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Abstract—One of the key strengths of service oriented 

architectures, the concept of service composition to reuse and 

combine existing services in order to achieve new and superior 

functionality, promises similar advantages when applied to 

resources oriented architectures. The challenge in this context is 

how to realize service composition in compliance with the 

constraints defined by the REST architectural style and how to 

realize it in a way that it can be integrated to and benefit from 

existing service composition solutions. Existing approaches to 

REST service composition are mostly bound to the HTTP 

protocol and often lack a systematic methodology and a mature 

and standards based realization approach. In our work, we 

follow a comprehensible methodology by deriving the key 

requirements for REST service composition directly from the 

REST constraints and then mapping these requirements to a 

standard compliant extension of the BPEL composition language. 

We performed a general requirements analysis for REST service 

composition, defined a meta model for a corresponding BPEL 

extension, realized this extension prototypically and validated it 

based on a real world use case from the eScience domain. Our 

work provides a general methodology to enable REST service 

composition as well as a realization approach that enables the 

combined composition of WSDL and REST services in a mature 

and robust way. 

Keywords—REST; service composition; BPEL; eScience; 

simulation workflow 

I. INTRODUCTION 

The Service Oriented Computing (SOC) paradigm 
introduces the concept of services as encapsulated and loosely 
coupled components that are the basic building blocks of 
complex software systems [1]. A service can be characterized 
as some functionality offered at a certain network address. One 
core concept of service oriented computing is to reuse and 
combine existing services to realize new and possibly more 
complex functionality. This approach is well known as service 
composition. There exist several kinds of service composition 
approaches, from automatically created compositions based on 
semantic matchmaking [2] over declarative compositions [3] to 
process model based compositions [4]. One of the most 
widespread service compositions languages is the Web Services 
Business Process Execution Language (BPEL) [5]. 

Besides the success of service oriented architectures, a new 
paradigm for building distributed systems is gaining more and 
more relevance. Representational State Transfer (REST) is an 
architectural style originally defined to document the design 

rationale behind the architecture of the World Wide Web 
(WWW) [6]. The REST architectural style is realized by the 
WWW, a distributed system of interconnected documents that 
are meant to be consumed by humans. For quite some time, 
there is a noticeable movement towards applying the REST 
principles also to the design and realization of services, i.e. to 
build distributed systems of interconnected resources that are 
meant to be accessed by software rather than by humans. 
Realizing services based on the basic techniques of the WWW, 
mainly the HTTP protocol, seems to attract service designers 
and developers due to its perceived simplicity, especially when 
compared to service oriented architectures implemented using 
the WS* standards [7]. In addition to that, the rise of the cloud 
computing paradigm has significantly increased the need for a 
simple but powerful means for remote resource access. The 
NIST definition of Cloud Computing [8] explicitly states, that 
cloud services have to enable “broad network access”, i.e. they 
have to provide an interoperable access mechanism suitable for 
heterogeneous client types. In practice, this requirement is 
often realized by providing REST interfaces. 

Considering the ongoing dissemination of REST services, 
the question arises if and how the concept of service 
composition can be adapted to resource oriented architectures 
based on the REST architectural style. Having a look at 
literature, there is apparently a true need for REST service 
composition. In the field of automated cloud service 
provisioning, there exist several approaches that define the 
provisioning logic of complex service topologies using process 
models, i.e. service compositions [9] [10]. As the provisioning 
of such service topologies inherently requires interacting with 
the interfaces of cloud services, the provisioning process 
consequently needs to be able to interact with REST services. 
Another domain that successfully applies service composition 
concepts is the field of eScience. The execution of scientific 
experiments can be simplified and automated by modeling an 
experiment as service composition and executing it based on 
workflow technology [11] [12]. In addition to the use of 
service compositions, REST services are also disseminated in 
the eScience domain [13] [14]. Consequently, in the eScience 
domain there is a need for REST service composition. 

Service oriented architectures and resources oriented 
architectures are based on different paradigms. Adapting the 
concept of service composition defined in SOA to REST based 
systems therefore requires a thoroughly analysis. In this paper 
we contribute (1) a detailed analysis of the REST architectural 
style with respect to service composition. Based on that, (2) a 



meta model for REST service composition as an extension of 
the BPEL composition language is designed. We also 
contribute (3) a prototypical implementation of this extension 
and (4) validate it with a real world use case from the eScience 
domain. 

The rest of the paper is organized as follows. Section II 
discusses the REST principles with respect to service 
composition and infers a set of corresponding requirements. In 
section III, the BPEL composition language is introduced and 
already existing solutions for REST service compositions with 
BPEL are shortly discussed. Section IV presents our meta 
model for REST service composition with BPEL together with 
the methodology it was designed with. The realization of the 
BPEL extension and the validation are shown in section Fig. 3. 
The paper finishes with an overview about relevant related 
work in section VI and conclusion and outlook in section VII. 

