
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{lastname}@iaas.uni-stuttgart.de

Combining Declarative and Imperative Cloud
Application Provisioning based on TOSCA

Uwe Breitenbücher, Tobias Binz, Kálmán Képes, Oliver Kopp,
Frank Leymann, Johannes Wettinger

© 2014 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{Breitenbuecher2014,
 author = {Uwe Breitenb\"ucher and Tobias Binz and K\'{a}lm\'{a}n K\'{e}pes
 and Oliver Kopp and Frank Leymann and Johannes Wettinger},
 title = {Combining Declarative and Imperative Cloud Application
 Provisioning based on TOSCA},
 booktitle = {Proceedings of the IEEE International Conference on Cloud
 Engineering (IEEE IC2E 2014)},
 year = {2014},
 month = {March},
 pages = {87--96},
 doi = {DOI 10.1109/IC2E.2014.56},
 publisher = {IEEE Computer Society}
}

:

Institute of Architecture of Application Systems

Combining Declarative and Imperative Cloud
Application Provisioning based on TOSCA

Uwe Breitenbücher, Tobias Binz, Kálmán Képes, Oliver Kopp, Frank Leymann, Johannes Wettinger
Institute of Architecture of Application Systems

University of Stuttgart, Stuttgart, Germany
{breitenbuecher, lastname}@iaas.uni-stuttgart.de

Abstract—The automation of application provisioning is one
of the most important issues in Cloud Computing. The Topol-
ogy and Orchestration Specification for Cloud Applications
(TOSCA) supports automating provisioning by two different
flavors: (i) declarative processing is based on interpreting applica-
tion topology models by a runtime that infers provisioning logic
whereas (ii) imperative processing employs provisioning plans
that explicitly describe the provisioning tasks to be executed. Both
flavors come with benefits and drawbacks. This paper presents
a means to combine both flavors to resolve drawbacks and to
profit from benefits of both worlds: we propose a standards-
based approach to generate provisioning plans based on TOSCA
topology models. These provisioning plans are workflows that
can be executed fully automatically and may be customized by
application developers after generation. We prove the technical
feasibility of the approach by an end-to-end open source toolchain
and evaluate its extensibility, performance, and complexity.

I. INTRODUCTION AND BACKGROUND

In recent years, Cloud Computing gained a lot of attention
due to its economical and technical benefits. From an enterprise
perspective, Cloud properties such as pay-on-demand pricing,
scalability, and self-service enable outsourcing the enterprise’s
IT. This helps to achieve flexible, automated, and cheap IT op-
eration and management [1]. On the other side, Cloud providers
have to automate their internal Cloud management processes to
achieve these properties for their Cloud offerings [2]. Especially
the rapid provisioning of applications is of vital importance
to enable self-service and pay-on-demand pricing. Therefore,
one of the most important issues from a Cloud provider’s
perspective is to fully automate these provisioning processes.

The complexity of provisioning mainly depends on the
application’s structure and its components. Cloud applications
typically consist of various types of components and employ
several heterogeneous Cloud services. This complicates the
provisioning because these components typically provide propri-
etary management APIs, are based on custom data formats, and
use different technologies [2]. For example, IaaS offerings, such
as Amazon EC21, are typically managed by using Web Service
APIs whereas the installation of Web Servers, such as Apache
Tomcat on an Ubuntu Linux operating system, is often done
using script-centric technologies such as Chef2 or Juju3. Thus,
to fully automate the provisioning of such composite Cloud
applications, different management technologies and APIs have
to be integrated into one overall provisioning process. This is

1http://aws.amazon.com/ec2
2http://www.opscode.com/chef
3https://juju.ubuntu.com

a difficult challenge because each technology and API comes
with individual formats, domain-specific languages, invocation
mechanisms, and prerequisites [2]. Thus, integrating different
heterogeneous technologies increases the overall complexity.
In addition, script-centric technologies often depend on the
underlying infrastructure such as operating systems. Hence,
portability of applications and their provisioning logic across
different infrastructures can quickly degenerate to a serious
problem. To tackle these issues, standardization efforts such as
TOSCA are paving the way to enable standardized descriptions
of Cloud applications and their management.

The Topology and Orchestration Specification for Cloud
Applications (TOSCA) [3] is a new OASIS standard for describ-
ing Cloud applications and their management in a portable and
interoperable way. TOSCA provides an XML-based language to
model the structure of an application as Topology Template. A
Topology Template describes all components and relations of an
application. TOSCA applications are packaged as Cloud Service
Archives (CSARs), which contain all software artifacts required
to provision, operate, and manage the application. CSARs run
in standards-compliant TOSCA Runtime Environments hosted by
providers. Thus, CSARs are portable across different providers
and serve as exchange format for Cloud applications.

TOSCA supports management in two different flavors:
(i) imperative processing and (ii) declarative processing [4].
Imperative processing requires that all needed management
logic is contained in the CSAR. Therefore, CSARs contain fully
automatically executable Management Plans that imperatively
describe high-level management tasks such as provisioning,
scaling, or updating the application. A Management Plan is a
workflow orchestrating low-level management operations that
are either provided by the application components themselves or
by publicly accessible services, e. g., the Amazon Web Services
API. To make plans portable, the TOSCA Plan Portability API is
used by plans to communicate with the runtime, e. g., to access
the Topology Template. Thus, CSARs containing plans are
completely self-contained and able to package applications and
their management functionalities in a portable and standardized
format. The declarative processing flavor shifts management
logic from plans to runtime: TOSCA Runtime Environments
interpret application topologies to infer management logic
without the need for plans. This requires a precise definition of
the semantics of nodes and relations based on well-defined Node
Types and Relationship Types. The set of provided management
functionalities depends on the corresponding runtime and is
not standardized by the TOSCA specification. In this paper,
we focus only on one functionality: automated provisioning.

The two flavors offer application developers a means to
automate the provisioning. However, both have advantages
and drawbacks: the imperative approach enables application
developers to define every detail of the provisioning explicitly
by writing custom plans. The main drawback of creating plans
manually is the labor-intensive nature of workflow authoring
that is typically a hard, time-consuming, costly, and error-
prone task: heterogeneous management services need to be
orchestrated (e. g., SOAP-based services and RESTful services),
script-centric technologies must be wrapped, and data formats
must be handled—to name a few challenges [2], [5]. In addition,
plans are tightly coupled to a certain application topology
and sensitive to structural changes: different combinations of
components lead to different plans [5]–[7]. Thus, plans for new
applications often have to be created from scratch. Because
Cloud application topologies quickly become complex, this
manual creation of plans is not sufficient in many cases. The
declarative approach solves this problem as plans are not needed.
Obviously, this eases and speeds up the development of TOSCA
applications. However, TOSCA Runtime Environments have
to understand the components or at least the management
operations they provide to infer provisioning logic. This limits
provisioning capabilities to common types of components and
pre-defined operations that are known and orchestrated by
the runtime. In addition, application developers are not able
to define complex custom provisioning logic that may be
needed for the provisioning of complex applications. Thus,
the declarative approach is rather suited for simple applications
that consist of common components, relations, and technologies.

