
Institute of Architecture of Application Systems, University of Stuttgart, Germany,

lastname@iaas.uni-stuttgart.de

Context-Aware Cloud Application Management

Uwe Breitenbücher, Tobias Binz, Oliver Kopp,

Frank Leymann, Matthias Wieland

These publication and contributions were presented at CLOSER 2014
CLOSER 2014 Web site: http://closer.scitevents.org

© 2014 SciTePress. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the SciTePress.

@inproceedings{Breitenbuecher2014,
 author = {Uwe Breitenb\"{u}cher and Tobias Binz and Oliver Kopp and
 Frank Leymann and Matthias Wieland},
 title = {Context-Aware Cloud Application Management},
 booktitle = {Proceedings of the 4th International Conference on Cloud
 Computing and Services Science (CLOSER 2014)},
 year = {2014},
 pages = {499--509},
 publisher = {SciTePress}
}

:

Institute of Architecture of Application Systems

http://closer.scitevents.org/

Context-Aware Cloud Application Management

Uwe Breitenbücher, Tobias Binz, Oliver Kopp, Frank Leymann, Matthias Wieland
Institute of Architecture of Application Systems, University of Stuttgart, Stuttgart, Germany

{breitenbuecher, lastname}@iaas.uni-stuttgart.de

Keywords: Application Management, Context, Automation, Cloud Computing

Abstract: The automation of application management is one of the most important issues in Cloud Computing. However,
the steadily increasing number of different services and software components employed in composite Cloud
applications leads to a higher risk of unexpected side effects when different technologies work together that
bring their own proprietary management APIs. Due to unknown dependencies and the increasing diversity and
heterogeneity of employed technologies, even small management tasks on single components may compromise
the whole application functionality for reasons that are neither expected nor obvious to non-experts. In this
paper, we tackle these issues by introducing a method that enables detecting and correcting unintended effects
of management tasks in advance by analyzing the context in which tasks are executed. We validate the method
practically and show how context-aware expert management knowledge can be applied fully automatically to
running Cloud applications.

1 INTRODUCTION

In recent years, Cloud Computing gained a lot of
attention due to its economical and technical benefits.
Especially properties such as pay-on-demand comput-
ing, self-service, and elasticity enable enterprises to
outsource IT (Leymann, 2009). These properties are
key success factors for both Cloud providers as well
as customers. To exploit these properties reliably for
their offerings, Cloud providers have to automate their
internal processes for application provisioning, con-
figuration, and management. Therefore, a lot of tools,
methods, and technologies have been developed in the
past years: Script-centric DevOps communities sup-
port automated configuration management, guidelines
such as the Information Technology Infrastructure Li-
brary (ITIL) (Malone et al., 2008) help applying best
practices to IT service management, and standards
such as TOSCA (OASIS, 2013) enable application
developers to describe applications and their manage-
ment in a portable way—to name a few examples.
However, automating management tasks on complex
Cloud applications becomes a more and more diffi-
cult challenge: The increasing number and diversity
of employed Cloud services on various layers offered
by different Cloud providers leads to a higher risk
of unexpected side effects when they are combined
with each other or integrated with traditional software

components and middleware systems. Additional com-
plexity arises from the heterogeneity of management
technologies: Cloud providers, middleware systems,
and software components often provide proprietary
management APIs, security mechanisms, and data for-
mats (Breitenbücher et al., 2013b). Thus, if a task af-
fects multiple different parts of an application, also the
management technologies of these parts may need to
be integrated. This requires (i) a deep technical insight
in each part and management technology as well as
(ii) an overall understanding of the whole system and
possible impacts to avoid errors. In these scenarios, of-
ten only experts of the respective technology are able
to execute management tasks correctly. However, also
experts reach their limits when a management task has
to be executed on a complex application whose exact
structure and runtime information are not documented:
Unknown relations and dependencies between compo-
nents that directly influence each other’s functionality
lead to a serious management challenge. Even if only a
small operation has to be executed on a single compo-
nent, its impact on other components is not predictable
seriously if the application’s structure is not known
exactly. Thus, if the context, in which a management
task is executed, is not known, understood, and con-
sidered, there is a high risk of unexpected side effects
that may compromise the application’s functionality.
In addition, as executing management task manually

is slow, costly, and error prone, Cloud application
management must be automated to enable Cloud prop-
erties (Fehling et al., 2012; Oppenheimer et al., 2003).
As a result, in case multiple heterogeneous Cloud ser-
vices, software components, and middleware systems
are involved and different management technologies
have to be orchestrated, it’s of vital importance to (i)
apply expert management knowledge, (ii) consider the
context in which tasks are executed, and (iii) automate
management processes to avoid manual errors.