II. SERVICE COMPOSITION FOR REST 

REST is an architectural style for distributed hypermedia 
systems [6]; its definition is based on a set of constraints. Any 
architecture compliant with these constraints can be called a 
REST (or RESTful) architecture. In this section, we will give 
an overview about REST, focusing mainly on the aspects 
relevant in the context of service composition. In addition, we 
will discuss for each REST constraint, which requirements 
relevant for REST service composition can be deduced from it. 

Strictly speaking, the term “service composition” cannot be 
applied to REST architectures. Whereas the main entities in 
service oriented architectures are services providing a set of 
operations, in REST architectures the concept of a service does 
not exist at all. Instead of services, the main entities in REST 
are resources. The interface to interact with such resources, i.e. 
the operations available, is the same for all resources and 
predefined by the so called uniform interface. Whereas services 
differ in terms of the interface, i.e. the operations they offer, 
resources differ in terms of the resource representations they 
provide. Resources can, nevertheless, also be interpreted as 
services. Following this interpretation, REST services all 
provide the same basic operations (the uniform interface), but 
each “service” may provide different variants of these 
operations, namely differing in request and response 
parameters. For reasons of comprehensibility, in the following 
we will still use the term “REST service composition”, 
although we are aware, that the terms “resource composition” 
or “resource interaction composition” are more exact. 

As starting point for the following overview about the 
REST principles we choose the term the acronym REST is 
based on, “Representational State Transfer”. Although this 
does not cover all aspects relevant in REST, it combines two 
main aspects, the concept of resource representations 
(“Representational”) and the concept of state transfer. 

Understanding the concept of representations requires to 
first introducing the concept of resource orientation. As already 
discussed before, in REST architectures all interaction is about 
accessing resources. The interaction with a resource, i.e. 
reading or writing a resource, is abstracted by the concept of 
representations. Each resource is available in one or more 
representations. When a resource is read, not the resource itself 

but a representation of the resource is retrieved. Just the same, 
when a resource is created or updated, a representation of the 
resource is given. The concept of resource representations can 
be easily illustrated using a simple example from the World 
Wide Web (WWW). An article of a blog is a resource available 
in the WWW. However, when accessing this resource, i.e. 
when opening the article in a web browser, not the resource 
itself but a HTML representation of this resource is shown. 
This decouples clients accessing the resources from any details 
how and in which format the resource is internally stored at the 
server. The representation(s) of a resource can be adjusted to 
the needs of the clients without changing the internal resource 
format. 

The concept of resource representations introduces the need 
of content negotiation. As mentioned before, a resource can be 
provided in multiple representations. Similarly, a client 
accessing a resource may be able to handle some 
representations while it cannot handle others. Therefore, when 
a client accesses a resource, a matching representation 
supported by both, client and server, has to be returned. The 
process of determining such a matching representation is called 
content negotiation. There exist two types of content 
negotiation, client driven content negotiation and server driven 
content negotiation. In server driven content negotiation, the 
client sends a request to the server and also provides, which 
representations it will accept as response. The server is then 
responsible to select an appropriate representation to return, if 
available. In client driven content negotiation, the client sends a 
request to the server. The server then responds with a list of all 
available representations. In this case, the client is responsible 
to select an appropriate representation and can then retrieve it 
from the server with a second request. 

To support the concept of resource representations, a REST 
service composition has to support content negotiation 
(requirement 1). More precisely, it has to be able to explicitly 
specify the type of representations and it has to provide means 
to handle different representations. 

In REST, access to resources is enabled by the uniform 
interface, a well-defined interface introducing interaction 
transparency. Another constraint important in the context of 
resource access is the concept of uniquely identifiable 
resources. The combination of these two concepts, the uniform 
interface and unique identifiers, enable caching, which is one 
of the main strengths of REST and one of the main reasons for 
the scalability of REST compliant system. 

In order to fulfill the constraints of the uniform interface 
and unique identifiers, a REST service composition has to 
support both, the uniform interface (requirement 2) as well as 
addressing resources by their unique identifier (requirement 3). 

As an additional step towards loose coupling between client 
and server, the REST architectural style demands resource 
representations to follow the Hypertext as the Engine of 
Application State (HATEOAS) constraint. This constraint 
implies that the representation of a resource contains metadata 
describing possible interactions with the resource as well as its 
relations to other resources. These relations are typically 
provided as links. Following the HATEOAS constraint, all 
interaction with a resource is driven by the resource 



representation and not by any other “out of bound” 
mechanisms. 