The result of the discussion above is that a combination of
both flavors would enable application developers to benefit from
automatically provided provisioning logic based on declarative
processing and individual customization opportunities provided
by adapting imperative plans. Thus, we need a means to gen-
erate Provisioning Plans automatically that can be customized
by application developers afterwards. Therefore, the driving
research question of this paper is: How to generate executable
Provisioning Plans for TOSCA-based Cloud applications that
can be adapted afterwards? We answer this question by pre-
senting an approach that interprets TOSCA Topology Templates
for generating executable Provisioning Plans implemented in
general-purpose workflow languages. These generated plans
may be customized by application developers afterwards for
individual needs. Thus, the approach combines declarative and
imperative provisioning of TOSCA applications. The paper
shows how component-specific provisioning operations can be
combined with generic lifecycle-based provisioning operations
to provision TOSCA applications fully automatically based
on generated plans. The approach enables to benefit from
strengths of both flavors that leads to economical advantages
when developing applications with TOSCA. We prove the
feasibility of the approach by a prototypical implementation
and present an evaluation that considers extensibility, standards-
compliance, performance, and computational complexity.

The remainder of this paper is structured as follows: in
Section II, we introduce TOSCA in detail and provide a
motivating scenario in Section III. In Section IV, the main
contribution of this paper is presented: we show a concept for a
plan generator to generate Provisioning Plans based on TOSCA
application topologies. We evaluate the approach in Section VI
and give an outlook on future work in Section VIII.

II. TOSCA - THE TOPOLOGY AND ORCHESTRATION
SPECIFICATION FOR CLOUD APPLICATIONS

In this section, we introduce the fundamentals of TOSCA.
To ease reading, we describe only the important concepts
required to understand the presented approach. In addition,
details are left out and constructs are simplified in order to
give a compact background. For details, we refer the reader to
the TOSCA Specification [3] and the TOSCA Primer [4]. A
compact overview on TOSCA is given by Binz et al. [8].

A Topology Template defines the structure of an application.
It is a directed graph that consists of Node Templates (vertices)
and Relationship Templates (edges). Node Templates represent
components or software of an application such as virtual ma-
chines, operating systems, or services. Relationship Templates
represent the relations between nodes, e. g., that a node is hosted
on or calls another node. Node and Relationship Templates
are typed: each Node Template has a certain Node Type, each
Relationship Template a certain Relationship Type. These types
are reusable and define properties and operations of the template.
For example, an “ApacheWebServer” Node Type may define IP-
address and credentials as properties and a “deploy”-operation
that gets these properties and a reference to the files to be
deployed as input parameters. Then, each Node Template of
type “ApacheWebServer” provides this operation. Types can be
inherited to enable reusability: the “ApacheWebServer” Node
Type may be of supertype “WebServer” that defines general
and common properties and operations of Web Servers.

Deployment Artifacts (DAs) implement the application’s
functionality. For example, a Deployment Artifact for a Web
application of type “PHP” may be a ZIP file that contains all
PHP files, images, and CSS files. A Deployment Artifact for an
Apache Web Server may be a binary file that is used to install
the Web Server on an operating system. Deployment Artifacts
are typed and may define additional type-specific information.
For example, the ZIP file for the Web application is modeled
as a DA of type “ZIP” which defines a property that references
the location of the ZIP file. Such application-specific DAs
can be attached to Node Templates directly whereas reusable,
application-independent DAs, such as Web Server installables,
can be attached to the corresponding types. This enables reusing
types and their artifacts in different Topology Templates.

Implementation Artifacts (IAs) implement the operations
defined by Node Types and Relationship Types. Node Templates
and Relationship Templates inherit these operations. Take
as example the “ApacheWebServer” Node Type operation to
deploy PHP applications that are packaged as ZIP file. For this
operation, a corresponding Implementation Artifact is defined
in the Node Type that implements the operation. IAs are
typed and may contain additional type-specific information.
For example, an IA implementing the operations defined by
the “ApacheWebServer” Node Type may be of type “WAR”.
This means that the Implementation Artifact is implemented
as Java Web Application and packaged using the WAR-format.
To run and invoke this IA, type-specific information needs
to be provided: (i) a reference to the corresponding WAR
file, (ii) a deployment descriptor that defines how to run
the IA, (iii) a property defining that it implements a SOAP
Web Service, and (iv) a reference to the service’s WSDL-
file which contains all details about the service and how to
invoke it. Implementation Artifacts are processed following

one of three kinds: (i) the TOSCA Runtime Environment
runs IAs in its management environment, (ii) IAs run in the
application’s target environment, or (iii) IAs refer available
services that can be called directly. Examples for the first kind
of IAs are management services for components. The TOSCA
runtime runs the IA of the “ApacheWebServer” Node Type in
its local management environment to make the implemented
operations accessible for the runtime (declarative approach)
or plans (imperative approach). Thus, Node Types may bring
their own management logic that runs in the TOSCA Runtime
Environment. The second kind of IAs implement management
logic that typically runs on the application’s infrastructure,
e. g., scripts. For example, LAMP-based applications (Linux,
Apache, MySQL, PHP) consist of a PHP application that
connects to a database. Such a connection may be established
using a script that is copied onto the operating system of the
PHP application and executed with corresponding parameters
passed as environment variables: the script writes the endpoint
information of the database to a certain location that is read
by the PHP application. This enables implementing custom
logic for individual applications that runs on the application’s
infrastructure directly, i. e., local to the application. The third
kind of Implementation Artifacts are available services that are
“always on”, e. g., management APIs of Cloud providers. The
corresponding Implementation Artifact only defines information
needed to access these services, e. g., a WSDL-file.

TOSCA specifies an exchange format called Cloud Ser-
vice Archive (CSAR) to package Topology Templates, types,
associated artifacts, plans, and all required files into one self-
contained package. This package is portable across different
standards-compliant TOSCA Runtime Environments.

