order to access their migrated to the Cloud databases. In this work we examine how we
can use an existing ESB to enable transparent access to the relational data store running either in the Cloud or
on-premise. The goal of our approach is to minimize the effort required to adapt the application. In particu-
lar, we discuss the requirements and prototype realizationof a Cloud aware data access layer for transparent
data access, using an existing open source and multi-tenantaware ESB as the basis. We then evaluate the
performance of our proposed solution by considering different Cloud providers and using example data from
an existing benchmark as application workload.

1 INTRODUCTION

With the advent of Cloud services beyond Infrastruc-
ture as a Service (IaaS) solutions (Mell and Grance,
2011), the migration of individual application layers
or even individual architectural components to the
Cloud, becomes possible. Applications are usually
built using the three layers pattern: Presentation, Busi-
ness Logic, and Data (Fowler et al., 2002). The mi-
gration of the Data layer to the Cloud is the focus
of this work. Application data is typically moved to
the Cloud for Cloud bursting, data analysis, or backup
and archiving purposes. We distinguish between two
different types of interaction with databases in the
Cloud. On the one hand there is the direct interac-
tion with a database hosted on the Cloud as adata
storethat takes place on a fine granular level, e.g., by
using SQL commands. The second interaction type
relies on a service interface to interact with the Cloud
database, as in the case of e.g. Amazon SimpleDB1,
which becomes adata service. This requires interac-
tion on the level of the service interface that is more
coarse grained compared to the interaction when us-
ing SQL for instance. We therefore need to consider
both types of interactions in the following. In ad-
dition to relational databases (Codd, 1970), widely
established in industry and researchNot Only SQL

1Amazon SimpleDB: http://aws.amazon.com/de/simpledb/

(NoSQL)2 solutions have become increasingly popu-
lar in recent years (Sadalage and Fowler, 2012). For
the scope of this work we focus only on relational
databases.

Looking at the Data Layer in particular, the layer
can be subdivided into the Data Access Layer (DAL)
and the Database Layer (DBL). The DAL is an ab-
straction layer encapsulating the data access func-
tionality, while the DBL provides persistence and re-
trieval capabilities. As discussed in (Andrikopoulos
et al., 2013), the migration of the Data Layer to the
Cloud includes two main steps: the migration of the
DBL to the Cloud, and the adaptation of the DAL to
enable Cloud data access. The DBL can either be mi-
grated completely or partially to the Cloud. In the lat-
ter case, the DBL is distributed using both non-Cloud
technologies (local databases), and data stores and ser-
vices. Thus, the distribution of the DBL essentially
changes the border of the application compared to tra-
ditional applications. The assumption in our work is
that the DBL has already been migrated to the Cloud,
and therefore we focus on the DAL. As a consequence
of the tight coupling of the Business Logic layer with
the DBL in traditional applications built without using
any service-oriented or Cloud technology, the Busi-
ness Logic layer must be explicitly aware of the loca-
tion of the data and the data store it is interacting with.

2List of NoSQL Databases: http://nosql-database.org

5

Therefore, any change to the location of the DBL re-
sults in the need for adapting the Business Logic layer,
not only to rewire the connection to the DBL, but also
to cope with potentially less fine granular interaction
types when moving to data service solutions.

In order to minimize the impact of this adapta-
tion, in this work we propose the use of the Enter-
prise Service Bus (ESB) technology (Chappell, 2004)
as the means to decouple the Business Logic from the
Database Layer by leveraging the Data Access Layer.
The ESB technology as the messaging infrastructure
between applications and services addresses the es-
sential requirement of application integration while
ensuring loose coupling. In the recent years it has be-
come as a result ubiquitous in enterprise computing
environments. ESBs control message handling dur-
ing the interaction between applications and services,
allowing for dynamic routing, and are at the core of
each Service-Oriented Architecture (SOA) (Josuttis,
2007). It is only natural therefore to enable the distri-
bution of the DBL in the Cloud by taking advantage
of the dynamic routing features of ESBs, allowing for
hosting the database both on-premise and off-premise.
As to the extend of our knowledge there is no solution
so far that supports this, we want to enable the com-
munication between the Business Logic and the DBL
via the ESB (DAL) using the native database commu-
nication protocol. For this purpose, we build on an ex-
isting open source ESB previously extended for multi-
tenancy (Strauch et al., 2012a; Strauch et al., 2013b)
to enable transparent access to multiple data sources
both locally, and in the Cloud.

Our contribution therefore can be summarized by
offering:

• The identification of requirements for enabling
transparent data access to data stores and data ser-
vices.

• The design and realization of CDASMix, a multi-
tenant aware ESB solution that enables transpar-
ent data access to databases both on-premise and
off-premise.