In this paper, we tackle these issues. We present
an approach that enables applying expert management
knowledge for tasks in a certain context automatically
to running Cloud applications. Therefore, we intro-
duce an abstract (i) Context-Aware Application Man-
agement Method and (ii) present a fully automated
realization of this method for Cloud Computing to
validate its practical feasibility. The method intro-
duces Declarative Management Description Models
(DMDM) to describe management tasks declaratively
including their context in a formal model. This en-
ables experts to detect unintended impacts and side
effects of management tasks through analyzing them
in the context in which they are executed. We show
that an individual context analysis is required for many
management tasks on Cloud applications due to the
heterogeneous nature of the involved components and
management technologies—which is not possible hav-
ing traditional imperative models such as workflows or
scripts as these models describe only the task-specific
information but not the context in which they are ex-
ecuted. The presented automated realization of the
method for Cloud application management validates
the method’s practical feasibility. It enables Cloud
providers to offer a variety of different Cloud applica-
tions consisting of heterogeneous components without
the need to employ or educate specialized experts that
have the required technical management knowledge.

The remainder of this paper is structured as follows:
In Section 2, we describe a motivating scenario to
explain the method, which is introduced in Section 3.
Section 4 presents the automated realization of the
method to validate its practical feasibility for Cloud
application management. In Section 5 we give an
overview on related work. Section 6 concludes the
paper and gives an outlook on future work.

2 MOTIVATION

In this section, we describe the problem tackled
by our approach in detail and introduce a motivating
scenario that is used throughout the paper to explain
the presented method and its realization.

2.1 Problem Statement

In this section, we describe the major issues of Cloud
application management and why context considera-
tion is of vital importance in this area. Due to different
functional as well as non-function requirements on
services, Cloud offerings of different providers often
have to be integrated as using a single Cloud provider
for the complete application landscape of a company is
often not possible (Fehling et al., 2012). The focus of
this paper lies, therefore, on the management of Com-
plex Composite Cloud Applications, which consist of
multiple heterogeneous Cloud services, software com-
ponents, and middleware systems of different vendors
and Cloud providers.

The management of such applications is quite dif-
ficult as it requires a deep technical understanding of
the involved components, the dependencies between
them, and their management technologies—which are
most often proprietary implementations providing het-
erogeneous management interfaces (Leonhardt, 2013).
As a consequence, human-induced failures account
for a significant number of outages as human errors
accompany even the simplest system operation and
management tasks (Brown and Patterson, 2001). The
management flexibility recently introduced by Cloud
Computing has additionally increased this effect as
management tasks, such as the provisioning of new
virtual machines, are literally at the systems manager’s
fingertips and often handled completely via proprietary
management interfaces offered by Cloud providers
(Fehling et al., 2012). Due to this management evolu-
tion, human errors are more likely to occur since the
physical infrastructure and thereon deployed software
systems are often virtualized and, therefore, obfus-
cating the actual structure of an application. Thus,
it becomes more and more difficult to consider the
context, in which management tasks are executed, cor-
rectly as application structures, system boundaries,
and dependencies are becoming increasingly blurred
by the Cloud. In addition, due to the lack of interoper-
ability between Cloud services of different providers
and traditional software components, most often com-
plex configuration management is needed to integrate
heterogeneous systems. As a result, executing man-
agement tasks which affect multiple parts of an appli-
cation at once requires special management expertise.
These problems impede automating Cloud applica-
tion management, which is a major requirement for
efficient use of Cloud resources and to avoid man-
ual human errors (Fehling et al., 2012; Oppenheimer
et al., 2003). Therefore, we need a means to capture
and apply context-aware management expertise fully
automatically to running Cloud applications.

2.2 Management Automation

To automate application management, the execution
of management tasks is often described imperatively
using executable processes implemented as work-
flows (Leymann and Roller, 2000) in languages such as
BPEL (OASIS, 2007) or BPMN (OMG, 2011), scripts
such as bash, or programs implemented in a computer
programming language such as Java. Especially the
more and more emerging script-centric configuration
management technologies such as Chef (Nelson-Smith,
2013) are prime examples for this kind of imperative
management descriptions. However, if an application
is crucial to the business of an enterprise, errors that
possibly result in system downtime are not accept-
able. Therefore, before executing such management
processes, they must be verified by experts to ensure
correctness. Unfortunately, one of the most important
problems of this approach is that the context, in which
the management tasks are executed, is not explicitly
described and, thus, not visible in such processes. As
a result, management processes cannot be analyzed
by experts in consideration of the management tasks’
context as only operation calls, service invocations, or
script executions on the directly affected components
are described, but not the surrounding environment:
Experts see only the directly affected part of the ap-
plication, not the whole application structure. Thus,
other application components that may be affected in-
directly, too, cannot be considered in this analysis. For
example, if the database of a Web-based application
shall be replaced by a database from a different ven-
dor, the application’s Web server may require a certain
database connector to be installed for connecting to
the new database. If this dependency is not considered
and handled by the management process replacing the
database through installing the required new connec-
tor, too, the application cannot connect to its database
anymore. This quickly results in system downtimes
caused by errors that are neither easy to find nor to
fix. Thus, the most important requirement to enable
context-aware management is a formal model that de-
scribes both the tasks and the context.