III. MOTIVATING SCENARIO

In this section, we describe a motivating scenario that
is used throughout the paper to explain the approach. The
scenario describes a LAMP-based TOSCA application to be
provisioned. The application implements a Web-shop in PHP
that uses a database to store product and customer data.
The application’s Topology Template is shown in Figure 1.
The visual notation used to render Topology Templates is
“Vino4TOSCA” [9]. Therefore, names of Node Templates
and Relation Templates are normal, undecorated text. The
type of templates is enclosed by parentheses. The application
consists of two application stacks: the left stack provides the
infrastructure for the application logic whereas the right stack
hosts the database. Both stacks run on Amazon’s public IaaS
offering “Amazon EC2”. Therefore, a Node Template of Node
Type “AmazonEC2VM” is used to model the virtual machines.
This Node Type provides an operation “createVM” that is
implemented by an Implementation Artifact of type “WAR”.
Invoking this operation instantiates a new virtual machine.
The Implementation Artifact also specifies that the WAR
implements a SOAP/HTTP Web Service by referencing the
corresponding WSDL file. Similarily, the Node Template above
of Node Type “UbuntuLinux” provides an Implementation
Artifact to run scripts. We left out the details about Ubuntu
version and properties such as SSH Credentials etc. to simplify
the figure. Both nodes are connected by a Relationship
Template of Relationship Type “hostedOn”. Consequently, the
source Node Template is hosted on the target Node Template
of this relation. Up to this point, the structure and, thus,

(UbuntuLinux)

(MySQLDBMS)

(AmazonEC2VM)

(UbuntuLinux)

(ApachePHPWebServer)

(AmazonEC2VM)

WebShop
(PHP)

Database
(MySQLDB)

(hostedOn)

(hostedOn)

(hostedOn)

(hostedOn)

(hostedOn)

(hostedOn)

conn
(WebShopSQLConn)

IA executeScript (…)

IA deployPHP (…)

IA createDB (…)

IA connect (…)

IA createVM (…)

IA

IA

DA DA

Fig. 1. TOSCA Topology Template describing a LAMP-based application.

the provisioning of both stacks are equal. The left stack
runs the PHP application in an Apache Web Server. The
corresponding Node Type “ApachePHPWebServer” provides
an IA that implements a deploy-operation to deploy PHP
applications. The corresponding “WebShop” Node Template
provides a Deployment Artifact that refers to a ZIP file
containing the application files. The DA also specifies its type
“ZippedPHPApplication” to enable understanding the content of
the artifact. On the right stack, similar operations are provided
to instantiate a new database instance. A Deployment Artifact is
attached to the “Database” Node Template that refers to an SQL
script which creates tables and inserts default product data. In
the last step, the two stacks have to be connected. This is done
by using the Implementation Artifact of the Relationship Type
“WebShopSQLConn” (which inherits from “SQLConnection”)
that is the type of the Relationship Template “conn” between
the “WebShop” and “Database” Node Templates. The IA
implements the connectToDatabase-operation defined by the
supertype “SQLConnection” as shell script and defines that it
has to be executed on the operating system of the source node,
i. e., the operating system of the “WebShop” Node Template.
Thus, the executeScript-operation of the “UbuntuLinux” Node
Type is used. Of course, there are multiple ways to model
this application. Especially whether the virtual machine Node
Templates need an underlying infrastructure Node Template
providing the createVM-operation or whether they provide the
operation themselves depends on the modeling style. However,
this does not affect the presented approach. Therefore, we
minimized the number of nodes to simplify the scenario.

IV. A PROVISIONING PLAN GENERATOR FOR TOSCA

This section presents the main contribution of this paper. We
propose an approach to generate Provisioning Plans for given
Cloud Service Archives. A Provisioning Plan is a workflow
that can be executed fully automatically to provision the
Topology Template of a CSAR with all its Node Templates
and Relationship Templates. Thus, running a Provisioning Plan
instantiates a new application instance. Provisioning Plans are,
therefore, used to implement higher-level provisioning logic for
entire applications by orchestrating lower-level operations that
provision single Node Templates or Relationship Templates.

Topology Template Provisioning Order Graph Provisioning Plan Skeleton Executable Provisioning Plan

…

…

…

…

Fig. 2. Provisioning Plan Generation Concept: A Topology Template is used to generate a Provisioning Order Graph that is transformed into a Provisioning Plan
Skeleton to be completed to an Executable Provisioning Plan. For space reasons, we left out some activities in both plan diagrams (depicted as “...”).

A. Use Case and Role Model

Before the plan generation is presented in detail, we
introduce the overall use case and role model. A Cloud
Service Creator [4] develops a CSAR containing the Topology
Template of the application to be provisioned and all required
types, artifacts, and files—without Provisioning Plan. The
creator employs the presented Plan Generator to generate a
Provisioning Plan fully automatically. After the generation,
the creator may adapt the generated plan to customize or
complete the Provisioning Plan. The final CSAR is then sent to
a TOSCA-enabled Cloud Provider hosting a TOSCA Runtime
Environment. The provider is responsible for installing the
CSAR and maintaining the environment infrastructure. Plans
and IAs are deployed by the runtime fully automatically. To
instantiate application instances, providers typically offer Web-
based APIs or self-service portals to start Provisioning Plans.

B. Conceptual Approach

In this section, we describe a high-level overview on the plan
generation. Details are explained in the following subsections.
The approach is shown in Figure 2 and subdivided into three
steps: first, the CSAR to be provisioned serves as input for the
(i) generation of a Provisioning Order Graph. This graph is (ii)
translated into a Provisioning Plan Skeleton which (iii) gets
finally completed to an Executable Provisioning Plan.

In the first step, the Topology Template contained in the
input CSAR is analyzed and transformed into a workflow
language-independent Provisioning Order Graph (POG). This
graph defines the order in which the topology’s nodes and
relations have to be provisioned. Each vertex in the POG
represents the task to provision a certain Node or Relationship
Template. The directed edges between two vertices define the
temporal provisioning order: the vertex at the source of the
edge must be processed, i. e., provisioned, before the vertex at
the edge’s target. This definition is based on Mietzner [10] but
extended to support the explicit provisioning of relationships,
too. All details of this step are explained in Section IV-C.

In the second step, the Provisioning Order Graph is used
to generate a Provisioning Plan Skeleton. This skeleton is
implemented in a certain workflow language, e. g., BPEL [11]
or BPMN [12], but defines only the structure of the final
Provisioning Plan. Thus, the skeleton is not executable and
contains only Empty Provisioning Activities for each Node
and Relationship Template to be provisioned. These activities
are placeholders for the actual provisioning logic. Therefore,
vertices in the Provisioning Order Graph get transformed

into Empty Provisioning Activities, POG edges into control
constructs between the respective activities. Thus, the partial
order of provisioning steps defined by the POG is retained.
The details of this step are explained in Section IV-D.