There can be three requirements inferred from the 
HATEOAS constraint. As interaction parameters (e.g. query 
parameters) and also the set of available resources are 
determined at runtime, a REST service composition has to 
enable dynamic partners (requirement 4) and dynamic 
parameters (requirement 5). In addition, when accessing a 
resource, not only its data but also the associated metadata has 
to be accessible (requirement 6). 

The state transfer constraint denotes, that a REST 
compliant server is not allowed to keep any application state. 
All interaction related data, i.e. the state of an interaction, has 
to be contained in each message sent to a server. As a 
consequence, the state of an interaction (or session) has to be 
managed by the client rather than the server. This constraint 
also contributes to the scalability of REST systems as it avoids 
server affinity and eases horizontal scaling. 

The state transfer constraint provides the last requirement 
for REST service composition. A REST service composition 
has to provide means to manage the state of an interaction over 
several single interactions (requirement 7). 

The set of constraints introduced and discussed so far is not 
complete. Another aspect of REST is a layered client-server 
based architecture. However, this constraint does not add any 
requirements to service composition. The code on demand 
constraint is defined as optional and not considered here. 

III. THE BPEL COMPOSITION LANGUAGE 

Instead of defining a new composition language for REST 
services from scratch, we aim at reusing an existing, mature 
and standardized composition language. This approach offers 
several advantages. We can keep and furthermore use existing 
language features and we can benefit from existing tooling, for 
example for modeling, execution, monitoring or auditing. To 
summarize, the extension of an existing language rather than 
defining a new one promises to “obtain much with little effort”. 

A. The BPEL composition language 

The Web Services Business Process Execution Language 
(BPEL) is the dominating service composition language in the 
field of web services. It has been standardized by the OASIS 
consortium1 and is widely adopted in research as well in 
industry [15] [16]. The BPEL standard defines XML based 
syntax as well as the corresponding execution semantics for 
process based web service composition. 

BPEL provides means to define complex interactions with 
multiple web services, i.e. to call web service methods as well 
as to receive web service calls. A BPEL process in turn is 
offered as a web service, this is referred to as a recursive 
composition model. BPEL combines two different process 
modeling paradigms. On the one hand, it supports a block 
oriented modeling approach combining process activities and 
control flow structures in an interlaced way. On the other hand, 
it also allows modeling a process following a graph based 
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approach, i.e. to connect process activities with control flow 
connectors. 

Data handling inside a process is supported by variables 
and the assign activity. The type system of BPEL is by default 
based on XML schema and variable definitions consequently 
refer to XML schema types. The assign activity provides one 
or more data manipulation instructions that prescribe data 
transfer between variables. Accessing and identifying the 
relevant parts of variables is realized using XPath expressions. 

BPEL offers several communication activity types for 
exchanging messages. The receive and the pick activity 
represent the reception of an incoming message by a BPEL 
process. A receive activity accepts exactly one message type 
whereas the pick activity can handle multiple message types. A 
pick activity can be also described as a polymorphic receive. 
For the purpose of sending a message, BPEL offers the invoke 
activity and the reply activity. The reply activity is used to send 
a message in response to a request message received by a 
previous receive activity. The invoke activity models calling a 
web service, i.e. sending a request message and afterwards 
receiving a response message. 

In addition to the communication activities introduced 
before, BPEL offers further communication related modeling 
constructs. MessageExchanges connect a receive activity of a 
process with the corresponding reply activity; they manage 
request and response message pairs inside a process. 
PartnerLinks describe the interaction between a process and a 
web service in terms of which interfaces they provide each 
other. This is especially important in asynchronous interaction 
scenarios where both interacting partners call each other. In 
such scenarios both partners, the process as well as the web 
service, offer an interface the other partner depends on. 
CorrelationSets are used to unambiguously assign incoming 
messages to a process instance. A correlationSet basically 
prescribes which part of an incoming message has to be 
matched with which part of a variable of a process instance.  

Besides communication activities, BPEL offers several so 
called structured activities describing the control flow structure 
of a process. Each of these activities contains one or more child 
activities and prescribes in which order they have to be 
executed. The sequence activity models the sequential 
processing of its child activities. The if activity is used to 
describe conditional behavior, the execution of its child 
activities is bound to conditions. The while and the repeatUntil 
activities describe repetitive execution, i.e. loops. Similarly to 
the while and the repeatUntil activities, the forEach activity 
can be used to iteratively execute its child activities. 
Additionally, it also supports the parallel execution of its child 
activities. A common use case for the forEach activity is the 
processing of a set of data, e.g. an array of data. Whereas the 
structured activities discussed so far follow the block oriented 
modeling paradigm, the flow activity introduces a graph based 
modeling approach. A flow activity contains a set of child 
activities together with a set of links. Each link represents 
conditional control flow between two activities, it defines one 
source activity, one target activity and an optional transition 
condition. A flow activity is typically used to model parallel 
control flow structures. 



