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Abstract—The Cloud computing paradigm emerged
by establishing new resources provisioning and con-
sumption models. Together with the improvement of
resource management techniques, these models have
contributed to an increase in the number of application
developers that are strong supporters of partially or
completely migrating their application to a highly scal-
able and pay-per-use infrastructure. In this paper we de-
rive a set of functional and non-functional requirements
and propose a process-based approach to support the
optimal distribution of an application in the Cloud in
order to handle fluctuating over time workloads. Using
the TPC-H workload as the basis, and by means of em-
pirical workload analysis and characterization, we eval-
uate the application persistence layer’s performance
under different deployment scenarios using generated
workloads with particular behavior characteristics.

Keywords—Synthetic Workload; Benchmark; Appli-
cation Distribution; Application Deployment; Relational
Database; TPC; Database-as-a-Service (DBaaS)

I. Introduction
An increasing number of available Cloud services which

allow to partially or completely deploy the application
in the Cloud is available to application developers these
days. Furthermore, the number of non VM-oriented services
has also been increasing with the successful introduction
of offerings like Database as a Service (DBaaS) from
major Cloud providers. It is therefore possible to host
only some of the application components off-premise (in
the Cloud), e.g. its database, while the remaining of the
application remains on-premise [1]. Standards like TOSCA1

allow for the modeling and management of application
topology models in an interoperable and dynamic manner,
further supporting the application distribution capabilities,
potentially even in a multi-Cloud environment.

In this work, we aim to leverage the opportunities pro-
vided by such a technological landscape towards developing
the means that allow for the dynamic deployment and
re-deployment of application components across service
providers and solutions, in order to cope with performance
demands. There are two fundamental observations in this
effort that are going to be discussed in more length during
the rest of the paper. Firstly, the distribution of the
application topology in the Cloud has a severe effect on the

1Topology and Orchestration Specification for Cloud Applications
(TOSCA) Version 1.0: http://docs.oasis-open.org/tosca/TOSCA/v1.
0/TOSCA-v1.0.html

performance of the application — however it is not always
obvious whether it is beneficial or detrimental. Secondly, the
workload of a realistic application fluctuates over time for
different reasons, and its topology may have to be adapted
to address these oscillations.

For the scope of this paper we focus on the persistence
layer of applications [2] and study the effect on perfor-
mance of different application topology distributions of a
sample application for different generated workloads. A
presentation and analysis of our experimental results is
discussed, based on which we design a dynamic application
distribution support process aimed at performance opti-
mization. The contributions of this work can therefore be
summarized as follows:

1) a workload characterization focusing on the application
persistence layer by using a well known benchmark
(TPC-H),

2) the generation and performance evaluation of gen-
erated synthetic workloads for different deployment
topologies of the application persistence layer,

3) the design of a process which supports application
designers in optimizing the distribution of their ap-
plication across Cloud and non-Cloud solutions in a
dynamic manner.

The remainder of this paper is structured as follows:
Section II summarizes relevant concepts and motivates
further investigations. Section III presents our experiments
and discusses the most important findings. A process to
support the dynamic distribution of the application in
the Cloud is proposed in Section IV. Finally, Section V
summarizes related work and Section VI concludes with
some future work.

II. Background
The deployment of an application in the Cloud regularly

requires the realization of preliminary compliance tasks.
often involve specifying the required underlying resources,
cost calculations, or even architectural or realization
adaptations. Towards achieving the desired performance,
such tasks should incorporate performance awareness. The
migration of the different layers of an application to the
Cloud is analyzed in [1], where multiple migration types are
categorized and their corresponding application adaptation
requirements are identified. In [3] a migration method
and tool chain based on application model enrichment
for optimally distributing the application across one or