In the last step, the Provisioning Plan Skeleton gets
completed to an Executable Provisioning Plan, which is
a fully automatically executable workflow. Therefore, each
Empty Provisioning Activity is replaced by one or multiple
Provisioning Subprocess Templates that implement the actual
logic to provision a certain Node or Relationship Template
based on its type. The resulting plan may be adapted by the
Cloud Service Creator afterwards to customize the provisioning.
The details of this step are explained in Section IV-E.

C. Provisioning Order Graph Generation

This section describes the generation of the Provisioning
Order Graph in detail. The input for this step is the Topology
Template of the CSAR that contains all components and
relations to be provisioned or established as Node Templates
or Relationship Templates, respectively. Each vertex in the
Provisioning Order Graph represents the task to provision a
certain Node Template or Relationship Template. Each edge
connecting two vertices defines the temporal order of the tasks.

The order in which Node and Relationship Templates have
to be provisioned depends on the types of the Relationship
Templates. For example, if a Relationship Template of type
“hostedOn” connects two Node Templates, the target Node
Template of the relation must be instantiated before the
Relationship Template and the source Node Template. The
source node is hosted on the target node, thus, the target node
must exist before. If two Node Templates are connected by a
Relationship Template of type “connectsTo”, source and target
Node Templates must be instantiated before the Relationship
Template can be instantiated: it is neither possible to establish
a connection from a non-existing node nor to a non-existing
node. Similar to “hostedOn” are “dependsOn”, “runsOn”,
“installedOn”, etc. All these types require the existence of
the target node before the relation and the source node can be
instantiated. We define “dependsOn” as supertype for all these
types. Thus, each of these Relationship Types inherits from
type “dependsOn”. Equally, we define “uses” as supertype for
“calls”, “invokes”, “connectsTo”, etc., because all these relations
require the existence of both nodes before the relation can be
instantiated. In the following, we consider these two supertypes
as basis for the presented approach.

OS2
(UbuntuLinux)

DBMS
(MySQLDBMS)

VM2
(AmazonEC2VM)

OS1
(UbuntuLinux)

WebServer
(ApachePHPWebServer)

VM1
(AmazonEC2VM)

WebShop
(PHP)

Database
(MySQLDB)

hostedOn3 (hostedOn)

hostedOn2 (hostedOn)

hostedOn1 (hostedOn)

hostedOn6 (hostedOn)

hostedOn5

hostedOn4 (hostedOn)

VM1

hostedOn1

OS1

hostedOn2

WebServer

hostedOn3

WebShop

VM2

hostedOn4

OS2

hostedOn5

DBMS

hostedOn6

Database conn
conn

(WebShopSQLConn)

Fig. 3. Provisioning Order Graph Generation: LAMP-based motivating scenario Topology Template (left) gets transformed into Provisioning Order Graph (right).

To generate the POG, we introduce a Provisioning Order
Graph Generation Algorithm. The algorithm gets the Topology
Template as input and consists of two steps: (i) creating a vertex
in the POG for each Node and Relationship Template in the
topology and (ii) connecting the created vertices based on the
types of the Relationship Templates. For Relationship Templates
of type “dependsOn”, we define the following provisioning
order: target Node Template → Relationship Template → source
Node Template. For Relationship Templates of type “uses”, the
orders are: target Node Template → Relationship Template and
source Node Template→ Relationship Template. Figure 4 shows
the algorithm in pseudocode: first, vertices are created in the
POG for all Node Templates. Afterwards, vertices are created
for each Relationship Template. Based on the Relationship
Template’s type, two edges are inserted into the POG: for
“dependsOn”, we insert an edge from the target Node Template’s
vertex to the relationship’s vertex and another edge from the
relationship’s vertex to the source Node Template’s vertex. For
“uses”, we insert an edge from the target Node Template’s
vertex to the relationship’s vertex and another edge from the
source Node Template’s vertex to the relationship’s vertex.

Figure 3 shows an example for applying the algorithm. The
Topology Template of the motivating scenario serves as input.
The output is a POG that contains a vertex for each Node and
Relationship Template. The vertices are connected following
the definition of “dependsOn” and “uses”: both application
stacks lead to successive provisioning tasks except the “conn”
Relationship Template that is of type “WebShopSQLConn”,
which inherits from “uses”. Therefore, both stacks have to be
provisioned before the connection can be established.

D. Provisioning Plan Skeleton Generation

In this section, we describe how a Provisioning Order
Graph gets transformed into a Provisioning Plan Skeleton. The
plan skeleton defines the structure of the Provisioning Plan to
be generated. Thus, it is implemented in the same workflow
language as the resulting final Executable Provisioning Plan.
This step is the first one that is workflow-language specific.
Therefore, we employ workflow language-specific Provisioning
Plan Skeleton Generators to transform the Provisioning Order
Graph into the Provisioning Plan Skeleton. The Skeleton

procedure GENERATEPOG(Vtopology ,Etopology)
Let GPOG = (VPOG ,EPOG) an empty directed graph
for all v ∈ Vtopology do

VPOG ← VPOG ∪ {v}
end for
for all e ∈ Etopology do

vrel ← new vertex for e
VPOG ← VPOG ∪ {vrel}
if basetype(e) = “dependsOn” then

EPOG ← EPOG∪{(tar(e), vrel), (vrel , src(e))}
else if basetype(e) = “uses” then

EPOG ← EPOG∪{(tar(e), vrel), (src(e), vrel)}
end if

end for
end procedure

Fig. 4. Provisioning Order Graph Generation Algorithm.

Generators are responsible for transforming the POG into a
workflow language-specific skeleton with Empty Provisioning
Activities and may inject additional language-specific navigation
activities such as gateways, subprocesses, or structured loops.
The way Empty Provisioning Activities are transformed into an
element in the workflow language that has the semantics of a
placeholder depends on the workflow language. For example, in
BPMN, we use “Abstract Tasks”, in BPEL “Opaque Activities”.
To abstract from concrete languages, we refer to these language-
specific constructs also as Empty Provisioning Activities in the
following. Each Empty Provisioning Activity has to store the
ID of the Node or Relationship Template that is provisioned by
the activity. This is required for injecting the actual provisioning
logic in the next step. Universally applicable transformation
rules are defined as follows [10]: (i) vertices of the POG that
have no incoming edges can be executed in parallel once the
workflow starts. (ii) After the template represented by a vertex
is provisioned, each outgoing edge is evaluated to true and the
target provisioning task (i. e., the target vertex) can be executed.
(iii) If multiple edges leave a provisioned vertex, the semantics
are equal to an “and-split” (or “parallel-split” [13]) [10]. Thus,
all provisioning tasks represented by the corresponding target
vertices are executed in parallel. (iv) If a vertex has multiple

VM1

hostedOn1

OS1

hostedOn2

WebServer

hostedOn3

WebShop

VM2

hostedOn4

OS2

hostedOn5

DBMS

hostedOn6

Database conn

…

Provision „WebShop“

Provision „VM1“ Provision „VM2“

Provision „conn“

Provision „Database“

…

Fig. 5. The Provisioning Order Graph (left) gets transformed into a Provisioning Plan Skeleton (right) in a specific workflow-language, e. g., BPMN.

incoming edges, the corresponding provisioning task must not
be executed until all tasks represented by the source vertices
of those edges are completed. This corresponds to an “and-
join” [13]. Figure 5 shows an example for transforming the
Provisioning Order Graph of the motivating scenario to a BPMN
skeleton. For Empty Provisioning Activities, the generator
inserts “Abstract Tasks”. Thus, each Node or Relationship
Template is provisioned by one of these tasks. For parallel
execution of activities, parallel gateways are employed.