• A performance evaluation of our proposal, estab-
lishing the impact of introducing an ESB as the
DAL between the application and the database
across different deployment options.

The remaining of the paper is structured as fol-
lows: Section 2 identifies the requirements for sup-
porting transparent data access for databases that have
been migrated to the Cloud. Based on these require-
ments, Section 3 discusses the architecture and imple-
mentation of our proposal. Section 4 provides a per-
formance evaluation for this realization for different
database and deployment options considering differ-

ent providers. The paper closes with Section 5 and
Section 6 summarizing related work, and concluding
with some future work, respectively.

2 TRANSPARENT CLOUD DATA
ACCESS REQUIREMENTS

The set offunctionalandnon-functionalrequirements
for transparent Cloud data access we present in this
section has been identified during our work in various
EU research projects and especially during the collab-
oration with industry partners. The requirements are
geared towards minimizing the impact to the Business
Logic and Presentation application layers of adapt-
ing the application to cope with the migration of the
database to the Cloud (Andrikopoulos et al., 2013).

2.1 Functional Requirements

The following functionalities must be offered by any
DAL that provides transparent access to databases in
the Cloud.
FR1 Interaction with Data Stores and Data Services:

The DAL must support both fine- and coarse-
grained types of interactions, through SQL and
service APIs, respectively.

FR2 Management and Configuration: The DAL must
provide management and configuration capabil-
ities for both data stores and data services, e.g.
registration of a new data store, including its con-
figuration data, e.g. database schemas, database
system endpoint URL, etc.

FR3 On-premise and Off-premise Support: The DAL
has to support data stores and data services that
are either hosted on-premise or off-premise and
using Cloud or non Cloud technologies.

FR4 Transparent Data Access: As the database layer
might be distributed between on-premise and
off-premise using Cloud and non-Cloud tech-
nologies, the business logic is no longer aware
where the data is located compared to traditional
applications. Thus, the DAL must determine au-
tonomously the data store or data service the re-
quest should be forwarded to, based on the re-
quest sent by the Business Logic layer.

FR5 Caching: As the migration of the database to the
Cloud introduces a potentially high distance be-
tween the different application layers measured
in network hops, the DAL has to support caching
in order to mitigate the consequences of network
latency.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

6

2.2 Non-functional Requirements

In addition to the required functionalities, a DAL en-
abling Cloud data access should also respect the fol-
lowing properties.

NFR1 Loose Coupling: The DAL must allow for
Cloud data stores or data services to be
changed without affecting the Business Logic
layer, except from the necessary reconfigura-
tion of the connection to the data store or data
service.

NFR2 Security: As the DAL stores information on
the available data stores and data services in-
cluding their internal structure, e.g. database
schemas and access credentials, third parties
have to be prevented from gaining access to
these data.

NFR3 Backward Compatibility & Extensibility:
DAL components have to be compatible with
directly wiring the business logic with a spe-
cific data store, as in traditional applications.
Furthermore, extensibility has to be ensured
in order to integrate the components with
future technologies and solutions, e.g. new
types of data services in the Cloud.

As discussed in the previous section, the proposed
approach builds on the use of the ESB technology
as the realization of these requirements. However,
given the fact that multiple organizational domains
may have access to the same data stores or services,
it has to be ensured that each organization is confined
to their own data. While modern Relational Database
Systems (RDBMSs) have been offering this capability
for a while,multi-tenancyon the level of middleware
is still an open issue. For this purpose, in (Strauch
et al., 2012b) we identify a set of requirements for
multi-tenancy for ESB solutions. These requirements,
summarized in the following, have also to be taken
into consideration when designing and implementing
a transparent DAL solution using an ESB.

More specifically,tenant-based identificationand
hierarchical access control have to be supported, as
the ESB has to manage and identify multiple ten-
ants (organizational domains) and their corresponding
users. For the administration and management of both
tenants and users,customizable interfaceshave to be
provided, including both Web service interfaces and
GUIs. Through these interfaces, the tenant-based de-
ployment and configuration of the ESB and the ser-
vices available for a specific tenant should be man-
aged in a transparent way. As other multi-tenant com-
ponents in a PaaS environment request similar infor-
mation, e.g. workflow engines, the ESB should offer a

shared registryof services and of tenants and users for
other PaaS components. Furthermore, services and
applications that are not multi-tenant aware should
still be able to seamlessly use and transparently inter-
act with the ESB.

In addition, bothdata isolationandperformance
isolationhave to be ensured, in order to avoid that ten-
ants acquire access to data or computing resources of
other tenants. In order to address thesecurityaspect,
corresponding confidentiality, authorization, authenti-
cation, and integrity mechanisms have to be realized
on tenant and user level. Finally, the ESB components
must be extensible and reusable by other components
in the PaaS environment to ensure independence from
a specific technology or solution. All of these require-
ments are considered in the following discussion.