BPEL provides further language elements targeting error 
handling and robustness. Scopes in general define a common 
context for the elements they contain. Variables defined inside 
a scope are bound to this scope, in terms of visibility as well as 
existence. Scopes can also have so called handlers attached. 
Event handlers are used to handle events, i.e. they model 
control flow that is outside of the regular control flow of the 
process. Fault handlers prescribe how to react to faults that 
may occur inside a scope. Whenever a fault occurs, it is 
forwarded to the surrounding scope. When a matching fault 
handler is defined, it is executed; otherwise, the fault is 
propagated to the next surrounding scope. Through the 
definition of compensation handlers BPEL supports long 
running business transactions [17]. Before the fault handler of a 
scope is executed, the compensation handlers of all contained 
activities are executed in their reverse execution order. This 
allows performing domain specific undo or cleanup steps in 
case of a fault. 

BPEL is thoroughly designed to be extensible. A BPEL 
XML document can be freely extended by any XML element 
outside of the BPEL namespace. Such extensions can be 
declared as optional or as mandatory, i.e. it can be declared if a 
BPEL engine can ignore such extension elements or if it has to 
support them. Besides this very general extensibility, there are 
two more specific extension capabilities explicitly included in 
the BPEL language. The assign activity can contain so called 
extensionAssignOperation elements providing additional data 
handling functionality. In addition, BPEL also defines an 
extensionActivity. This activity acts as a placeholder for custom 
activity types. If declared as optional, a BPEL engine may 
ignore these activities, otherwise it has to support them, i.e. it 
has to be able to execute them. 

B. Existing Approaches for REST Composition with BPEL 

Although BPEL is tightly coupled to WSDL based web 
services, typically realized as SOAP services, it is in parts 
possible to use BPEL to interact with REST services. In the 
following we will give a short overview about the most 
relevant approaches and show, why they do not provide an 
appropriate solution for REST service composition. 

BPEL relies on the Web Services Description Language 
(WSDL) 1.1 as description language for service interfaces [18]. 
WSDL 1.1 allows defining a HTTP binding, i.e. to map the 
operations of a web service to HTTP calls. Such a binding is 
static; the addresses of all resources have to be known in 
advance. There is only very limited support for content 
negotiation, and the mapping of a resource providing several 
methods to a corresponding WSDL descriptions results in an 
excessive set of bindings and ports to be defined. 

The Apache Orchestration Director Engine (ODE)2, an 
open source BPEL engine, defines a custom extension for 
HTTP binding in WSDL 1.1. This extension supports enhanced 
manipulation of resource URIs at runtime, but the host has to 
be furthermore known in advance. The mapping of HTTP 
interactions to WSDL operations results in cleaner WSDL 
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descriptions. There is however no improvement regarding the 
limited support for content negotiation. 

The successor of WSDL 1.1, the WSDL 2.0 standard [19], 
provides an enhanced HTTP binding that in parts overlaps with 
the WSDL 1.1 extensions defined by the ODE project. In 
addition, it provides basic support for content negotiation 
through the definition of input and output serialization. The 
main drawback in context of BPEL is that the BPEL language 
is closely bound to WSDL 1.1 and does not support WSDL 2.0 
at all. 

A commonality of all approaches discussed so far is, that 
all aspects related to REST are not visible in the composition 
language itself. The enabling of REST service composition is 
realized as a kind of deployment configuration or service 
binding. In contrast to that, our approach for REST service 
composition with BPEL explicitly defines REST interaction 
capabilities as part of the composition language. 

IV. A BPEL EXTENSION FOR REST SERVICE COMPOSITION 

In this section we present an extension to the BPEL 
composition language that enables the combined composition 
of WSDL based web services and HTTP based REST services. 
A main feature of the extension is standard compatibility, i.e. 
the resulting BPEL processes are still standard compliant 
BPEL processes. To achieve this goal, we build on extension 
capabilities already defined in the BPEL language, namely 
extension activities. In the following, we will introduce the 
meta model of the proposed extension activities. After that, we 
will show how these extensions fulfill the general requirements 
to RESTful compositions previously identified in section II. 

A. The Meta Model 

In order to enable the composition of REST services, we 
extend the BPEL composition language with a set of extension 
activities. For each of the main HTTP methods we define a 
corresponding REST extension activity. The meta model of 
these extension activities is shown in Fig. 1 as UML class 
diagram. Classes already defined by BPEL are colored grey; 
everything else is part of the newly defined meta model for 
REST service composition. 

Each REST extension activity inherits from the 
ExtensionActivity class. This class contains the standard 
attributes and elements the BPEL standard defines for each 
activity. For reasons of comprehensibility, the meta model 
depicted in Fig. 1 only shows the optional name attribute. 