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html


multiple Cloud providers is presented. This work targets
the challenge of optimizing the application layers’ distri-
bution in the Cloud based on its workload and expected
performance. Moreover, internal or external parameters
produce variations of the application workload. For ex-
ample, an online Web store workload is increased at
certain time periods, e.g. before the Christmas season,
which may generate unnecessary monetary costs and/or
performance degradation. An analysis of this problem can
be conducted from two different perspectives, based on
the Cloud Consumer and the Cloud Provider interests. On
the one hand, the Cloud consumer aims to maximize the
resource usage while minimizing the incurred monetary
costs. On the other hand, the Cloud provider’s goals are
associated with the utilization of virtualization and multi-
tenancy techniques to minimize operational costs while
ensuring isolation between the loads generated by each
Cloud consumer. In this context, our goal is to provide the
necessary methodology and artifacts to analyze workload
fluctuations over time and dynamically (re-)distribute the
application layers towards bridging the gap produced by
the existing conflict of interests between Cloud consumers
and Cloud providers.

According to several investigations [4]–[8], two ap-
proaches for analyzing the application workload behavior
and evolution can be identified: top-down and bottom-up. In
the former, the application workload is characterized, and
the application behavior model is derived before or during
the deployment of the application. As discussed in [6], the
understanding of the application workload is mandatory in
order to achieve efficiency. Workload and statistical analysis
are often combined to derive the application workload
behavior model. However, the top-down analysis approach
is restricted to handle the workload evolution over time.
Bottom-up approaches address this deficiency with the
help of resource consumption monitoring techniques and
performance metrics. The analysis of the cyclical aspect
of multiple workloads can ease the application workload
characterization, prediction, and placement operations [5].
Furthermore, the analysis and generation of application
performance models for application workloads in the Cloud
can be used to ease capacity management operations and
predict the workload behavior to determine the most cost-
effective resource configuration [7].

In this work we therefore propose to consolidate the
top-down and bottom-up application workload analysis
approaches over time in order to proactively satisfy appli-
cation demands by dynamically (re-)adapting its topology.
Toward this goal, in this paper we focus on the application
persistence layer. For this purpose, we analyze the appli-
cation performance under different deployment topologies,
using the TPC-H benchmark2 as the basis to generate
application workloads with different characteristics.

III. Experiments
A. Experimental Setup

The experiments discussed in the following emulate the
behavior of an application which is built using the three

2TPC-H Benchmark: http://www.tpc.org/tpch/

layers pattern (presentation, business logic, and data, i.e.
persistence) proposed in [2]. We first generate 1GB of rep-
resentative application data using the TPC-H Benchmark.
Apache JMeter 2.92 is then used as the application load
driver to emulate the application business logic layer, using
the generated set of 23 TPC-H SQL queries as the load.
The following infrastructures are used for distributing the
application business logic and persistence layers:

• an on-premise virtualized server on 4 CPUs Intel Xeon
2.53 GHz with 8192KB cache, 4GB RAM, running
Ubuntu 10.04 Linux OS and MySQL 5.1.72,

• an off-premise virtualized server (IaaS) hosted in the
Flexiscale service3 consuming 8GB RAM, 4 CPUs
AMD Opteron 2GHz with 512KB cache, and running
Ubuntu 10.04 Linux OS and MySQL 5.1.67,

• an off-premise virtualized server (IaaS) m1.xlarge
instance hosted in the EU zone of the Amazon EC2
offering4 running Ubuntu 10.04 Linux OS and MySQL
5.1.67,

• and an off-premise Amazon RDS5 DBaaS db.m1.xlarge
database instance running MySQL 5.1.69.

We create three distribution scenarios, with the application
data 1) in the MySQL on-premise, 2) on the DBaaS solution,
and 3) in the MySQL on the IaaS solutions. The load
driver remains in all cases on-premise. The application
persistence layer performance is measured by normalizing
the throughput (Req./s) across 10 rounds on average per
day for a period of three weeks in the last quarter of 2013.