3 CLOUD DATA ACCESS
SUPPORT IN ServiceMix

In this section we discussCDASMix (Cloud Data Ac-
cess Support in ServiceMix), an architectural and im-
plementation approach which fulfills the requirements
identified in the previous section. As the basis for the
design and implementation of our approach, we reuse
and extend the ESBMT multi-tenant aware ESB solu-
tion3, as presented in (Strauch et al., 2013a). ESBMT

enhances the Apache ServiceMix 4.3 JBI container4

with multi-tenant communication support within ser-
vice endpoints deployed in the ESB, and multi-tenant
aware dynamic endpoint deployment capabilities. As
shown in Fig. 1, the ESBMT architecture contains
three layers: Presentation, Business Logic, and Re-
sources. The Presentation and Business Logic layers
define a generic interface and logic design approach
of a multi-tenant aware administration and manage-
ment application for ESBs. The Resources layer con-
tains the ESB-specific instances cluster, databases for
tenant-related information, and an intermediary com-
ponent to mediate the management communication
between the upper layers and the ESB instance cluster.
However, ESBMT focuses on enabling multi-tenancy
at the communication level between application ser-
vices, rather than on application’s data access. There-
fore, the remaining of this section describes the ex-
tensions realized for CDASMix in each of the sys-
tem’s layers highlighted in Fig. 1 to enable transpar-
ent Cloud data access support, and provide a deeper
insight on the realized components. An extended de-
scription of the architectural and implementation ap-

3ESBMT : http://www.iaas.uni-stuttgart.de/esbmt/
4Apache ServiceMix: http://servicemix.apache.org

Transparent�Access�to�Relational�Databases�in�the�Cloud�using�a�Multi-tenant�ESB

7

Presentation

Business

Logic

Resources

Web Service API

Configuration Registry Manager

Tenant Registry Manager

Service Registry Manager

JBI Container Manager

Service Assembly Manager

Service Registry

Database Cluster

Configuration

Registry Database

JBI Container

Instance Cluster

Access Layer

Web UI

Tenant Registry

Database

Message Broker

Figure 1: Architecture of CDASMix based on ESBMT .

proaches used is provided in (Gómez Sáez, 2013).

3.1 Resources Layer

The Resources Layer of CDASMix consists of a set
of registries and multiple JBI containers which con-
stitute aJBI Container Instance Cluster, as described
in Fig. 1. JBI containers provide support for message
routing and transformation, as in traditional ESB so-
lutions. ESBMT , and by extension CDASMix, relies
on the OSGi Framework5 in order to allow compo-
nents to be deployed in a loosely coupled way. The
ServiceMix solution at the core of ESBMT is equipped
for this purpose with several OSGi components which
realize the ESB functionality complying to the JBI
specification. For example, the ServiceMix-http Bind-
ing Component (BC) supports routing of HTTP re-
quests, and the Apache Camel6 Service Engine (SE)
realizes a set of known Enterprise Integration Pat-
terns (Hohpe and Woolf, 2003). The Normalized
Message Router (NMR) provides integration support
between JBI and OSGi components within the ESB
through a message-based interface. JBI components
provided by ServiceMix support multiple communica-
tion protocols (e.g. HTTP, SMTP, JMS, etc.) by mar-
shaling and demarshaling protocol-specific messages
into a standardized internal Normalized Message For-
mat (NMF) (Rademakers and Dirksen, 2008). Nev-
ertheless, database system native communication pro-

5OSGi Version 4.3: http://www.osgi.org/Download/
Release4V43/

6Apache Camel: http://camel.apache.org

tocols are not supported, as they are solution-specific.
We focus our approach by providing communication
support for a well known and widely used database
system, MySQL7. The same approach however can
be used to provide support for other systems too, e.g.
PostgresSQL8.

Figure 2 zooms in the architecture of one ESB in-
stance in the cluster in order to illustrate how trans-
parent message routing and transformation of applica-
tion data requests was realized in CDASMix based on
the ESBMT architecture. More specifically, the devel-
opedMySQL Proxy is an OSGi component that imple-
ments an OSGi- and JBI-compliant version of a Java-
based MySQL proxy (NFR1). As the default MySQL
Proxy shipped with MySQL distributions is imple-
mented in the C programming language, the existing
open source Java-based MySQL Proxy in Myosotis
Tungsten Connector9 was reused and extended. The
MySQL OSGi bundle implements the native MySQL
communication protocol and is fully integrated with
the JBI container via the Normalized Message API, an
OSGi bundle which exposes an interface for accessing
the NMR endpoint registries and routing operations.
In order to mitigate the latency introduced by using
CDASMix as an intermediate communication compo-
nent between the application architecture layers, the
caching mediation pattern presented in (Rao et al.,
2006) is realized within CDASMix. Thus, a caching
component ensures high performance of SQL read op-