The class RESTActivity is the base class for all REST 
extension activities; it contains attributes and elements 
common to each REST extension activity. The host and path 
attributes together identify the resource to interact with. These 
attributes can be provided as literals, i.e. the host or the relative 
path of a URI is predefined by an activity. Instead of 
predefining the URIs of resources, the more common way of 
interacting with REST services is driven by links (as defined 
by the HATEOAS constraint). When a representation of a 
resource is accessed, this representation can contain links 
identifying related resources. Theses links are then used to 
access other resources, i.e. the URI of a resource is in general 



only known at runtime. In the context of REST service 
composition that means that the target URI of a REST 
extension activity is in general not known in advance. It 
typically depends on another REST service interaction 
performed some time before in the same composition. 
Therefore, as shown in the meta model in Fig. 1, each REST 
extension activity can also refer to BPEL variables containing 
the URI of the resource to interact with. 

<variable name=”host” type=”string” /> 

<variable name=”path” type=”string” /> 

… 

<GET host=”localhost:8080” 

     path=”/api_root/”> 

  … 

</GET> 

… 

<!-- read response, fetch next link --> 

<!-- write link data to variables --> 

… 

<GET host=”$host$” path=”$path$”> 

  … 

</GET> 

Listing 1: Resource identification example 

A simple example of both approaches for resource 
identification is given in Listing 1. At first, two string variables 
are defined. The first GET activity accesses a resource with a 
predefined URI, the host as well as the relative path are given 
as literals. After the first GET activity is finished, the retrieved 
data can be read and, depending on the domain logic, a suitable 
link contained in the data can be selected. In our example, we 
assume that the selected link data is then written to the 
previously defined variables host and path. This variables are 
then be used by the second GET activity to identify its target 
resource. As shown in Listing 1, the second GET activity does 
not contain any literals but instead references BPEL variables, 

indicated by the surrounding ‘$’ characters. 

Another commonality between all REST activities is 
defined by the Context class. A context defines data and 
configuration that applies to a set of requests, typically as part 
of an interaction with multiple resources of the same REST 
service. Typical parameters of such interactions are abstracted 
from the underlying HTTP header fields and modeled as 
context attributes (closeConnection, username, password, 
cacheControl). In addition to this, a context also allows to 
define values for arbitrary header fields. Another important 
aspect of a context is that it represents the state of an 
interaction; it acts as a container for state data like for example 
HTTP cookies. REST extension activities that refer to the same 
context share the same interaction state. As shown in the meta 
model in Fig. 1, the context is modeled as BPEL variable. The 
structure of such a context variable is well defined by a given 
XML schema document. Consequently, it can be created and 
manipulated using standard BPEL constructs. 

A simple example for the usage of a context is given in 
Listing 2. At first, a variable named ctx of the predefined type 
rest:context is declared and initialized. It defines username and 
password to be used if an interaction requires authentication 
and it also defines that the underlying HTTP connection should 
be kept open. The GET activity then references the defined 
context using the ref attribute. The following POST activity 
references the same context, i.e. it is executed using the same 
configuration and also using cookie data possibly written 
during the first GET activity. In addition to referencing the 
context ctx, the second activity extends the context by defining 
the value ODE-v2 for the HTTP header field User-Agent. It is 
in general possible to extend or adapt a referenced context on a 
per request base. A context attribute defined inside an activity 
always supersedes the same attribute defined by the referenced 
context variable. 

Fig. 1. A Meta Model for REST Extension Activities 
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<variable name=”ctx” type=”rest:context”> 

  <literal> 

    <context> 

      <closeConnection>false</closeConnection> 

      <username>JohnDoe</username> 

      <password>1337</password> 

    </context> 

  </literal> 

</variable> 

… 

<GET host=”…” path=”…”> 

  <context ref=”ctx” /> 

  … 

</GET> 

… 

<POST host=”…” path=”…”> 

  <context ref=”ctx”> 

    <header name=”User-Agent”>ODE-v2</header> 

  </context> 

  … 

</POST> 

Listing 2: Context usage example 

All REST extension activities shown in Fig. 1 are able to 
return a response entity. To enable further processing of the 
result of request, the response entity is saved to a BPEL 
variable. According to the concept of resource representations 
and content negotiation, a request can possibly return different 
representations of the same resource. Consequently, for each 
possible representation a separate target variable of the 
corresponding data type is needed. In our meta model, this is 
supported by the EntityMapping class. A REST extension 
activity can refer multiple of those mappings. Each mapping 
defines the MIME type it applies to and also references a 
BPEL variable. The referenced variable has to be of a data type 
compatible with the given MIME type. In addition to the 
response entity, each request also returns HTTP header fields. 
These header fields can optionally be written to a BPEL 
variable also defined by the EntityMapping class. This enables 
to arbitrarily process any header fields if needed. If a request to 
a resource results in an error, in HTTP this is signaled by a 
corresponding status code. To be able to handle such faults in 
BPEL, for each request a FaultMapping can be defined. This 
mapping defines which BPEL fault to throw for which status 
code. These BPEL faults can then be handled using standard 
BPEL fault handlers. 