2.3 Motivating Scenario

In this section, we describe the motivating scenario
that is used throughout the paper to explain the pro-
posed method and its realization. The scenario de-
scribes a business application that consists of a PHP-
based Web frontend and a PostgreSQL database. The
frontend should be migrated from one Cloud to an-
other. Because the application evolved over time, it
is currently distributed over two Clouds: The PHP

frontend is hosted on Microsoft’s public Cloud offer-
ing “Windows Azure”1, the PostgreSQL database on
Amazon’s PaaS offering “Relational Database Service
(RDS)”2, which enables hosting databases directly as
a service. The PHP frontend runs on an Apache HTTP
Server (including the PHP-module) which is installed
on an Ubuntu Linux operating system that runs in a vir-
tual machine hosted on Azure. The management task
that has to be executed is migrating the PHP frontend
to Amazon’s IaaS offering “Elastic Compute Cloud
(EC2)”3 in order to reduce the number of employed
Cloud providers. This migration results in two issues
that compromise the application’s functionality if they
are not considered by experts having the knowledge
to recognize the following two problems in advance:
(i) missing database driver and (ii) missing configu-
ration of the database service. To migrate the PHP
frontend, we have to create a new virtual machine on
Amazon EC2, install the Apache HTTP Server and
the PHP-module, and deploy the corresponding PHP
files on it. This works without further configuration
issues. However, connecting the PHP application to
the database is not as easy as it seems to be: Simply
defining the database configuration of the PHP fron-
tend by setting the database’s endpoint, username, and
password is not sufficient. Here, a technical detail
of the underlying infrastructure needs to be consid-
ered: The PHP-module of the Apache HTTP Server
needs different database drivers to connect to different
types of databases. Thus, if the PostgreSQL driver
gets not installed explicitly on the server, the Moodle
PHP frontend is not able to connect to the database.
However, this is not easy to recognize as applications
often employ MySQL databases whose drivers are typ-
ically installed together with the PHP-module. Thus,
installing the required driver for PostgreSQL might be
forgotten. The second issue is even more difficult to
foresee if the administrator is not an expert on Ama-
zon RDS: Databases running on Amazon RDS are
per default not accessible from external components.
To allow connections, a so-called “Security Group”
must be defined to configure the firewall. This group
specifies the IP-addresses which are allowed to con-
nect to the database. Both issues result in breaking
the application’s functionality as the frontend cannot
connect to the database. The reason for both prob-
lems lies in ignoring the context in which the tasks
are executed: First, if an application shall connect to
a certain type of database, the runtime environment
hosting the application must support connecting to this
kind of database. It is not enough to simply set the

1http://www.windowsazure.com/
2http://aws.amazon.com/rds/
3http://aws.amazon.com/ec2/

http://www.windowsazure.com/
http://aws.amazon.com/rds/
http://aws.amazon.com/ec2/

configuration as the underlying infrastructure, i. e., the
context, needs to be considered, too. Second, access-
ing a database hosted on Amazon RDS requires also
more than simply writing endpoint information into a
configuration file as also the firewall of the service has
to be configured. Thus, also for this task, the context
in the form of the infrastructure that hosts the database
has to be considered to recognize the problem.

However, both problems cannot be detected by
experts if the migration is implemented using tradi-
tional approaches such as management workflows or
scripts: The processes would only model the steps for
(i) shutting down the old virtual machine on Azure,
(ii) creating the new virtual machine on Amazon EC2,
(iii) installing the Apache Web Server and the PHP-
module, (iv) deploying the frontend, and (v) setting
the database’s IP-address, username, and password in
the frontend’s configuration. The process neither pro-
vides information about the database’s type nor which
infrastructure is used to host the database—the context
is not described. In addition, if administrators execute
this migration manually, they require a lot of technical
expertise and background information about the differ-
ent APIs and employed technologies. Thus, we need
a means to (i) capture expert management knowledge
for a certain context and (ii) make it applicable fully
automatically in order to help administrators avoiding
unintended mistakes.