7MySQL: http://www.mysql.com
8PostgresSQL: http://www.postgresql.org
9Tungsten Replicator: http://myosotis.continuent.org

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

8

OSGi Environment

JBI Environment

Presentation

Business

Logic

Resources

Web Service API

Configuration Registry Manager

Tenant Registry Manager

Service Registry Manager

JBI Container Manager

Service Assembly Manager

Service Registry

Database Cluster

Configuration

Registry Database

JBI Container

Instance Cluster

Access Layer

Web UI

Tenant Registry

Database

Message Broker

Instance Cluster

JBI ContainerTenant RegistryTenant Registry

Standardized Interfaces for Service Engines

Standardized Interfaces for Binding Components

Normalized Message Router

External

Application

SMX-Camel

-mt

MySQL

Proxy

SMX-

Camel

Camel

cdasmixJDBC

Backend Cloud Data Store Provider

Registry-Cache

Legend

Message Flow

OSGi Component

JBI Component

JNDI

NMR API

Figure 2: Architecture of an ESB Instance.

erations in CDASMix by utilizing a Least Recently
Used (LRU) caching policy configured in Ehcache
2.6.010, and by deleting cache records when SQL
statements involve data modification (FR5). There-
fore, the caching strategy does not only aim to re-
duce the latency of accessing data through the ESB,
but also intends to reduce the NMR system resources
consumption.

The ESBMT Camel SE 2011.11 (denoted as
SMX-Camel-mt in Fig. 2) provides multi-tenancy and
integration support between the JBI environment and
the Enterprise Integration Patterns realizations of
Apache Camel. In CDASMix, a custom Camel com-
ponent namedCamelcdasmixJDBC (see Fig. 2) was
developed for dynamically connecting to backend
data sources via multiple database system communi-
cation protocols (FR4, NFR1). This component is ac-
cessed through a camel endpoint in theSMX-Camel
component (Fig. 2). Database connections are reg-
istered in the JNDI component of ServiceMix to de-
crease the latency produced by creating one database
connection per user per received request. The JBI
specification limits the inclusion of referenced pack-
ages in the SU during build time, rather than during
runtime as in OSGi. Therefore, extensions realized
on theCamelcdasmixJDBC component, e.g. support-
ing a new database system, require updating, build-

10Ehcache 2.6.0: http://ehcache.org

ing, and redeploying the service units referencing the
CamelcdasmixJDBC component. Utilizing the Ser-
viceMix Camel SE OSGi component enables loading
of CamelcdasmixJDBC component packages during
runtime (NFR3).

CDASMix utilizes the existing ESBMT reg-
istries in the Resources layer, described extensively
in (Strauch et al., 2012b; Strauch et al., 2013b). A
database schema modification in the Service Registry
Database Cluster was necessary (Fig. 1), as it must be
extended to persist tenant-related Cloud data access
management information. We identify two required
types of information when executing SQL statements
on RDBMSs: connection related, and database re-
lated. The former contains the required information
to connect to a database instance, e.g. access creden-
tials, database URL, etc., while the latter includes in-
formation about the database schema, e.g. table iden-
tifiers. Therefore, we create a data structure which
persists the tenant’s backend database connection and
structure information for enabling transparent access
through one physical endpoint in CDASMix, to multi-
ple backend data stores or data services located either
on-premise or off-premise (FR1, FR3, FR4).

3.2 Business Logic Layer

The Business Logic layer of ESBMT enables role-
based access control for administration and manage-

Transparent�Access�to�Relational�Databases�in�the�Cloud�using�a�Multi-tenant�ESB

9

ment of theJBI Container Instance Cluster(Strauch
et al., 2012b; Strauch et al., 2013b) (NFR2). Enabling
transparent Cloud data access support in CDASMix
does not require architectural modifications on this
layer, but demands implementation extensions for ad-
ministrating access and persistence operations on the
information related to tenant’s backend data stores.
Therefore, we extend the components highlighted in
Fig. 1. TheAccess Layeris extended with operations
executable at the tenant operator role level. TheSer-
vice Registry Managercomponent is extended with
operations for persisting and accessing the CDASMix-
related data in theService Registry Database Cluster.

3.3 Presentation Layer

The Presentation layer contains theWeb UI and the
Web services APIcomponents which allow the cus-
tomization, administration, management, and inter-
action with the other layers (Strauch et al., 2012b;
Strauch et al., 2013b). In CDASMix, no modifica-
tions on the Web UI were required, but a set of op-
erations for configuring the transparent data access
through CDASMix was included in the Web services
API (FR2).