E. Provisioning Plan Completion

In this section, we explain how a Provisioning Plan Skeleton
gets completed to an Executable Provisioning Plan. Therefore,
a workflow language-independent Plan Completion Manager
is used to manage the replacement of Empty Provisioning
Activities. The overall procedure is shown in Figure 6: the
manager gets Topology Template, Provisioning Order Graph,
and Provisioning Plan Skeleton as input. It traverses the POG
following the provisioning order defined by vertices and edges
and calls a workflow language-specific Provisioning Logic
Provider (PLP) for each vertex in the POG. The PLPs insert
provisioning logic for the corresponding Node or Relationship
Template into the skeleton. Thus, the skeleton gets refined
iteratively in this completion step. After the manager processed
all vertices, all Empty Provisioning Activities have been
replaced by provisioning logic and the skeleton became an
Executable Provisioning Plan. In the following, we explain
Provisioning Logic Providers and POG traversal in more detail.
A Provisioning Logic Provider is responsible for replacing
Empty Provisioning Activities by executable provisioning logic.
Each PLP registers in the Provisioning Capabilities Table
(shown in Figure 6 in the middle) for one or multiple Node or
Relationship Types it may be able to provide the corresponding
provisioning logic in a certain workflow language. Therefore,
the Provisioning Capabilities Table maps tuples of (Element
Type, Workflow Language) to PLPs. For example, “PLP 3”
is registered for the provisioning of Node Templates of type
“MySQLDB” in BPEL and BPMN. Thus, it may be able to
provide the provisioning logic in these two workflow languages
to create a MySQL database. In general, the PLP is able to
provide the provisioning logic for the element types it has
registered for. However, for certain constellations, a registered

PLP may not be able to insert the required logic. For example,
the PLP that installs a MySQL database on an operating system
may be able to do this installation for a certain set of Linux
operating systems, but not for Windows. Another example is
“PLP n” in Figure 6, which is registered for “SQLConnection”.
This kind of PLPs typically has preconditions that must be
checked by the PLP itself, e. g., if the source component
provides a certain operation to set the database endpoint
information. Thus, there are typically more than one PLPs

Executable Provisioning Plan

PLP 1

AmazonEC2VM

UbuntuLinux

MySQLDB

MySQLDB

…

SQLConnection

MySQLDB

PLP n

PLP 2

PLP 3

…

Provisioning Order Graph Provisioning Plan Skeleton

BPEL

BPEL

BPEL

BPMN

BPEL

BPMN

Topology Template

Template Type Lang.

Provisioning Capabilities Table Subprocess Templates Library

…

Fig. 6. Plan Completion Manager Architecture.

registered for one tuple that differ in their preconditions, e. g.,
“PLP 2” and “PLP 3”. The Plan Completion Manager tries
to find one capable. Therefore, the Plan Completion Manager
processes the POG as described in the following paragraph.

The order in which Empty Provisioning Activities are
replaced follows the provisioning order defined by the POG.
Traversing the workflow language-independent POG keeps
this procedure abstract and avoids that the Plan Completion
Manager has to understand different workflow languages. This
makes the approach extensible as new workflow languages
can be added seamlessly. The manager starts with vertices
in the POG that have no incoming edges and follows the
provisioning order specified by outgoing edges. For each
vertex, it looks capable candidate PLPs up in the Provisioning
Capabilities Table. Therefore, the manager compares the type
of the template and the language of the skeleton with table
entries: each PLP that has registered for (i) a type that is
equal or a supertype of the template’s type and (ii) for the
language of the skeleton in one entry, is a candidate PLP.
If one or multiple candidate PLPs are found, the manager
selects the one whose registered type is closest to the template’s
type in terms of inheritance. For example, in our motivating
scenario, we use a “WebShopSQLConn” Relationship Type that
inherits from “SQLConnection”. If there are registered PLPs for
“WebShopSQLConn”, the manager selects one of them first. If
not and there are only PLPs for “SQLConnection”, the manager
tries these supertype PLPs. This enables defining custom types
that implement operations defined by their supertypes, which
can be used by higher-level PLPs that are not aware of the
custom type to provide the required provisioning logic based on
these operation implementations. After selecting a candidate,
the manager passes the current Provisioning Plan Skeleton,
the ID of the template to be provisioned (extracted from the
POG vertex), and the Topology Template to the PLP that has
registered for the closest type. Therefore, each PLP implements
a uniform interface that defines these three input parameters.
PLPs use the ID to retrieve the template to be provisioned
from the Topology Template. If the PLP is able to provision
this template in the context of this topology, it injects the
provisioning logic into the skeleton. Therefore, it replaces the
corresponding Empty Provisioning Activity, which is identified
by the template’s ID, by executable workflow code. If the
injection was successful, it returns the enriched Provisioning
Plan Skeleton. If not, i. e., the PLP is not able to provide the
required logic, the PLP returns “null”. In this case, the manager
tries the next candidate PLP that is registered for the considered
tuple following the rules defined above. If there is no capable
PLP for a template, the corresponding Empty Provisioning
Activity remains unchanged in the skeleton. Developers may
replace this activity manually afterwards if explicit provisioning
logic is required which is not provided by the available PLPs
but needed to obtain a correct provisioning plan. However,
this is not always necessary: if a template requires no explicit
provisioning logic, there is no need to replace the corresponding
Empty Provisioning Activity as it represents only a placeholder
and does not affect the workflow’s execution. An example for
templates that often do not require explicit provisioning logic
are “hostedOn” relations: if a node is hosted on another node,
this relation gets often established implicitly when the node
is deployed. Thus, the relation needs not to be instantiated
explicitly. However, if a special type of “hostedOn” is needed,

the type system of TOSCA allows to create a subtype that is
processed by a special PLP. As a result, different types can
be handled specifically and templates that are not explicitly
provisioned by a PLP may be provisioned implicitly by another
PLP. After the manager processed all vertices in the POG, it
returns the Executable Provisioning Plan, which may be checked
and adapted manually to ensure correctness and completeness.