B. TPC-H Characterization & Distribution Analysis

The combination of top-down and bottom-up techniques
can benefit the evaluation and analysis of the application
workload and behavior over time. For this purpose, using
the first distribution scenario (application data on-premise)
we analyze the relationship between the database schema
and the access count on each table for the initial workload.
A secondary analysis consists of dissecting the set of items
which constitute the initial workload, and quantitatively
analyzing their logical complexity, table joints, subqueries,
etc. (Table I). Throughput and retrieved data size measure-
ments are considered as performance metrics, and therefore
are a part of the bottom-up analysis approach. We com-
bined both analysis approaches to analyze the relationship
between the complexity of the workload queries and the
performance of different application persistence deployment
topologies. Towards this goal, queries are categorized by
trimming the mid-range of the initial workload measured
throughput and by comparing the total number of logical
evaluations with respect to the remaining set of queries
in the workload. Given the strong connection between the
measured throughput and the resource consumption of the
database engine in the TPC-H benchmark, the categories
compute high (CH), compute medium (CM), and compute
low (CL) are defined, and each query is associated with its
corresponding category as shown in Table I.

2Apache Jmeter: http://jmeter.apache.org
3Flexiscale: http://www.flexiscale.com
4Amazon EC2: http://aws.amazon.com/ec2/
5Amazon RDS: http://aws.amazon.com/rds/
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Table I: TPC-H Workload Analysis.

Query Accessed
Tables

Subqueries Total Logical
Evaluations

Throughput (Req./s) Retrieved
Data (B)

Category
ID

On-Premise IaaS DBaaS
Flexiscale AWS EC2

Q(1) 1 0 1 0.03425 0.03396 0.04115 0.03817 538 CH
Q(2) 5 1 13 0.07927 0.14884 0.07413 3.03260 15857 CH
Q(3) 3 0 5 0.08687 0.11733 0.08446 0.31185 376 CH
Q(4) 2 1 5 0.53950 0.73922 0.54244 0.94903 105 CL
Q(5) 6 0 9 0.01148 0.02014 0.01377 0.33484 130 CH
Q(6) 1 0 4 0.20583 0.21355 0.22450 0.28261 23 CL
Q(7) 5 1 11 0.03123 0.04782 0.03477 0.20792 163 CH
Q(8) 7 1 11 0.97156 1.45380 0.74072 0.18196 49 CM
Q(9) 6 1 8 0.05947 0.09123 0.05470 0.05548 4764 CH
Q(10) 4 0 6 0.09168 0.11970 0.09584 0.49834 3454 CH
Q(11) 3 1 6 2.59998 4.07134 1.85092 0.26802 16069 CL
Q(12) 2 0 7 0.21147 0.22465 0.23487 0.13981 71 CL
Q(13) 2 1 2 0.12771 5.32350 - - 16 CL
Q(14) 2 0 3 0.03373 0.06017 0.03444 0.29052 28 CH
Q(15) 1 0 2 201.53365 22.25911 12.0840 23.11528 9 CL
Q(16) 2 1 2 0.11346 0.11219 0.12755 0.13471 120 CM
Q(17) 3 1 6 0.10931 0.19021 0.11319 0.97148 648259 CL
Q(18) 2 1 5 0.98213 1.81212 - - 25 CL
Q(19) 3 1 3 - - - - - -
Q(20) 2 0 25 4.05648 4.90228 3.29667 0.17083 21 CM
Q(21) 5 2 8 3.02705 5.32847 2.36784 - 8989 CM
Q(22) 4 2 13 0.01070 0.01734 0.01610 0.06065 8944 CH
Q(23) 2 2 6 2.72083 3.30785 2.35940 - 137 CL
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Figure 1: Initial Workload Behavior Distribution Analysis — Cumulative Distribution Fit.