A simple example for response handling is shown in 
Listing 3. At first, two variables are defined. The variable pic is 
of the type base64Binary, it is supposed to contain a picture in 
base64 encoding. The variable desc is of the type string and 

supposed to contain the corresponding description text of the 
picture stored in the variable pic. The GET activity then 
contains two different entity mappings. The first mapping 
defines that when the request returns an entity with the MIME 
type application/octet-stream, the entity data has to be stored in 
the variable pic. However, when the request returns an entity 
with the MIME type text/plain, the entity data has to be stored 
in the variable desc. 

<variable name=”pic” type=”base64Binary” /> 

<variable name=”desc” type=”string” /> 

 

<GET host=”…” path=”…”> 

  <response> 

    <acceptEntityMapping 

       type=”application/octet-stream” 

       variable=”picData” /> 

    <acceptEntityMapping 

       type=”text/plain” 

       variable=”picName” /> 

  </response> 

  … 

</GET> 

Listing 3: Response mapping example 

The concept of resource representations and content 
negotiation does not only affect the handling of responses but 
also the way requests are handled. In contrast to response entity 
handling discussed so far, request entity handling only applies 
to some activities, namely PUT and POST. These are the only 
activities that may contain a request entity; they both inherit 
from the InteractionWithRequestEntity class. Similarly to 
response entity mapping, the request entities may also be of 
different MIME types and therefore stored in different 
variables. In our meta model this is again modeled by the 
EntityMapping class. The only difference is that the mapping 
defines which variable contains the entity representation, in 
contrast to response handling, where the mapping defines 
where to store the entity representation. As already introduced 
in section II, for server driven content negotiation the client can 
define as part of a request what resource representations it can 
handle. The server then tries to find a match between this 
request and the available representations. This content 
negotiation is modeled by the classes EntityAccepted and 
LanguageAccepted. Using EntityAccepted, a client can define 
what representations in terms of MIME types it accepts. 
Similarly, LanguageAccepted allows defining which languages 
are acceptable for response entity representations. Both classes 
allow defining a priority value, which defines an ordering 
between multiple acceptable representations. 



A simple example of request entity handling and content 
negotiation is shown in Listing 4. At first, two variables are 
defined. Both are meant to handle data encoded in base64, in 
this example some image data. The GET activity defines in the 
contentNegotiation element that it accepts data in GIF format 
as well as in JPEG format. The priority values indicate that GIF 
data is preferred. The response element defines corresponding 
entity mappings for each of the defined representations. After 
the GET activity has fetched the image data, it is processed and 
then again accessed by the following POST activity. In our 
example we assume that the GET activity fetched the GIF 
representation. Consequently, the entity mapping inside the 
POST activity defines that the request entity is of the MIME 
type image/gif and provided by the variable gif. 

<variable name=”gif” type=”base64Binary” /> 

<variable name=”jpeg” type=”base64Binary” /> 

 

<GET host=”…” path=”…”> 

  <contentNegotiation> 

    <entityAccepted type=”image/gif” 

                    priority=”0.8” /> 

    <entityAccepted type=”image/jpeg” 

                    priority=”0.2” /> 

  </contentNegotiation> 

  <response> 

    <acceptEntityMapping type=”image/gif” 

                         variable=”gif” /> 

    <acceptEntityMapping type=”image/jpeg” 

                         variable=”jpeg” /> 

  </response> 

</GET> 

 

<!-- process image data --> 

 

<POST host=”…” path=”…”> 

  <requestEntityMapping type=”image/gif” 

                        entity=”gif” /> 

</POST> 

Listing 4: Request mapping and content negotiation example 

B. Discussion 

The overarching methodology the work presented in this 
paper is based on is depicted in Fig. 2. In section II we 

introduced the REST principles relevant for REST service 
composition and then discussed which requirements they 
introduce. This part is shown in the left of Fig. 2. In the 
previous section, we introduced the meta model for a set of 
REST extension activities for BPEL. The right part of the 
figure shows, which parts of this meta model fulfill which 
requirements identified before. In the following, we will 
discuss these relationships in detail. 

The first requirement (R1) demands support for content 
negotiation. In our meta model, this is realized by two different 
entities. At first, the meta model in general represents that 
entity representations are typed. This is modeled by the class 
EntityMapping, which is used by request as well as response 
interactions. Second, for a request, a set of accepted 
representations can be defined, modeled by the class 
EntityAccepted of the meta model. 