To replace Empty Provisioning Activities, PLPs use, con-
figure, adapt, and combine Provisioning Subprocess Templates,
which are small workflows implementing provisioning logic.
They enable integrating various management technologies such
as proprietary APIs or script-centric configuration management
tools, e. g., Chef or Puppet, seamlessly into the overall provi-
sioning plan by implementing one or multiple of the following
Provisioning Phases: (i) Prepare Phase: in this phase, the
provisioning gets prepared. For example, script Implementation
Artifacts are copied onto the corresponding operating system.
(ii) Install Phase: this is the main step of the provisioning that
installs / instantiates the corresponding node or relation. (iii)
Configure Phase: in this phase, the provisioning is configured.
For example, credentials of an installed Web Server Node
Template are changed. (iv) Start Phase: in the last phase of the
provisioning lifecycle, the component gets started or the relation
gets established. These phases are an extension of the TOSCA
Lifecycle Interface [4] focusing on provisioning. Provisioning
Subprocess Templates are generic building blocks that can
be combined by PLPs to separate concerns. For example, one
template may be used to prepare the installation of a Web Server
by copying Chef-scripts onto the underlying operating system
whereas another template executes them in the installation
phase. In this example, both templates have a generic character:
copying and executing scripts is independent from the Node
Type to be provisioned. Thus, these subprocess templates can
be reused by other PLPs. Therefore, templates are stored in
a Subprocess Templates Library. In contrast, a subprocess
template may be specific for the provisioning of a certain Node
or Relationship Type. For example, a PLP that instantiates
a virtual machine on Amazon EC2 has to do a sequence of
HTTP calls to the Amazon Web Service API. Such templates
are explicitly built for the provisioning of one particular type.

Provisioning Subprocess Templates are documented and
identified by an unique URI. This enables PLP developers
to reuse them: PLPs retrieve subprocess templates from the
library, copy them into the skeleton, and inject orchestration
logic. In this step, templates are typically configured, i. e.,
placeholders and variables in the subprocess get replaced
or initialized, respectively. For example, the aforementioned
subprocess template that copies a script onto an operating
system uses two variables to identify the (i) Node Template
providing the script-IA and the (ii) operating system Node
Template. These variables have to be initialized by the PLP.
Therefore, PLPs use mechanisms of the respective workflow
language, e.g., by injecting an assign activity in BPEL.

F. Type-specific and Generic PLPs

The PLPs described in the previous sections are called
Type-specific PLPs as they are built to provision a Node or
Relationship Template of a certain type. However, provisioning
logic is often independent from types, e. g., if only scripts have
to be executed to install and start a component. Therefore,

we introduce Generic Provisioning Logic Providers (GPLP)
to decouple generic, reusable provisioning logic from specific
Node or Relationship Types: GPLPs provision elements based
on operations provided by management interfaces independently
from the template’s type. A GPLP requires, therefore, a certain
management interface and a certain Implementation Artifact
(IA) implementing this interface. To identify management inter-
face types and IA types clearly, TOSCA uses unique URIs. Thus,
different Node or Relationship Types may provide a specific
interface implemented by a specific IA type that is understood
by a GPLP—independently from the actual template type itself.
For example, a Node Type may provide the operations defined
by the TOSCA Lifecycle Interface [4] (identified by a unique
URI) and Implementation Artifacts of type “ShellScript” that
implement these operations. Then, a GPLP that exactly knows
how to handle this combination of interface and Implementation
Artifacts is capable of provisioning this template: the GPLP
may traverse the Node Templates below the template to be
provisioned following “hostedOn” relations until it finds a Linux
operating system Node Template that provides properties to
access the system via SSH, i. e., IP-address, SSH user, and SSH
password properties. These properties can be used by the GPLP
to configure the script-subprocess templates introduced above
that copy and execute scripts on an Linux operating system. This
approach enables developers to implement custom, reusable
provisioning logic based on custom, reusable management
interfaces and Implementation Artifact types. GPLPs register
in the Provisioning Capabilities Table for any type (using the
wildcard symbol “*”) but for a certain workflow language.
When a GPLP is called by the Plan Completion Manager, the
GPLP inspects the template to be provisioned and replaces the
corresponding Empty Provisioning Activity in the skeleton in
case the needed interface is provided and implemented by a
suitable IA. Otherwise, it returns null. Thus, both PLP types are
processed equally. However, GPLPs are only called if no type-
specific PLP is capable to ensure that available type-specific
provisioning logic is preferred to generic provisioning logic.

The concept of GPLPs, typed management interfaces, and
typed Implementation Artifacts enables implementing different
technical realizations of provisioning logic for abstract manage-
ment interfaces. As an example, the shell script Implementation
Artifact above may have been created based on a particular
Unix shell such as Bash. This script cannot be used on
completely different platforms such as the Windows operating
system. To provide a loosely coupled approach, TOSCA
enables implementing one management interface by multiple
Implementation Artifacts of possibly different types, e. g., “Win-
dowsScript”. Thus, a Node Type may provide different script-
based Implementation Artifacts for one management interface
that can be used by different GPLPs to install the node on
multiple different operating system Node Types. The approach
also provides an integration layer for different technologies:
type-specific PLPs can integrate technologies transparently
whereas GPLPs allow integrating individual management logic
directly through consuming custom Implementation Artifacts
that implement a well-known abstract management interface.

V. ARCHITECTURE AND PROTOTYPE

To prove the technical feasibility of the presented approach,
we implemented a Java prototype. Implementation details can
be found in [14]. The architecture is shown in Figure 7:

The “Provisioning Plan Generation Manager” is a high-level
component that manages the generation. CSAR Importer and
Exporter are used to extract the contents from CSARs and put
the generated Provisioning Plans into it. The “POG Generator”
is a workflow language-independent component that consumes
CSARs and generates a POG. For POGs, we used a Java
workflow model that enables defining partial task orderings.
The “Skeleton Generator” is a plugin-based system to generate
skeletons in a certain workflow language. These skeletons are
then completed by the language-independent “Plan Completion
Manager”, which provides a plugin mechanism to register PLPs.
All plugins are based on OSGi. All kinds of workflows, i. e.,
subprocess templates, skeletons, and plans, are implemented in
BPEL. We conducted case studies in which we implemented
BPEL-based PLPs to support end-to-end provisioning examples.
For example, to deploy LAMP-based / Java-based applications
on Amazon using different services such as IaaS (Amazon
EC2) and PaaS (Amazon Beanstalk, Amazon RDS).