3 CONTEXT-AWARE
MANAGEMENT METHOD

In this section, we introduce the Context-Aware Ap-
plication Management Method that provides a means
to consider the context in which management tasks on
application components or relationships are executed.
The method separates between a declarative descrip-
tion of the management tasks to be executed and the
final executable management process. It consists of
six steps which are shown in Figure 1: First, (1) we
capture all runtime information and the structure of the
application to be managed in a formal model which is
extended in the second step (2) by declaring tasks on
components and relations. In the third step, (3) experts
analyze this model for unintended side effects and (4)
adapt the model afterwards if necessary to resolve the
found problems. In the fifth step, (5) this declarative
model is translated into an imperative process model
that is executed in the last step (6) to perform the tasks
on the running application. We explain each step in the
following subsections and start each description with
a short summary of the step in italic text to provide a
compact overview that is detailed afterwards.

Context-Aware
Application Management

Method

1. Capture
Application as
Formal Model

2. Create
Declarative

Management
Description

Model

3. Analyze
Declarative

Management
Description

Model

4. Adapt
Declarative

Management
Description

Model

5. Create
Imperative

Management
Description

Model

6. Execute
Imperative

Management
Description

Model

Figure 1: Context-Aware Application Management Method.

3.1 Step 1: Capture Application as
Formal Model

Describe all components of the application and their
relations in a formal model that specifies their types
and current runtime information.

First, the application to be managed is described as
a formal model. This model captures the application
structure and its state, i. e., all components such as Web
servers, virtual machines, or installed applications, the
relations between them, e. g., database connections,
and their runtime information. The semantics of com-
ponents and relations (we call both model elements
in the following) are described using types, e. g., a
component may be of type “ApacheHTTPServer”, a
relationship of type “SQLConnection”. To enable
a precise definition of the model elements, types
can be inherited: the “ApacheHTTPServer” type is
a subtype of “HTTPServer”. Runtime information
are described as model element properties, e. g., the
“ApacheHTTPServer” has properties “IP-Address” and
“Port” that specify the server’s endpoint. The property
schema is defined by the type of the model element.
This formalization of the running application provides
a detailed, structured, and machine readable means to
document a current snapshot of the application struc-
ture and all runtime information.

3.2 Step 2: Create Declarative
Management Description Model

Create a Declarative Management Description Model
that declaratively describes the management tasks to
be executed on components and relations.

In the second step, the desired management tasks are
described based on the formal model. Therefore, we
introduce the Declarative Management Description
Model (DMDM) that extends the formal model cap-
tured in Step 1 by a declarative description of the
management tasks to be executed on components and
relations of the application. This model declares man-
agement tasks in an abstract manner without technical
implementation details and specifies the target com-
ponent or relation of each task. A DMDM is not exe-
cutable as it describes only what has to be done, but
not how—all technical details are missing. For ex-
ample, a DMDM may declare a “Create” task on a
relation of type “SQLConnection” between a PHP ap-
plication and an SQL database, which means that the
connection has to be established. However, it provides
neither technical implementation details nor specifies
the control flow between multiple different tasks.

3.3 Step 3: Analyze Declarative
Management Description Model

Analyze the impact of tasks in consideration of the
context defined by the components, relations, and
runtime information described by the DMDM.

The DMDM created in the previous step captures a
snapshot of the application and the abstract manage-
ment tasks to be executed. The model describes the
whole context in which tasks are executed by mod-
elling all components and adjacent relations of the
application that are possibly affected. In the third step,
management tasks are analyzed in their context by ex-
perts of different domains to detect unexpected impacts
leading to unintended side effects. DMDMs enable
cooperation between different experts and separate
concerns based on a uniform, structured, and formal
model: Experts on the “ApacheHTTPServer” are able
to detect that the installation of a certain database con-
nector is required, experts on the Amazon Cloud are
able to configure the Security Group in order to allow
connections from the external PHP frontend of the ap-
plication. Thus, DMDMs can be analyzed by multiple
experts of different domains in a cooperative manner.

3.4 Step 4: Adapt Declarative
Management Description Model

Adapt the analyzed Declarative Management Descrip-
tion Model if necessary to solve the analyzed problems.

After the expert analysis, found problems have to be
resolved in order to achieve the desired management
goals. Therefore, the DMDM is adapted in this step by
the respective experts to enable correct execution of the
management tasks. Therefore, components, relations,
and tasks of the DMDM may be added or reconfigured.
For example, the missing database connector found in
the analysis of the previous step is resolved by adding
the task to install the required connector on the Web
Server. Thus, each task was verified in its respective
context in the previous step and gets corrected if nec-
essary in this step. However, if tasks are added or
reconfigured, all tasks have to be analyzed again for
correctness as the context changed by this adaptation.
This may lead to new problems and unintended side
effects on other components or relations that have to
be found. Therefore, Step 3 and Step 4 are repeated
until no new problems are found and all tasks were
considered in the final context. This ensures that also
the adaptations are checked by management experts.