The initial workload empirical distribution was analyzed
in terms of its cumulative distribution function. In order
to derive the theoretical statistical model associated with
the initial workload behavior distribution for the three
distribution scenarios, the probability distribution fitting
functionalities provided by the MASS and Stats libraries of
R 3.0.26 were used. We selected the Kolmogorov-Smirnov
(KS) goodness of fit tests, as these work well with small
data samples. The KS goodness of fit tests showed a
minimal distance between the empirical distribution and the
estimated theoretical Weibull distribution with a p-value
(confidence) greater than 0.05. Therefore, we can accept

6R Project: http://www.r-project.org

the KS goodness of fit null hypothesis, which determines
the Weibull distribution as the theoretical distribution that
best fits the initial empirical distribution representing the
application workload behavior. Figures 1a, 1b, and 1c depict
the empirical and fitted Weibull cumulative distributions
for the on-premise, DBaaS, and IaaS scenarios, respectively.

C. Generation and Evaluation of Synthetic Workloads
The previous analysis consisted of analyzing the initial

workload behavior, evaluating its performance under dif-
ferent deployment topologies of the application persistence
layer, and establishing the experimental baseline for inter-
preting the application performance under fluctuating over

http://www.r-project.org
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Figure 2: Generated Workload Behavior Distribution Analysis.

Table II: Workload and Application Data Distribution
Evaluation Results.

Scenario Category % Queries
same

Category

Distribution
Parameters

Throughput
(Req./s)

On-
Premise

CL 79.4% k= 0.35666
λ= 3.28983

0.27749

On-
Premise

CM 18.9% k= 0.36037
λ= 0.80655

0.05888

On-
Premise

CH 95.0% k= 0.53023
λ= 0.08990

0.02696

DBaaS CL 66% k= 0.54324
λ= 0.59264

1.60542

DBaaS CM 21.6% k= 0.57200
λ= 0.88472

0.19972

DBaaS CH 88.3% k= 0.74471
λ= 0.23991

0.10273

IaaS CL 78.2% k= 0.63816
λ= 1.64010

0.34477

IaaS CM 20.0% k= 0.52690
λ= 0.53472

0.06046

IaaS CH 90.8% k= 0.60906
λ= 0.11362

0.03378

time workloads. Subsequent to characterizing and aligning
the application workload into the previously presented
categories, synthetic workload generation and evaluation
phases can take place. For this purpose, probabilistic
workload generation techniques are supported, for ex-
ample, by Malgen7 and Rain [9]. Malgen supports the
creation of large distributed data sets for parallel processing
benchmarking, e.g. Hadoop, while Rain provides a flexible
and adaptable workload generator framework for Cloud
computing applications based on associating workload items
with a probability of occurrence. However, such approaches
do not consider the distribution of the application layers.

By using scripting techniques and the set of successfully
executed TPC-H queries, we created multiple workloads for
each of the categories we identified in the previous section

7Malgen: http://code.google.com/p/malgen/

with fixed size of 1000 SQL queries each. A generated
synthetic workload is categorized based on the frequentist
probability of the queries which constitute the workload.
For example, the CL synthetic workload is generated by
assigning a higher probability of occurrence to the CL
queries, and consists of 79.4% of queries categorized as
CL as depicted in Table II (in the on-premise scenario).
However, for the generated CM synthetic workloads the
number of CM queries decreases, as the amount of CM
queries in the initial workload is lower with respect to
the CL and CH queries (Table I). The variation of the
previously selected Weibull distributions of the generated
workloads with respect to the initial workload are depicted
in Figures 2a, 2b, and 2c, for the on-premise, DBaaS, and
IaaS scenarios, respectively. Table II provides the shape
and scale parameters of the Weibull distribution for the
multiple generated workloads.

In the future, we plan to evaluate existing workload
generation tools to incorporate support for generating
multiple artificial workloads according to specified prob-
ability distributions considering the different deployment
topologies of the application layers.