Plan Completion
Manager

Provisioning Order
Graph Generator

Provisioning Plan
Skeleton Generator

Provisioning Plan Generation Manager

 CSAR Importer CSAR Exporter

P
LP

 n

P
LP

 1
 …

B
P

M
N

B
P

EL

…

Fig. 7. Architecture of the Plan Generation Component.

VI. EVALUATION

A. Computational Complexity and Performance

The complexity of the complete plan generation is linear,
i. e., O(n) with n being the number of templates in the
topology: (i) generating a POG can be done in linear time
as each template is processed exactly once. (ii) Translating the
POG into a skeleton depends on the used language. However,
for BPEL and BPMN, this translation can be done in linear time
following the description in Section IV-D. (iii) For replacing
Empty Provisioning Activities in the last step, at most all
registered PLPs are invoked for each activity. As the number of
PLPs is fixed, the complexity is linear. We exclude analyzing
PLPs because their complexity depends on custom requirements.
However, we found that this is also possible in linear time for
all PLPs used in our case studies. We conducted a performance
measurement based on our prototype to underpin the theoretical
analysis. The experimental setup was based on a MacBookPro
with Intel Core 2 Duo (2.53GHz) and 4 GB RAM. We created
Topology Templates of different size and measured the time
needed to generate Provisioning Plans (including serialization
to BPEL files). The results shown in Table I indicate that the
required time increases linearly to the number of templates.

TABLE I. PLAN GENERATION DURATION

Templates ∅ Plan Generation ∅ Time / Template
50 0.833 s 0.016 s
100 1.574 s 0.016 s
200 3.038 s 0.015 s

1000 14.489 s 0.015 s
5000 77.394 s 0.015 s

B. Standards Compliance and Portability

Standards are a means to achieve reusability, interoperability,
portability, and maintainability of software and hardware
leading to a higher productivity and help to align the enterprise’s
IT to its business. However, most available provisioning
approaches are based on proprietary APIs or domain-specific
languages (DSLs). For example, Amazon provides a proprietary
API to manage Cloud offerings. Script-centric technologies
such as Chef employ proprietary DSLs based on Ruby.
However, none of these DSLs is standardized. This prevents
these approaches to be portable across other technologies or
environments. In addition, each proprietary DSL has to be
learned by developers. This is a difficult and time-consuming
task. The approach presented in this paper addresses these
issues as it exclusively employs standards: the OASIS standard
TOSCA is used to describe applications, standard workflow
languages such as BPEL or BPMN are used to implement
Provisioning Plans. Thus, the approach enables portability of
applications and their management plans based on standards.

C. Toolchain—End-to-End Prototype Support

The presented approach bridges the gap between declarative
application modeling and imperative provisioning. Therefore,
a modeling tool and a capable TOSCA Runtime Environment
are needed to provide end-to-end support. We developed an
open source TOSCA modeling tool called “Winery” [15] that
provides a graphical user interface for modeling Topology
Templates and a management backend to manage types and
artifacts. Winery provides export and import functionality for
CSARs. Thus, the tool can be used to create CSARs and adapt
existing CSARs afterwards, e. g., to customize the generated
plan. We also developed a TOSCA Runtime Environment
called “OpenTOSCA” [16]. This runtime is able to run CSARs
containing Java-based Web Service Implementation Artifacts
and BPEL Management Plans, which are bound to the IAs
by the runtime. Thus, the generated plans can be executed by
this environment fully automatically. These two tools can be
combined with the presented approach as shown in Figure 8:
Winery is used to create CSARs that contain no Provisioning
Plan. These CSARs are processed by the plan generator which
generates and injects a Provisioning Plan for the Topology
Template into the CSAR which runs in OpenTOSCA. Thus,
we provide tools supporting full end-to-end support.

CSAR

 OpenTOSCA Winery

W Plan
Generator

CSAR

Fig. 8. End-To-End Toolchain.

D. Extensibility

The presented approach is extensible on multiple layers.
First, workflow languages can be added by implementing
Provisioning Plan Skeleton Generators and associated PLPs.
Therefore, the framework offers a plugin interface for generators.
The Provisioning Capabilities Table provides a generic means to
register PLPs independently from the employed language. Thus,
no additional effort is needed to integrate a new language into
the Plan Completion Manager. Second, using custom Node and

Relationship Types is supported as the framework is completely
independent from Node Types and provides a means to integrate
new Relationship Types by inheriting from the two super
Relationship Types “dependsOn” and “uses”. In addition, types
provide an abstract description of their management interfaces
and properties. Hence, they are independent from the employed
workflow language. Third, operating IAs and binding plans to
them is up to the used TOSCA Runtime Environment. Thus,
if the environment supports a certain workflow language, the
generated plan can be executed without further changes.

VII. RELATED WORK

The Cafe-framework [10] automates provisioning of Cloud
applications based on generating Provisioning Plans by orches-
trating “Component Flows” that implement a uniform interface
to provision components. Cafe also generates a POG which
gets transformed into an executable plan. However, it is not
possible to model different kinds of relations between nodes
explicitly—except the deployedOn-dependency. Therefore, the
POG generation is based on inverting deployedOn-dependencies
and calculating dependencies based on variability points. In
contrast to this, our approach determines provisioning order
directly from typed relationships. A major strength of our
approach is the ability to consider the provisioning of relation-
ships explicitly based on their types. This enables implementing
custom provisioning logic for relationships without the need
to modify existing Node Types, their management interfaces,
or provided management operations.

Lu et al. [17] present concept and implementation of a
deployment service that is similar to our approach in terms
of defining the application’s structure through a topology
model that is used for provisioning. The approach searches
provisioning actions for each component contained in the
topology, similar to our approach. However, they execute
the operations (implemented using Chef) directly without
generating an explicit plan that can be modified afterwards.
In addition, the approach presented by Lu is much more
restrictive: Lu et al. employ an own declarative, XML-based
domain-specific language (DSL) to model applications whereas
our approach is based on the TOSCA standard that enables
defining portable application descriptions. Their proprietary
DSL is based on virtual machines whereon software can
be deployed automatically using Chef. The approach is not
able to include various kinds of Cloud services and different
provisioning, configuration, and management technologies. In
contrast, because our approach uses TOSCA as topology
definition language, it is extensible in terms of Node Types.
Thus, any Node Type can be defined in TOSCA and extend
our system. In addition, our approach is not restricted to Chef
and supports integrating any technology by writing custom
Provisioning Logic Provider that may employ and utilize any
technology to provision a certain Node or Relationship Type.

There are several works [5]–[7], [18], [19] that attempt
to bridge the gap between imperative provisioning logic and
a model describing the provisioning declaratively based on
AI planning and graph covering techniques. In these works,
so-called desired state models are used to describe the state
into which an application shall be transferred. These models
are used to find a partial order of provisioning operations,
workflows, or scripts that transfer the application into this state.