3.5 Step 5: Create Imperative
Management Description Model

Create an Imperative Management Description Model
in the form of an executable process to perform the
management tasks declared in the DMDM.

The verified and adapted Declarative Management De-
scription Model resulting from the previous step de-
scribes the tasks to be performed declaratively in an
abstract manner—only what management tasks have
to be performed, but not how. Thus, the model is not
executable as the technical realization is not described.
Therefore, an executable process model that imple-
ments the management tasks declared in the DMDM
must be created. As this process model describes how
the tasks have to be executed imperatively, we call
these management processes Imperative Management
Description Models (IMDM). An IMDM can be ex-
ecuted using an appropriate process engine and de-
scribes also the control flow and data handling between
the management tasks. The IMDM has to implement
exactly the semantics of the management tasks de-
scribed by the adapted Declarative Management De-
scription Model resulting from the previous step.

3.6 Step 6: Execute Imperative
Management Description Model

Execute the created Imperative Management Descrip-
tion Model to manage the running application.

In the last step, the IMDM is executed to perform the
desired management tasks on the real running appli-
cation. Therefore, a process engine is employed to
run the process. As a result, the changes described
by the tasks are applied to the running application in
consideration of the context. Afterwards, the method
may start from the beginning to execute further tasks.

4 VALIDATION

The presented method enables combining declar-
ative management descriptions, which include all rel-
evant context information to verify the management
tasks, and imperative processes, which are employed
to actually perform the tasks on running applications.
Thus, it combines two different types of Management
Description Models which enables benefiting from
advantages of both worlds. Therefore, the presented
method provides a theoretic basis for enabling auto-
mated context-aware application management. In this
section, we validate the proposed method by showing
a fully automated practical implementation using ex-
isting frameworks. We describe the realization of the
prototype for all steps of the method in the following.

4.1 Formalizing Applications Using
Enterprise Topology Graphs

In Step 1, the application’s structure and runtime in-
formation needs to be captured in a formal model. We
use Enterprise Topology Graphs (ETG) (Binz et al.,
2012) as model language as they are a common way to
capture such information formally. ETGs are directed,
possibly acyclic, graphs that describe the application’s
structure as topology model that contains each compo-
nent as typed node and each relationship as typed edge
between the nodes. Runtime information of nodes and
relations are captured as properties of the respective
element. Thus, ETGs can be used to model the context
in which a management task is executed. As ETGs
support the XML-format, they are machine readable.
Figure 2 shows the motivating scenario as ETG ex-
ample, graphically rendered using the visual topology
notation “Vino4TOSCA” (Breitenbücher et al., 2012).
Each component is depicted as rounded rectangle, re-
lations as arrows between these rectangles, and run-
time information as key-value properties. Element IDs

File: BA_Frontend.zip
URL: 129.78.43.72:8080/BA

Frontend
(PHP)

HttpPort: 8080
Username: Admin
Password: w1j4vg!osb
PHPModule: Installed

(ApacheHTTPServer)

SSHCredentials: [….]
IP-Address: 129.78.43.72

(Ubuntu12.04VM)

User: MyAzureAccount
Password: h94jfds!fg3

(WindowsAzure)

(hostedOn)

(SQLConnection)

Legend:

DBName: BA_DB
DBUser: u4001
DBPassword: a7ju2vf!b

Database
(PostgreSQLDB)

Port: 5432
User: MyAccount
Password: a8u8u29uer8u234

(AmazonRDS)

Figure 2: ETG of the running application.

are undecorated text, element types are enclosed by
parentheses. Binz et al. showed that ETGs of running
applications can be discovered fully automatically us-
ing the ETG Discovery Framework (Binz et al., 2013).
Thus, the first step of formalizing the application to be
managed can be automated by using this framework.

4.2 Automating DMDM Creation Using
Automated Management Patterns

Capturing running application snapshots in such for-
mal ETG models provides a structured means to de-
scribe the context in which a management task is ex-
ecuted. Therefore, to create the DMDM in the sec-
ond step, we use the discovered ETG and annotate
the management tasks to be executed directly at the
affected components and relations of the ETG. In Bre-
itenbücher et al. (Breitenbücher et al., 2013a), we in-
troduced so-called Desired Application State Models,
which provide exactly this type of model for describ-
ing tasks to be executed declaratively in the context in
which they have to be executed based on ETGs.