D. Discussion
In the following we discuss the most important findings

from the previous results. Table I drives the following
conclusions with respect to the initial workload:

• when deploying the database in the Flexiscale IaaS
solution, the average performance of 85% of the
successfully executed queries improves between 3%
and 4078%. However, when deploying the database in
AWS EC2, a performance improvement is observed
only in 61% of the successfully executed queries.

• When deploying the database in the DBaaS solution,
the average performance of 70% of the queries improves
between 11% and 3725%, and

• there are queries whose performance is degradated
when being executed off-premise, such as Q(1), Q(15),
and Q(16) (for the Flexiscale scenario), Q(2), Q(3), Q(8),

http://code.google.com/p/malgen/


Q(9), Q(11), Q(15), Q(20), and Q(22) (for the AWS EC2
scenario), and Q(8), Q(9), Q(11), Q(12), Q(15), and Q(20)

(for the AWS RDS scenario).

In order to evaluate the performance improvement or
degradation under different generated synthetic workloads
and deployment topologies of the application persistence
layer, we first analyze from Fig. 2 the workload behavior
distribution variation with respect to the initial workload
fitted Weibull distribution. It can be observed from the CL
and CM fitted Weibull distributions across all scenarios
that there exists a faster cumulative probability growth for
queries with high throughput, while in the CH case, queries
with high throughput are less likely to be included in the
generated workload. Moreover, we can observe the impact
that the workload fluctuation has on the distribution shape
and scale parameters of the Weibull distribution (Table II).
With respect to the overall performance under the different
application persistence layer deployment topology, we can
observe from the obtained results depicted in Table II that:

• the compute demand is indeed increased among the
three different workload categories, and the through-
put is reduced by 78% to 90% when executing the
workload on-premise, by 55% to 77% when executing
the workload in a DBaaS solution, and by 80% to 90%
when executing the workload in an IaaS solution, using
the CL category as the baseline, and

• the overall performance is highly improved when
executing the generated workloads off-premise. For
the DBaaS solution an increase of 163%, 339%, and
381% is observed for the CL, CM, and CH workloads,
respectively. In the IaaS AWS EC2 scenarios, the
performance is improved in 124%, 102%, and 125% for
the CL, CM, and CH workloads, respectively.

From the previous experiments we can conclude that
1) different workload distributions do not only perform
in a different manner, but also that 2) adapting the
application deployment topology with respect to the
workload demands significantly and proactively improves
the application performance. Providing support for (re-
)adapting the application topology, i.e. (re-)distributing its
layers to optimally consume the required resources to satisfy
the workload demands fluctuations, is therefore necessary.
With the help of workload characterization and generation
techniques, probabilistic models, and prediction capabilities,
the application can be proactively and optimally adaptated
to satisfy different workload demands.

IV. Application Distribution Support
Based on the previous conclusions, we investigate the

requirements and introduce a step-by-step process to
analyze the application workload and its fluctuations over
time in order to support the dynamic (re-)distribution of
the application and optimize its performance.

A. Requirements

Functional Requirements: The following functional
requirements must be fulfilled by any process based on
the analysis of fluctuating application workload over time

and the dynamic (re-)distribution of the application for
performance optimization:

FR1 Support of Both Top-Down and Bottom-Up Anal-
ysis: The process must support both analysis of
the application workload and the derivation of its
workload behavior model before the deployment of the
application (top-down) and during runtime (bottom-
up), respectively.

FR2 Performance-Aware Topology Specification: The pro-
cess has to support the definition of application
topologies considering performance aspects in various
formats such as TOSCA [10] or Blueprints [11].

FR3 Management and Configuration: Any tool support-
ing such a process must provide management and
configuration capabilities for Cloud services from
different providers covering all Cloud Service Models
and Cloud Delivery Models. Focusing on data storage
as an example, this includes data stores, data services,
and application deployment and provisioning artifacts
bundling together different (re-)distribution actions.

FR4 Support of Different Migration Types: in order to
(re-)distribute an application the process has to sup-
port all migration types identified in [1]: replacement,
partial and complete software stack migration, and
cloudification.