4 EVALUATION

In this section we present the performance evaluation
of our proposal. Therefore, we define the method and
the experimental setup (Section 4.1), and discuss the
experimental results (Section 4.2).

4.1 Evaluation Method & Experimental
Setup

The evaluation of CDASMix in this work focuses on
measuring the impact of introducing the ESB between
an application and its migrated to the Cloud database.
Three main scenarios are taken into consideration for
this purpose, based on different Cloud infrastructures
where the database can be deployed, as shown in
Fig. 3:

1. in an RDBMS on the same VM as CDASMix
(VM0 on Flexiscale11);

2. in an RDBMS hosted on a VM of a different
Cloud provider (CDASMix on VM0 (Flexiscale)
and MySQL hosted on Amazon EC212 (VM1));
and

11Flexiant Flexiscale: http://www.flexiscale.com
12Amazon EC2: http://aws.amazon.com/ec2/

3. in a DBaaS solution (Amazon RDS13) with the
CDASMix hosted on VM0.

For each of the scenarios, we compare the direct ac-
cess to the database with a transparent access to the
database through CDASMix. In order to simplify
the discussion, we only use one tenant for database
requests across all scenarios. Evaluating the multi-
tenancy capabilities offered by CDASMix are the sub-
ject of ongoing future work.

For purposes of creating a data set and queries
over it, we use the TPC-H benchmark14 which em-
phasizes large volumes of data, queries with high
degree of complexity, and answering critical busi-
ness questions. The TPC-H benchmark provides a
set of operations for generating different volumes of
data, and a set of complex queries for a predefined
database schema. The benchmark was used to create
the database schema and populate it with a fixed data
volume, which was consequently imported into the
two MySQL deployments (on Flexiscale and Ama-
zon) and on Amazon RDS. The generated data set has
a total size of 1GB distributed among 8 tables, con-
forming to the TPC-H database schema.

A set of three complex (SQL)SELECT queries ex-
tracted from the benchmark was combined with two
simplerUPDATE statements and used as the basis for
an artificial work load. Figure 4 lists one of the select
queries used as part of this process. The work load
used consists of arbitrarily executed queries in a set
of ten data requests in a loop of ten iterations, for a to-
tal of a hundred queries, where queries are distributed
in aN updates toM selects ratio, with(N,M) = (3,7).
The ratio used was selected in order to force the cache
of CDASMix to flush relatively often (roughly once
every three queries).

Apache JMeter15 is used for load driving pur-
poses from a local computer, using the JDBC Connec-
tion Configuration and MySQL Connector/J (5.1.22)
driver to submit the queries. In the case of di-
rect connections to MySQL on Flexiant/Amazon EC2
and Amazon RDS, the loader has to be configured
separately to address the various endpoints of the
databases (connections D1, D2 and D3 in Fig. 3).
When CDASMix is used, JMeter is configured only
once with an ESB endpoint (connection E in Fig. 3)
and the redirection of the queries to the various
databases through connections E1 to E3 uses the con-
figuration mechanisms offered by CDASMix, as ex-
plained in the previous section. JMeter is set up to
measure the elapsed time for each request to be pro-

13Amazon RDS: http://aws.amazon.com/rds/
14Transaction Processing Performance Council

BenchmarkTM H http://www.tpc.org/tpch/
15Apache JMeter 2.9: http://jmeter.apache.org

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

10

Updated Experimental Setup – CDASMix

VM0 (Flexiscale)

Local Network

Apache

JMeter 2.9

CDASMix

MySQL 5.1

TPC-H

Amazon RDS
MySQL 5.1 instance

TPC-H

VM1 (Amazon EC2)

MySQL 5.1

TPC-H

D1

E

D2 D3

E3 E2 E1

Legend

Message Flow

Measurement Point

Throughput and

Transfer Rate

Figure 3: Overview of the Experimental Setup.

s e l e c t s a c c t b a l , sname , nname ,
p pa r t key , p mfgr , s a d d r e s s , sphone
, s comment from p a r t , s u p p l i e r ,
pa r t supp , na t i on , r e g i o n

where p p a r t k e y = p s p a r t k e y and
s suppkey = pssuppkey and p s i z e
= 47 and p t y p e l i k e ’%BRASS ’ and
s n a t i o n k e y = n n a t i o n k e y and
n r e g i o n k e y = r r e g i o n k e y and
r name = ’MIDDLE EAST’ and
p s s u p p l y c o s t = (s e l e c t min (
p s s u p p l y c o s t) from par t supp ,
s u p p l i e r , na t i on , r e g i o nwhere
p p a r t k e y = p s p a r t k e y and
s suppkey = pssuppkey and
s n a t i o n k e y = n n a t i o n k e y and
n r e g i o n k e y = r r e g i o n k e y and
r name = ’MIDDLE EAST’)

order by s a c c t b a l desc , n name ,
s name , p p a r t k e y l i m i t 100;

Figure 4: Sample SQL Query Used.

cessed, out of which we calculate the averagethrough-
put of the load in executed transactions per second.