Figure 3 shows the Desired Application State
Model that describes our migration motivating sce-
nario. The colored circles with the symbols inside rep-
resent the management tasks to be executed in the form
of so-called Management Annotations (Breitenbücher
et al., 2013a). A Management Annotation describes a
task to be performed in a declarative way: It defines
only the type of the task and possible configuration
properties, but not how to execute it. The green colored
“Create-Annotations” with the star inside declare that
the corresponding element it is attached to has to be
created, while the red colored “Destroy-Annotations”

(hostedOn)

(SQLConnection)

Legend:

File: BA_Frontend.zip
URL: 129.78.43.72:8080/BA

Frontend
(PHP)

HttpPort: 8080
Username: Admin
Password: w1j4vg!osb
PHPModule: Installed

(ApacheHTTPServer)

SSHCredentials: […]
IP-Address: 129.78.43.72

(Ubuntu12.04VM)

User: MyAzureAccount
Password: h94jfds!fg3

(WindowsAzure)

DBName: BA_DB
DBUser: u4001
DBPassword: a7ju2vf!b

Database
(PostgreSQLDB)

Port: 5432
User: MyAccount
Password: a8u8u29uer8u234

(AmazonRDS)

File: BA_Frontend.zip
URL:

Frontend
(PHP)

HttpPort: 8080
Username: Admin
Password: w1j4vg!osb
PHPModule: Installed

(ApacheHTTPServer)

SSHCredentials: […]
IP-Address:

(Ubuntu12.04VM)

User: MyAccount
Password: a8u8u29uer8u234

(AmazonEC2)

Figure 3: Desired Application State Model resulting from applying the Automated Management Pattern to the discovered ETG.

with the “x” inside declare that the model element has
to be destroyed. Management Annotations can be also
bound declaratively to non-functional requirements
in the form of policies that must be fulfilled when
executing the task (Breitenbücher et al., 2013c).

Annotating management tasks to ETGs, i. e., creat-
ing a DMDM, can be automated, too: Desired Appli-
cation State Models can be created automatically by
applying so-called Automated Management Patterns
to ETGs (Breitenbücher et al., 2013a). An Automated
Management Pattern captures management expertise
through implementing a transformation that annotates
management tasks in the form of Management An-
notations fully automatically to an input ETG. This
transformation attaches, configures, or removes nodes,
relations, and Management Annotations. In addition,
Automated Management Patterns can be configured
via input parameters. For example, the Desired Ap-
plication State Model shown in Figure 3 is the result
of applying the “Migrate PHP-based Application to
Amazon Pattern”, which was configured to use Ama-
zon’s IaaS offering EC2 for hosting the PHP frontend.
The only manual step is selecting and configuring the
pattern. Thus, Step 2 can be automated, too.

4.3 Context-Aware Task Analyzer

After the Desired Application State Model was created
automatically by applying an Automated Management
Pattern, it has to be analyzed by experts in Step 3 and
adapted if necessary in Step 4. As we aim at automat-
ing the whole method realization, also these two steps

need to be automated. Therefore, we introduce the con-
cept of Context-Aware Management Task Analyzers
(CAMTA) that provides a means to capture context-
aware expert management knowledge in a form that
enables a fully automated application to the Desired
Application State Model resulting out of the previous
step. The notion of CAMTAs is detecting and correct-
ing problems by analyzing the tasks in their context
and adapting the model if necessary fully automatically
without manual interaction. Therefore, a CAMTA con-
sists of two parts: (i) An Annotated Topology Fragment
and a (ii) Transformation, similarly to Automated Man-
agement Patterns. The Annotated Topology Fragment
is a small topology that specifies the management tasks
in a certain context for which the CAMTA is able to
(i) analyze correctness and (ii) may provide expert
management knowledge required to adapt the model if
necessary. The fragment is used for matchmaking of
CAMTAs and Desired State Models: If all elements in
a CAMTA’s fragment match elements in the model, the
Context-Aware Management Task Analyzer is able to
analyze exactly that part. Thus, the Annotated Topol-
ogy Fragment is used to select the CAMTAs that have
to be applied to analyze the DMDM in Step 3 fully
automatically. For adapting the model in Step 4, each
CAMTA implements a context-aware transformation
that transforms the input Desired State Model fully
automatically if necessary. Therefore, the transfor-
mation checks if the tasks specified in the CAMTA’s
Topology Fragment can be executed safely: If yes, the
transformation returns the unmodified model. If not,
the transformation adds or configures components, re-

Resolving Missing Database Driver CAMTA

Transformation Annotated Topology Fragment

(ApacheHTTPServer)

(hostedOn)

(PostgreSQLDB) (PHP)