The second requirement (R2) is realized by the definition of 
explicit activity types for each method of the uniform interface. 
In our meta model these are the classes GET, PUT, POST and 
DELETE. They represent the main methods of the uniform 
interface defined by the HTTP protocol. 

The requirement (R3) is supported by the common 
attributes host and path that can be defined for each activity 
type. They are used to identify a resource by its URI, a unique 
identifier. These two attributes in addition also fulfill the 
requirements (R4) and (R5). The possibility to define the target 
URI of each request at runtime enables to dynamically select 
the partner, i.e. the resource to interact with. Besides that, it 
also allows influencing the request parameters, as they are also 
included in the URI. 

The requirement (R6) demands the possibility to access 
data as well as metadata. As resource representations are 
mapped to BPEL variables, data is in any case accessible. Meta 
data can be present in two different characteristics. On the one 
hand, the meta data can be embedded in the resource 
representation. In this case, it is also available in a BPEL 
variable. On the other hand, the meta data can be provided as 
HTTP header fields. Again, in our meta model header fields 
and their content are mapped to BPEL variables, they are 
therefore also accessible. 

Fig. 2. Methodology overview 
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The last requirement (R7), the support of state handling 
across multiple interactions, is mainly realized by the Context 
class. As described, it acts as a container for state data. As the 
context is realized as BPEL variable, a composition can contain 
multiple contexts and thereby manage multiple interaction 
states in parallel. This enables modeling compositions 
comprising multiple parallel interactions with different REST 
services, each with its own interaction state. Each activity type 
references exactly one context variable and therefore shares the 
state contained in the corresponding context. 

To summarize the methodology depicted in Fig. 2, we first 
identified a set of general requirements for REST service 
composition directly from the definition of the REST 
constraints. Our meta model of a BPEL extension for REST 
service composition was then designed to fulfill exactly these 
requirements. Finally, we discussed for each of the 
requirements, by which part of the meta model it is fulfilled. 
Another key feature of our BPEL extension is standard 
compatibility. We solely used explicitly defined extension 
capabilities, i.e. the concept of extension activities and we 
realized other extensions, like for example the context, by 
mapping them to BPEL variables. As a result, the extended 
BPEL language does not lose any of its features but wins the 
additional feature of supporting REST service composition. 

V. REALIZATION AND VALIDATION 

The BPEL extension activities presented in section IV are 
prototypically implemented and integrated into an open source 
BPEL engine, the Apache Orchestration Director Engine 
(ODE), Apache ODE explicitly provides an extension point to 
plug in execution logic for arbitrary BPEL extension activities. 
At deployment time, for each extension activity type contained 
in a BPEL process it is checked, if a corresponding 
implementation is available. If this check is successful, the 

BPEL process can be instantiated and executed. The realization 
of the meta model of our BPEL extension also includes XML 
schema definitions for context and header variables. 

For validation purposes we use the SimTech Scientific 
Workflow Management System (SimTech SWfMS) for the 
modeling, execution and monitoring of BPEL workflows. The 
SimTech SWfMS is based on conventional workflow 
technology and has been specifically adapted to the needs of 
simulation workflows [11]. The workflow engine of the 
SimTech SWfMS is an extended version of Apache ODE, the 
integrated modeling and monitoring tool is based on the open 
source Eclipse BPEL Designer3. 

The use case for our validation is based on the simulation 
application OPAL (Ostwald-Ripening of Precipitates on an 
Atomic Lattice) [20]. OPAL implements a Kinetic Monte 
Carlo (KMC) simulation of the growth process of precipitates 
in copper and has originally been developed as a set of 
monolithic programs written in Fortran. In previous work, the 
OPAL application has been extended with a management 
framework and wrapped as web services [21]. As a result, the 
processing of OPAL based simulations has been modeled as a 
BPEL process executable by the SimTech SWfMS. In addition 
to a web service interface, the extended OPAL application is 
also accessible as REST service. 

To validate our BPEL extension for REST service 
composition, we modeled the composition for an OPAL based 
simulation in BPEL using the extension activities presented 
before. The resulting OPAL process consists of four basics 
steps. At first, a simulation context is created, the input data for 
the simulation is stored in this context and the data is 
preprocessed using the opalbcc and opalabcd services. After 
that, access to the opalmc service, the core KMC simulation, is 

                                                           
3 http://www.eclipse.org/bpel/ 

Fig. 3. SimTech SWfMS showing OPAL simulation with REST composition 



enquired. As soon as enough compute resources are available, 
access to the opalmc service is granted and the KMC 
simulation is started. While the simulation is running, which 
maybe days to weeks, at regular intervals checkpoints with 
intermediate results are generated. In a third step, these 
checkpoint data are analyzed using the opalclus and opalxyzr 
services. After the simulation has finished and all checkpoint 
data are analyzed, in the last step the opalmedia service is 
called. This service creates a simple visualization of the 
simulation data. 