In terms of the experimental setup shown in Fig. 3,
the virtual machine VM0 (8GB RAM, 4 CPUs AMD
Opteron 2GHz with 512KB cache) hosted in the Flex-
iscale infrastructure runs Ubuntu 10.04 Linux OS.
Deploying CDASMix and JBIMulti2 in VM0 also
required the deployment of the JOnAS 5.2.2 appli-
cation server (for JBIMulti2), and the PostgreSQL
9.1.1 database (for the registries). The maximum
JVM memory heap size of the ServiceMix process

was set to 1GB. In the same VM, a MySQL 5.1.67
database system with an internal cache size of 16MB
was installed. In the Amazon AWS Cloud infras-
tructure, both the Amazon EC2 VM and the Ama-
zon RDS database are hosted in theeu-west-1a
availability zone. Anm1.xlarge EC2 instance run-
ning the Ubuntu 12.04.2 LTS OS was created, and
MySQL 5.1.67 database system was deployed on it,
with an internal cache size of 16MB. In Amazon
RDS, a db.m1.xlarge instance was created, run-
ning a MySQL 5.1.69 engine version, as the MySQL
5.1.67 engine version is not available.

4.2 Experimental Results

Figure 5 summarizes the measurements taken for the
defined work load across the three database deploy-
ment scenarios. In addition, and for purposes of estab-
lishing a baseline, the average throughput with JMeter
installed directly on VM0 (i.e. on the same VM) as
the database was measured to be 0,15 transactions per
second for the defined work load. When compared
with the direct access to the same database from a lo-
cal machine using the same load (leftmost column in
Fig. 5) it can be concluded that network latency be-
tween the local machine and Flexiscale results in an
average of 3,52% decrease in throughput. The effect
of this latency has to be factored in for the remaining
analysis whenever CDASMix is used.

In particular, the following conclusions can be
drawn when examining Fig. 5:

• When comparing direct access to MySQL from

Transparent�Access�to�Relational�Databases�in�the�Cloud�using�a�Multi-tenant�ESB

11

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

Flexiscale EC2 RDS

0
,1
5
6
0

0
,1
4
0
8

0
,1
2
3
40
,1
4
5
9

0
,1
3
5
1

0
,1
7
3
5

Direct

CDASMix

Figure 5: Average Throughput (Transactions per Second): Without (Direct) and With Using CDASMix

the (local) loader with indirect access through
CDASMix, a 6,47% decrease in throughput is ob-
served. Taking into account the 3,52% decrease
due to network latency, we can conclude that the
actual impact of introducing CDASMix amounts
to 3%, which can be considered acceptable for
many applications.

• A similarly low impact is also observed when
comparing direct and indirect access to the same
MySQL engine as before but on a different
provider (EC2), with 4% decrease in throughput.
The presence of caching on CDASMix is assumed
to mitigate the effect of the additional network la-
tency between the two providers (Flexiscale), re-
sulting in better throughput when compared with
the first scenario (i.e. Flexiscale only).

• The effect of caching is more eminent in the case
of accessing RDS through CDASMix, where de-
spite the additional network latency, using CDAS-
Mix actually improves throughput by 40,54%.
However, in both cases, further evaluation of the
effect of caching in relation to network latency is
required.

In summary therefore, the effect of introducing
CDASMix between an application and its database is
acceptable for the majority of applications. Further-
more, any adversarial effects to performance, due to
additional computations and dependence on network
behavior, have to be measured against the benefits of
the flexibility provided by the transparency of the data
access layer.

5 RELATED WORK

To the extend of our knowledge, there is no existing
approach aiming at using an ESB solution for trans-
parent data access to databases in the Cloud. Most
ESB solutions do provide support for storing data
in relational database systems (RDBMS). However,
all of them focus on providing access to databases
through JDBC connections that are meant to be used
for ESB-internal purposes. Fuse ESB, for exam-
ple, provides JDBC data source support enabling
users to connect to a database and make SQL based
queries and data manipulations (FuseSource Corpo-
ration, 2013). However, it does not provide native
support for incoming database messages, e.g. in the
MySQL communication protocol, because data con-
sumer endpoints supporting native database proto-
cols are not deployable. The integration framework
Apache Camel provides access to RDBMSs through
the Camel-jdbc16 component, but it also does not
support interaction via native database communica-
tion protocol messages through consumer endpoints.
Data sources in producer endpoints must be config-
ured in both Apache Camel and existing ESBs prior
their deployment, e.g. using Spring. This require-
ment forces the data sources’ access configuration to
be statically created, rather than dynamically created
during runtime. JBoss Enterprise Data Service Plat-
form17 by Red Hat, Inc. provides data services with
Service-Oriented Architecture (SOA) support and an
ESB (Red Hat, Inc, 2011). Accessing the database