Figure 4: CAMTA that recognizes the problem of missing
PostgreSQL database connector driver.

lationships, or tasks for correcting the Desired State
Model. Figure 4 shows a CAMTA that analyzes the
tasks of establishing a SQL connection from a PHP
application hosted on an Apache HTTP Server to a
PostgreSQL database. The shown CAMTA is able
to analyze if establishing a SQL-Connection in the
context of a PHP Application running on the Apache
HTTP Server to a PostgreSQL database is possible.
This is expressed by its Topology Fragment on the left.
The transformation shown on the right analyzes the
Desired State Model and finds out that the PostgreSQL
connector driver is missing. Therefore, it adds the cor-
responding elements and tasks to the model. Thus,
based on two CAMTAs, the Desired State Model,
which results from applying the automated migra-
tion pattern in Step 2, gets adapted fully automati-
cally for resolving the issues of the missing database
connector and Security Group configuration. There-
fore, the respective CAMTAs insert two different Man-
agement Annotations into the Desired State Model:
(i) a “ConfigureSecurityGroup-Annotation” that is at-
tached to the AmazonRDS node and an “InstallDriver-
Annotation” attached to the Apache HTTP Server
node. The ConfigureSecurityGroup-Annotation con-
figures the AmazonRDS instance in a way that the
database is accessible by the Apache HTTP Server,
the InstallDriver-Annotation declares that the required
connector for PostgreSQL databases must be installed.

As Desired State Models typically specify multi-
ple management tasks to be executed in the form of
Management Annotations that need to be analyzed in
their context, multiple different CAMTAs are needed
to check the correctness of the whole model. As they
may add or configure elements, all CAMTAs need to
be applied every time after one transformed the model
to ensure that all tasks are validated in the current con-
text that may be changed by formerly applied CAM-
TAs. As soon as input and output model do not change
anymore after applying all matching CAMTAs, Step
4 is finished. The approach is similar to Automated
Management Patterns (Breitenbücher et al., 2013a)
that also use transformations to modify models.

Create Ubuntu12.04VM on AmazonEC2

(AmazonEC2)

User: *
Password: *

SSHCredentials: *
Type: *
…

(Ubuntu12.04VM)

(hostedOn)

Annotated Topology Fragment Workflow

P

Figure 5: Management Planlet that creates an Ubuntu12.04
virtual machine on Amazon EC2.

4.4 Management Plan Generation

After the DMDM was analyzed and adapted for cor-
rectness in Step 3, the resulting model is not executable
directly as it describes the tasks to be performed only
declaratively, i. e., without implementation or control
flow: The Declarative Management Description Model
has to be transformed into an executable Imperative
Management Description Model in Step 5. There-
fore, we employ the management framework presented
by Breitenbücher et al. (Breitenbücher et al., 2013a)
that employs Management Planlets to translate De-
sired Application State Models fully automatically into
executable BPEL workflows. Management Planlets
provide the low-level imperative management logic
to execute the declarative Management Annotations
used in Desired Application State Models and support
defining functional as well as non-functional require-
ments (Breitenbücher et al., 2013c). They serve as
generic management building blocks that can be or-
chestrated to implement a higher-level management
task. A Management Planlet consists of two parts:
(i) Annotated Topology Fragment and (ii) a workflow.
The fragment exposes the Planlet’s functionality and is
used to find Planlets that are capable of executing the
specified management tasks in the specified context.
For example, the Planlet shown in Figure 5 is capa-
ble of executing the Create-Annotation attached to an
Ubuntu12.04VM node if this node has to be hosted
on AmazonEC2. The Planlet’s executable workflow
implements exactly the management logic required to
create this virtual machine on EC2. Based on these
fragments, different Planlets can be orchestrated to im-
plement an overall management plan that performs all
management tasks defined in the Desired Application
State Model. Therefore, the framework employs a Plan

Management
Workflow

Planlet Repository

Plan
Generator

Adapted Desired
Application State Model

c

x

Pattern Repository

Pattern
Applier

Desired Application
State Model

x

CAMTA Repository

CAMTA
Applier

Enterprise
Topology Graph

e

Figure 6: Conceptual Architecture of the method’s realization.

Generator that transforms Desired Application State
Models into executable management workflows. The
whole method realization is shown in Figure 6: A dis-
covered ETG is transformed into a Desired Application
State Model by applying an Automated Management
Pattern. This model is analyzed and possibly adapted
by several CAMTAs. The Plan Generator gets the re-
sulting model as input, searches Planlets that are able
to execute the specified Management Annotations, and
orchestrates the matching Planlets’ workflows to an
overall management workflow. This workflow imple-
ments all management tasks declared by the Desired
Application State Model and can be executed in Step
6 to perform the tasks on the real running application.