A screenshot of the graphical frontend of the SimTech 
SWfMS is shown in Fig. 3. In the center, an excerpt of the 
described OPAL simulation process is shown. In this part of 
the simulation, a POST request is used to enquire access to the 
opalmc service. This request is followed by a loop containing a 
GET request to regularly check the status of the submitted 
opalmc service request. As soon as the opalmc service is 
available, the loop is finished and the following POST request 
starts the KMC simulation. When a process is modeled, the 
SimTech SWfMS frontend provides a convenient way to 
automatically deploy and start the process. On the right side of 
Fig. 3, the corresponding dialog window is shown, where the 
user can provide input parameters needed by a process. The 
result of the execution of the OPAL process, a visualization of 
the simulation data, is shown in the left part of Fig. 3. 

VI. RELATED WORK 

A first approach towards REST service composition also 
based on the BPEL composition language is presented in [22]. 
Similarly to our approach, separate activities are defined for 
each of the HTTP operations. However, the definition of these 
REST activities is only little abstracted from HTTP. Whereas 
the approach presented in our work supports many features by 
explicit and HTTP independent modeling constructs (e.g. 
caching, access data, content negotiation), many of these have 
to be realized by setting and reading low-level HTTP header 
fields in [22]. In addition to defining a means for composing 
REST services, the author also describes how to realize a 
REST service by using BPEL. Following the recursive 
composition model of BPEL, a process itself is again provided 
as a resource. 

The Bite composition language proposed in [23] focuses on 
the domain of web mashups. It provides a lightweight process 
model and adopts several concepts from scripting languages, 
for example implicitly defined variables and data flow. In order 
to realize mashups of web resources, Bite provides several 
activity types to interact with REST services. However, as Bite 
is defined for the rather special use case of web mashups and in 
addition has several implicit functionality, the REST 
composition capabilities are rather limited compared to the 
requirements defined in our work. 

In [24] the authors focus mainly on the HATEOAS aspect 
of REST and its implication on REST service composition. For 
this purpose, a composition language called Resource Linking 
Language (ReLL) is defined together with a petri net based 
meta model. In ReLL, the links between resources are 
explicitly modeled in the composition and the interaction with 
resources focuses on selecting and following links. While 

focusing on the HATEOAS aspect, the ReLL language does 
neglect data flow capabilities that are in contrast supported by 
our BPEL based approach. As the ReLL language is a research 
prototype, it lacks the maturity and quality of service of well-
established composition languages like BPEL. 

In [25] REST service composition is discussed with focus 
on the application domain of mashups. Similarly to our work, a 
set of requirements for REST composition is defined. In 
contrast to our methodology, no explicit connection between 
the REST constraints and the defined requirements is shown. 
The set of requirements defined in [25] and the set of 
requirements defined in our work have some overlapping but 
also some differences. Where [25] requires dynamic typing as 
well as content negotiation, we do only require support for 
content negotiation (R1) but not for dynamic typing. Instead of 
introducing dynamic typing to BPEL, in our solution we first 
perform content negotiation and then transform non-XML 
representations into corresponding XML representations. In 
addition, we define some requirements that are not, or at least 
not explicitly, covered in [25] (R3, R6, R7). 

VII. CONCLUSION AND FUTURE WORK 

The work presented in this paper is based on the three step 
methodology illustrated in Fig. 2. As starting point, we 
performed a detailed analysis of the REST architectural style in 
relation to service composition. We were able to infer a set of 
seven basic requirements to be fulfilled by REST service 
composition. In a second step, we introduced a meta model for 
REST service composition based on the BPEL composition 
language. Doing so, we did not only aim at fulfilling the 
defined requirements, we also enabled to reuse the already 
available functionality of a standardized, mature and powerful 
composition language and to combine it with new abilities for 
REST service composition. In a third step, we were able to 
show, that all requirements were already fulfilled by the design 
of our meta model. The presented approach for REST service 
composition has been validated based on a real world use case 
from the eScience domain. We realized the BPEL extension as 
part of the SimTech SWfMS and then used it to successfully 
model and execute an OPAL simulation. 

As part of our future work, we plan to evaluate the 
feasibility as well as the advantages and disadvantages of 
different service composition approaches. One fundamental 
aspect that became clear during the validation of our approach 
is the handling of long running operations. When using BPEL 
for the composition of web services, long running operations 
are typically realized as asynchronous operations using a 
callback mechanism. In contrast to that, in REST service 
composition based on HTTP, asynchrony is not supported. 
Therefore, long running operations are typically realized using 
a polling mechanism. This is only one example of how the 
different composition approaches differ, and we think it might 
be promising to investigate this in more detail. 
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