16Apache Camel JDBC: http://camel.apache.org/jdbc.html
17JBoss Data Services Platform: http://www.redhat.com/

products/jbossenterprisemiddleware/data-services

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

12

layer using technologies implementing an architec-
tural paradigm like SOA, however, might require
adapting the application, and in particular the upper
(presentation and business logic) architecture layers,
in order to support these technologies. One of the
main goals of our approach is to minimize the re-
quired adaptations of the upper application architec-
ture layers when migrating the database layer partially
or completely to the Cloud by introducing an ESB as
DAL.

In terms of the performance evaluation of our
approach, the different benchmarks and metrics de-
veloped in the domain of Cloud computing in the
recent years focus on Cloud-related features such
as elasticity (Brebner, 2012), performance isola-
tion (Krebs et al., 2012), or on virtualization tech-
nology (Makhija et al., 2006). Given the absence
of a commonly agreed approach for the evalua-
tion of Cloud-enabled middleware components (like
the ESB), in previous work (Strauch et al., 2013b)
we extended an ESB-specific benchmark developed
by AdroitLogic (AdroitLogic Private Ltd., 2011).
This work however focused on evaluating the multi-
tenancy awareness aspects of our proposed ESB so-
lution, and it is not suitable for evaluating transpar-
ent data access. On the other hand, there are vari-
ous established transaction processing and database
benchmarks addressing performance evaluation of re-
lational databases, e.g. the TPC-* benchmarks from
the Transaction Processing Performance Council18,
and YCSB for Cloud database services (Cooper et al.,
2010). Evaluating an ESB as transparent data access
layer for accessing databases on-premise or in the
Cloud is not covered by these existing benchmarks.
For this purpose, and as discussed in the Section 4,
we use an artificial work load taken from the TPC-H
benchmark and Apache JMeter as the driver for this
load.

6 CONCLUSIONS AND FUTURE
WORK

In the previous sections we presented our proposal for
using an ESB solution as the application Data Access
Layer in order to enable transparent data access to
multiple data sources, both on- and off-premise (i.e.
in the Cloud). A set of requirements were identified
for this purpose in terms of necessary functionalities,
e.g. support of both data stores, i.e. databases hosted
on an IaaS infrastructure, and Databases as a Service

18Transaction Processing Performance Council: http://
www.tpc.org

solutions, and of additional non-functional properties
like security. Using the ESB as the DAL for multi-
ple organizational domains (tenants) also incurs addi-
tional requirements to be considered.

The CDASMix solution discussed in this work ad-
dresses these requirements by building on a multi-
tenant-aware ESB solution called ESBMT that has
been presented in (Strauch et al., 2013a). Adapting
ESBMT to allow applications to communicate with a
database through the ESB required a number of mod-
ifications to it, including database-aware routing com-
ponents, the implementation of a messaging proxy
for native JDBC communications, and caching mech-
anisms for increased performance. The resulting solu-
tion, CDASMix, allows applications to communicate
using JDBC with it, while transparently redirecting
their (SQL) requests to databases either on-premise
or in the Cloud. As shown during the evaluation sec-
tion, the impact of introducing CDASMix as the ap-
plication DAL, when compared to direct access to the
database from the application, results in acceptable
performance degradation for the used workload and
database.

Our current efforts focus on expanding the eval-
uation of CDASMix to include the effect of multi-
tenancy on performance when multiple applications
use the same CDASMix instance, and improving the
generality of our findings by introducing multiple
workloads. Of particular interest to our work is our
ongoing investigation on the interplay between the
caching done on the level of CDASMix and that of
the used database engine, in order to identify the
optimal caching strategy for the ESB (Gómez Sáez
et al., 2014). Furthermore, in terms of future work,
we plan to support further database system commu-
nication protocols beyond MySQL, and enable the
SQL statement transformations between different en-
gines, e.g. MySQL to PostgreSQL, or between their
versions. Communication and statement transfor-
mation support for non-relational database engines
(NoSQL) offered as services in the Cloud like Ama-
zon DynamoDB19, Google Cloud Storage20, and
MongoHQ21 is also under development.

ACKNOWLEDGEMENTS

The research leading to these results has received
funding from projects 4CaaSt (grant agreement no.