FR5 Independence from Architectural Paradigm: The pro-
cess has to be independent from the architecture
paradigm the application to be (re-)distributed is based
on, e.g. SOA [12] or three-layered architecture [2].

FR6 Support & Reaction on Workload Evolution: As the
workload of an application is subject to fluctuations
over time, the process must support the identifica-
tion of these fluctuations, e.g. based on resource
consumption monitoring techniques, and react by
(re-)distributing the application accordingly.

FR7 Support of Multiple Workload Characteristics: In
the ideal case, implementation- or architecture-
independent workload characteristics are used in order
to create a generic application behavior model. As
there are, for instance, an operating system influence
on the application behavior, it is nearly impossible
to obtain completely independent characteristics [6].
Thus, the process has to support both implementation
dependent and independent workload characteristics.

FR8 Support of Hardware, Software, and Application Char-
acteristics: As we optimize for performance which
is determined by the hardware, software, and the
application itself [6], the process has to consider
characteristics for all three.

FR9 Creation of Workload Behavior Model: The process
has to support workload behavior derivation and fitting
capabilities in order to create the workload behavior
model, e.g. based on probability [8].

Non-functional Requirements: In addition to the re-
quired functionalities, a process supporting the dynamic
application (re-)distribution to cope with fluctuating over
time workloads should also respect the following properties:

NFR1 Security: (Re-)distribution and (re-)configuration
of applications requires root access and administrative
rights to the application. Any tool supporting the



process should therefore enforce user-wide security
policies, and incorporate necessary authorization, au-
thentication, integrity, and confidentiality mechanisms.

NFR2 Extensibility: The methodology should be exten-
sible, e.g. to incorporate further provisioning and
deployment approaches and technologies.

NFR3 Reusability: The workload analysis, workload evo-
lution observation, and application (re-)distribution
mechanisms and underlying concepts should not be
solution-specific and depend on specific technologies
to be implemented. Components of a tool supporting
such a process should therefore be extensible when
required and reusable by other components and tools,
e.g. to be integrated with a Decision Support System
for application migration to the Cloud and application
architecture refactoring as presented in [13].

B. Application Distribution Support Process
Towards fulfilling the functional and non-functional

requirements previously identified, in this section a process-
based realization approach is presented using the BPMN2 7

notation (Figure 3). Two main parties are identified when
dynamically (re-)distributing the application to optimize
its performance in the Cloud: the Application Developer
and the Application Distribution Support System. The
application developer tasks are not only related to the
application design and realization, but also incorporate
responsibilities related to specifying the application de-
pendencies on the underlying resources, e.g. middleware,
OS, and hardware, which are commonly specified using
topology languages such as TOSCA. On the other side, the
application distribution support system aims to facilitate an
optimal (re-)distribution of the application to proactively
react to fluctuating workloads. As defined by the previous
section, the combination of the top-down and bottom-up
approaches must be supported. Hence, we identify in each
process step the tasks associated with each approach.

Subsequently to specifying the application topology
in the top-down approach, the application developer has
the possibility to enrich the topology with an initial
set of workload characteristics that the application must
bear, e.g. providing information related to the expected
frequency of a query in the persistence layer, or defining a
probability matrix for the operations in the presentation
and business layers. The expected performance can be
specified in a fine granular way, e.g. for each operation or
application layer, or for the application as a whole, e.g.
average response time for all application functionalities.
The application distribution support system interprets the
enriched topology and the workload specification. The ex-
pected performance is expressed as set of preferences, which
can be analyzed using utility based approaches. By using
distribution fitting and goodness of fit statistical techniques,
the system derives an initial workload behavior model. In
a next step, from the initial workload multiple artificial
workloads with different characteristics are generated, e.g.
the CL, CM, and CH categories depicted in the previous
section, and their behavior models are derived. In parallel,
the system generates multiple application distribution