Therefore, AI planning and graph covering techniques are used
to analyze dependencies between different nodes, relations,
properties, and the effects and preconditions of operations to
generate a workflow that brings the application into the desired
state. The exclusively type-based PLP concept is a simplified
variant of these techniques as it only compares template types
with PLP capabilities and employs exactly one PLP to insert
provisioning logic for a node or relation, which is sufficient
for the provisioning of most applications according to Eilam et
al. [5]. However, also the PLP concept enables a detailed
analysis: the templates to be provisioned can be analyzed
programmatically to ensure injecting correct provisioning logic:
complex queries and graph traversals can be executed by a
PLP to analyze the context in all details. Also more complex
concepts such as Generic Lifecycle Management Planlets [2]
that enable to provision nodes ore relations based on provided
operations can be realized with the presented approach: GPLPs,
which are related to this concept, provide similar means.

The CHAMPS System [20] focuses on Change Management,
which modifies IT systems through so-called “Requests For
Change (RFC)”, e. g., provisioning or configuration requests.
The approach analyzes dependencies between components,
relations, and the effects of an RFC. Based on this analysis,
so-called “Task Graphs” are generated that carry out the
RFC. These graphs are workflows that are scheduled by a
“Planner and Scheduler” afterwards to achieve a high degree
of parallelism. In a later work [21], the authors show how
BPEL is used to integrate CHAMPS with general-purpose
process engines and deployment engines that execute the tasks
orchestrated by the generated workflow. Compared to our
approach, the explicit consideration of relations to achieve
a high degree of parallelism is similar. However, our approach
is more extensible as it enables integrating various kinds
Node and Relationship Types and provisioning approaches
through the concept of PLPs: different deployment engines,
management APIs, and script-centric technologies can be
integrated seamlessly for individual provisionings as specific
logic is outsourced to dedicated, type-specific or generic PLPs.

The script-centric DevOps community provides tooling such
as Chef, Puppet, or Juju to simplify configuration management.
However, integrating different kinds of provisioning technolo-
gies, e. g., proprietary management APIs, is not supported
directly. Script-centric technologies operate on a deep technical
level and manually orchestrating different scripts, recipes (Chef),
charms (Juju), or manifests (Puppet) quickly degenerates to a
hard and error-prone task. In contrast, our approach employs
a high-level modeling language to describe provisionings
declaratively and abstracts from most technical details. In
addition, all these related works do not support TOSCA as
modeling language and exchange format for Cloud applications.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach to generate imper-
ative Provisioning Plans based on declarative TOSCA models.
We showed how dedicated, type-specific plugins are capable
of analyzing and configuring provisioning of TOSCA Node
and Relationship Templates and how reusable subprocesses
can be combined to provision components also generically.
The results are fully automatically executable plans that can
be customized by application developers. In the future, we

plan (i) to support non-functional requirements such as security
policies, (ii) to extend the approach by concepts of the planning
theory to handle complex use cases, and (iii) to integrate the
plan generator into Winery and OpenTOSCA for reducing the
number of required tools.

ACKNOWLEDGMENT

This work was partially funded by the BMWi project
CloudCycle (01MD11023).

REFERENCES

[1] F. Leymann, “Cloud Computing: The Next Revolution in IT,” in Proc.
52th Photogrammetric Week, September 2009, pp. 3–12.

[2] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and J. Wettinger,
“Integrated Cloud Application Provisioning: Interconnecting Service-
centric and Script-centric Management Technologies,” in CoopIS,
September 2013, pp. 130–148.

[3] OASIS, Topology and Orchestration Specification for Cloud Applications
Version 1.0, May 2013. [Online]. Available: http://docs.oasis-open.org/
tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

[4] Topology and Orchestration Specification for Cloud Applications
Primer Version 1.0, OASIS, January 2013. [Online]. Available: http:
//docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.html

[5] T. Eilam, M. Elder, A. Konstantinou, and E. Snible, “Pattern-based
composite application deployment,” in IFIP/IEEE IM, May 2011, pp.
217–224.

[6] E. Maghraoui et al., “Model driven provisioning: bridging the gap
between declarative object models and procedural provisioning tools,”
in Middleware, November 2006, pp. 404–423.

[7] U. Breitenbücher et al., “Pattern-based runtime management of composite
cloud applications,” in CLOSER, Mai 2013, pp. 475–482.

[8] T. Binz, G. Breiter, F. Leymann, and T. Spatzier, “Portable Cloud
Services Using TOSCA,” IEEE Internet Computing, vol. 16, no. 03, pp.
80–85, May 2012.

[9] U. Breitenbücher et al., “Vino4TOSCA: A visual notation for application
topologies based on tosca,” in CoopIS, September 2012, pp. 416–424.

[10] R. Mietzner, “A method and implementation to define and provision
variable composite applications, and its usage in cloud computing,”
Dissertation, University of Stuttgart, Germany, August 2010.

[11] OASIS, Web Services Business Process Execution Language (WS-BPEL)
Version 2.0, OASIS, Apr. 2007.

[12] OMG, Business Process Model and Notation (BPMN), Version 2.0,
Object Management Group Std., Rev. 2.0, January 2011.

[13] van der Aalst et al., “Workflow patterns,” Distributed and Parallel
Databases, vol. 14, no. 1, pp. 5–51, July 2003.

[14] K. Képes, “Konzept und Implementierung eine Java-Komponente zur
Generierung von WS-BPEL 2.0 BuildPlans für OpenTOSCA,” Bachelor
Thesis, University of Stuttgart, IAAS, 2013.

[15] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann, “Winery – a
modeling tool for TOSCA-based cloud applications,” in ICSOC, 2013,
pp. 700–704.

[16] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak,
and S. Wagner, “OpenTOSCA – a runtime for TOSCA-based cloud
applications,” in ICSOC, 2013, pp. 692–695.

[17] H. Lu et al., “Pattern-based deployment service for next generation
clouds,” in SERVICES, 2013, pp. 464–471.

[18] K. Levanti and A. Ranganathan, “Planning-based configuration and
management of distributed systems,” in IFIP/IEEE IM, June 2009, pp.
65–72.

[19] H. Herry, P. Anderson, and G. Wickler, “Automated planning for
configuration changes,” in LISA, 2011.

[20] A. Keller et al., “The CHAMPS system: change management with
planning and scheduling.” in NOMS, April 2004, pp. 395–408.

[21] A. Keller and R. Badonnel, “Automating the provisioning of application
services with the BPEL4WS workflow language,” in DSOM, November
2004, pp. 15–27.