19Amazon DynamoDB: http://aws.amazon.com/
dynamodb/

20Google Cloud Storage: http://cloud.google.com/
storage

21MongoHQ: https://www.mongohq.com

Transparent�Access�to�Relational�Databases�in�the�Cloud�using�a�Multi-tenant�ESB

13

258862) and Allow Ensembles (grant agreement
no. 600792) part of the European Union’s Seventh
Framework Programme (FP7/2007-2013) and the
German government funded BMBF project ECHO
(01XZ13023G).

REFERENCES

AdroitLogic Private Ltd. (2011). Performance Frame-
work and ESB Performance Benchmarking.
http://www.esbperformance.org.

Andrikopoulos, V., Binz, T., Leymann, F., and Strauch, S.
(2013). How to Adapt Applications for the Cloud En-
vironment.Computing, 95(6):493–535.

Brebner, P. (2012). Is your Cloud Elastic Enough?: Perfor-
mance Modelling the Elasticity of Infrastructure as a
Service (IaaS) Cloud Applications. InProceedings of
ICPE’12, pages 263–266.

Chappell, D. A. (2004).Enterprise Service Bus. O’Reilly
Media, Inc.

Codd, E. F. (1970). A Relational Model of Data for Large
Shared Data Banks.Commun. ACM, 13(6):377–387.

Cooper, B. F. et al. (2010). Benchmarking Cloud Serving
Systems with YCSB. InProceedings of SOCC’10,
pages 143–154. ACM.

Fowler, M. et al. (2002).Patterns of Enterprise Application
Architecture. Addison-Wesley Professional.

FuseSource Corporation (2013). Fuse ESB
4.4 – Configuring and Running Fuse ESB.
http://fusesource.com/docs/esb/4.4/esbruntime/.

Gómez Sáez, S. (2013). Extending an Open Source En-
terprise Service Bus for Cloud Data Access Support.
Diploma Thesis, Universität Stuttgart, Fakultät Infor-
matik, Elektrotechnik und Informationstechnik, Ger-
many.

Gómez Sáez, S., Andrikopoulos, V., Leymann, F., and
Strauch, S. (2014). Evaluating Caching Strategies for
Cloud Data Access Using an Enterprise Service Bus.
In Proceedings of IEEE IC2E’14. IEEE Computer So-
ciety.

Hohpe, G. and Woolf, B. (2003).Enterprise Integration Pat-
terns: Designing, Building, and Deploying Messaging
Solutions. Addison-Wesley Professional.

Josuttis, N. (2007).SOA in Practice. O’Reilly Media, Inc.
Krebs, R., Momm, C., and Kounev, S. (2012). Metrics and

Techniques for Quantifying Performance Isolation in
Cloud Environments. InProceedings of QoSA’12,
pages 91–100. ACM.

Makhija, V. et al. (2006). VMmark: A Scalable Benchmark
for Virtualized Systems. Technical Report VMware-
TR-2006-002, VMware, Inc.

Mell, P. and Grance, T. (2011). The NIST Definition of
Cloud Computing.

Rademakers, T. and Dirksen, J. (2008).Open-Source ESBs
in Action. Manning Publications Co., Greenwich, CT,
USA.

Rao, F. Y. et al. (2006). Cache Mediation Pattern. InPro-
ceedings of EuroPloP’06. Universitaetsverlag Kon-
stanz.

Red Hat, Inc (2011). Gap Analysis: The Case for Data
Services.

Sadalage, P. J. and Fowler, M. (2012).NoSQL Distilled: A
Brief Guide to the Emerging World of Polyglot Persis-
tence. Addison-Wesley Professional.

Strauch, S., Andrikopoulos, V., Gómez Sáez, S., and Ley-
mann, F. (2013a). ESBMT: A Multi-tenant Aware En-
terprise Service Bus.International Journal of Next-
Generation Computing, 4(3):230–249.

Strauch, S., Andrikopoulos, V., Gómez Sáez, S., and Ley-
mann, F. (2013b). Implementation and Evaluation of
a Multi-tenant Open-Source ESB. InProceedings of
ESOCC’13, volume 8135 ofLecture Notes in Com-
puter Science (LNCS), pages 79–93. Springer Berlin
Heidelberg.

Strauch, S., Andrikopoulos, V., Gómez Sáez, S., Ley-
mann, F., and Muhler, D. (2012a). Enabling Tenant-
Aware Administration and Management for JBI Envi-
ronments. InProceedings of SOCA’12, pages 206–
213. IEEE Computer Society Conference Publishing
Services.

Strauch, S., Andrikopoulos, V., Leymann, F., and Muhler, D.
(2012b). ESBMT : Enabling Multi-Tenancy in Enter-
prise Service Buses. InProceedings of CloudCom’12,
pages 456–463. IEEE Computer Society Press.

All links were last followed on January 30, 2014.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

14

	cover-SciTePress
	Foliennummer 1

	CLOSER_2014_22_CR