7BPMN2 specification: http://www.omg.org/spec/BPMN/2.0/
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Figure 3: Application Analysis and Distribution Process
using BPMN2 Notation

alternatives, depicted as Topologies* in Figure 3. Each of
these topologies* represent a performance-aware application
distribution alternative of the different potential migration
types discussed in [1]. These alternatives consist of an
ordered list of topologies according to the initial developer
preferences. Once the most suitable topology candidate
is selected, the application deployment phase (Distribute
Application task) occurs, and the Collaborative Loop is
initiated. We propose the collaborative loop as an approach
to support the (re-)distribution of the application over time
to proactively react to fluctuating workloads.

The bottom-up analysis tasks evaluate the distributed
application performance for the generated artificial work-
loads. The application performance is initially evaluated
using benchmark and monitoring techniques to measure the

http://www.omg.org/spec/BPMN/2.0/


most relevant to the user KPIs, e.g. response time, resource
consumption, monetary costs, etc. The performance evalua-
tion results are then presented to the application developer,
who registers the topology in the system as a suitable or
non suitable application distribution with respect to the
application performance requirements. If the application
distribution does not fit the performance requirements, the
system proposes further application distributions.

During the production phase of the application, monitor-
ing techniques ease the analysis of the application workload
evolution in order to derive workload and performance
patterns, e.g. using periodogram and workload frequency
analysis techniques [5]. The representation of the workload
behavior and evolution over time by means of using statis-
tical techniques, allows in this manner for the application
to be proactively (re-)distributed to optimally cope with
future workload demands.

V. Related Work
In the following we present our investigations on existing

application architecture model optimization approaches,
application workload generators, application and database
benchmarks, as well as existing approaches for runtime
performance evaluation of services and Cloud applications.

The evolution of software architecture models towards
optimizing crucial quality properties is targeted in [14]. An
analysis on the problems when designing and deploying
a Cloud application in [15] motivates the definition of
a methodological approach to create structured native
applications. Focusing on the application workload, existing
application workload generators target the evaluation of the
application as a whole, rather than evaluating the perfor-
mance of each application layer or application component
separately for different application topologies. For example,
Faban Harness8 is a free and open source performance
workload creation and execution framework for running
multi-tier benchmarks, e.g. Web server, cache, or database.
Cloudstone [16] targets specifically Web 2.0 applications
with a monolithic deployment implemented in Rails, PHP,
and Java EE on Amazon EC2 and Sun’s Niagara enterprise
server. Rain [9] incorporates the possibility to determine
the probability of occurrence of the different operations
of a Web application, e.g. home page request, log in, or
adding event items to the calendar. The language GT-
CWSL [4] for specifying workload characteristics is used
by the synthetic workload generator for generating Cloud
computing application workloads. Existing application
benchmarks focus either on evaluating a specific type and
aspect of an application or are application implementa-
tion and technology specific, e.g. TPC-W9, TPC-C10, or
SPECjbb201311. All these tools and languages focus on the
creation of HTTP-based workloads in order to evaluate the
performance of monolithic Web and Cloud applications.

In this publication we focus on workload characteriza-
tion and analysis of the database layer in order to optimize

8Faban: http://faban.org
9TPC-W Benchmark: http://www.tpc.org/tpcw/
10TPC-C Benchmark: http://www.tpc.org/tpcc/
11SPECjbb2013: http://www.spec.org/jbb2013/

performance. There are several database benchmarks and
data generators for distributed data benchmarking available.
Malgen7 provides a set of scripts that generate large
distributed data sets based on probabilistic workload gener-
ation techniques, which are suitable for testing and bench-
marking software designed to perform parallel processing of
large data sets. SysBench12 is a system performance bench-
mark for evaluating operating system parameters in order
to improve database performance under intensive load. The
proprietary database performance testing tool Benchmark
Factory13 provides database workload replay, industry-
standard benchmark testing, and scalability testing. The
Wisconsin Benchmark is for evaluation of performance of
relational database systems [17]. The TPC-H Benchmark1

illustrates decision support systems handling large volumes
of data and using queries with high degree of complexity.
The open source database load testing and benchmarking
tool HammerDB14 comes with built-in workloads for TPC-
C and TPC-H and supports various relational databases
such as Oracle, PostgreSQL, and MySQL. We based our
workload characterization and analysis on TPC-H, but
we plan to broaden the scope by incorporating additional
database benchmarks and performance testing tools.

Nowadays resource consumption monitoring techniques
and performance metrics are used to support bottom-up
analysis of the workload and in particular the workload
evolution analysis. Van Hoorn et al. present the application
performance monitoring and dynamic software analysis
framework Kieker [18] for continuous monitoring of concur-
rent or distributed software systems. Efficient management
of data-intensive workloads in the Cloud that are generated
by data intensive applications, e.g. MapReduce of Apache
Hadoop, require to minimize the number of computations
and network bottlenecks. Therefore, Mian and Martin
propose a framework for scheduling, resource allocation,
and scaling capabilities in the Cloud [19]. In the scope of
IaaS solutions, a family of truthful greedy mechanisms is
proposed in [20] as an approach to optimally provision and
allocate VMs in the Cloud. Further optimization techniques
focusing on reducing resources reconfiguration costs and
maximizing the resource utilization are investigated in [21].
VScaler [22] is proposed as an autonomic resource allocation
framework for fine granular VM resource allocation. The
systematic comparator of performance and cost of Cloud
providers CloudCmp guides Cloud customers in selecting
the best-performing provider for their applications [23].
Schad et al. analyze how the performance varies in EC2
over time and across multiple availability zones, using
micro benchmarks to measure CPU, I/O, and network,
and utilizing a MapReduce application in order to de-
termine the impact of data intensive applications [24].
The above approaches use one of the analysis approaches
(either top down or bottom up) and do not support the
(re-)distribution of the application. In our work we propose
to use a combination of these techniques in order to enable
application (re-)distribution.

12SysBench: http://sysbench.sourceforge.net
13Benchmark FactoryTM: http://software.dell.com/products/

benchmark-factory/
14HammerDB: http://hammerora.sourceforge.net
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VI. Conclusions and Future Work

The previous sections motivated the need for a combi-
nation of top down and bottom up application workload
analysis approaches in order to support the dynamic
(re-)destribution of an application topology to cope with
varying demand. The discussion was scoped on the database
(persistence) layer of the application, and the TPC-H
benchmark was used as the basis of our experimentation.
In particular, the load generated by the benchmark was
characterized according to its computation and network
consumption and the resulting categorization of the bench-
mark queries were used to generate synthetic application
workloads. These workloads were in turn used to emulate
the behavior of an application with its database across
different solutions (on-premises, on a DBaaS solution, on
different IaaS solutions). The results show that depending
on the distribution of the queries in the load, application
performance can increase or decrease significantly with the
application distribution topology used.

Based on these results we then proposed an application
analysis and distribution process which can be used to
enable application (re-)destribution based on dynamic anal-
ysis of the workload. Implementing the toolchain required as
part of this process and creating a comprehensive framework
for application distribution support is our main task in
ongoing work. As discussed in the previous sections, a
number of tools are already in place both for workload
analysis, as well as application topology management. In
this respect, our focus is on integrating them, rather
than developing them from scratch, except from when
deemed necessary, as for example in the case of defining a
performance-aware deployment language and container for
the Cloud. Furthermore, evaluating the performance of the
overall process is indeed necessary when (re-)distributing,
i.e. (re-)deploying the different application components,
in a Cloud infrastructure. Utility-based analysis both at
provider and consumer level to investigate the relationship
between user preferences and application performance is
also part of this effort, as well as identifying and integrating
appropriate monitoring and analysis tools and approaches.
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