4.5 Evaluation of the Realization

The introduced declarative model layer describing
tasks in its formal context that encompasses all ap-
plication components, their relations, and runtime in-
formation enables experts to detect dependencies that
are not visible in traditional imperative management
processes such as workflows. The reason is that these
traditional processes describe only logic for the di-
rectly affected components, not the surrounding envi-
ronment context: Details of the application structure,
i. e., the context, are not contained in such process mod-
els and can, thus, not be analyzed. However, especially
workflow technology and script-centric technologies
such as Chef are well-established technologies used
in systems management due to the provided features
and properties: Workflow technology provides fea-
tures, such as recoverability and compensation mech-
anisms, that enable correct and complete execution
of long running processes, which is often a major re-
quirement (Leymann and Roller, 2000). On the other
side, the script-centric DevOps communities provide
a lot of templates and implementations that can be
used for configuration management without further
modifications. The method enables using these tech-

nologies for the actual execution of the management
tasks in the form of IMDMs. Thus, it enables com-
bining both types of management description models
to support both consideration of context and profiting
from features provided by common technologies.

The presented realization is limited in terms of
completeness: Management tasks in a Desired Appli-
cation State Model are analyzed and possibly adapted
only if there are CAMTAs that provide the required
knowledge for analyzing and adapting the tasks in the
actual context. The approach could be extended by
marking all verified management tasks, i. e., all Man-
agement Annotations that were considered by one or
more CAMTAs. In addition, a description of the task
analysis could be added by CAMTAs to provide in-
formation about the analyzed issues and determined
problems. This may help users to understand the per-
formed analysis and enables drawing their attention to
the tasks that were not considered by the system. These
tasks could be then analyzed manually by experts be-
fore generating the final management workflow.

5 RELATED WORK

Context-aware systems adapt their functionality
and behaviour using context information about the en-
vironment. An often used definition for context was
given by Dey (Dey et al., 2000): “Context is any infor-
mation that can be used to characterize the situation
of an entity, where an entity can be a person, place,
physical or computational object”. An important type
of context information, which is often neglected, is the
state and structure of an application to be managed. In
this paper, we use this type of context information to
verify, configure, and execute management tasks on
applications and their infrastructure. The automated
realization of the presented management method pro-
vides, therefore, the basis to implement Context-aware
Cloud Application Management Systems.

To model and manage context information, many
frameworks have been developed in the past years.
There are simple, widget-like frameworks for sensor
information such as the Context Toolkit (Dey et al.,
2001) and systems that support smart environments
like Aura (Judd and Steenkiste, 2003) or Gaia (Roman
and Campbell, 2000). Different types of development
frameworks, e. g., the framework of Henricksen and
Indulska (Henricksen and Indulska, 2004), and con-
text management platforms, e. g., the Nexus Platform
(Großmann et al., 2005), were developed that aim at
efficient provisioning of context information within a
global scope. These frameworks use Context Models
as an abstraction layer between applications and the
technical infrastructure that gathers the context data.
However, there is no framework that manages context
information for application management in the form
of topology models. The Declarative Management
Description Model introduced in this paper provides a
kind of Context Model that (i) enables to capture the
environment in which management tasks are executed
and (ii) the management tasks themselves described
in a declarative fashion. The context is captured in a
domain-specific data structure in the form of ETGs.
Furthermore, no sensors integration has to be achieved
because the context is detected on the fly using the
ETG Discovery Framework (Binz et al., 2013). Thus,
the context is always up to date and does not have to
be stored or managed using additional tooling.

There are several approaches that enable de-
scribing application topologies including runtime in-
formation and dependencies. Scheibenberger and
Pansa (Scheibenberger and Pansa, 2008) present a
generic meta model to describe resource dependen-
cies among IT infrastructure components. They sep-
arate the static view, which captures functional and
structural aspects, from the dynamic operational view,
which captures runtime information. In contrast to
the employed concept of ETGs in the validation, their
approach enables to model dependencies between com-
ponent properties. The method’s realization may be ex-
tended to capture also such fine-grained dependencies
if necessary that may help experts to analyze possible
impacts of a certain management task. The Common
Information Model (CIM) (Distributed Management
Task Force, 2010) is a standard that provides an ex-
tensible, object-oriented data model used to capture
information about different parts of an enterprise. It
also provides a specification to describe application
structures including dependencies. However, all these
works may be used to formalize the application struc-
ture, dependencies, and runtime information, but they
provide no means to model also the management tasks
to be executed as required to implement a DMDM.

There are several frameworks that employ declara-
tive descriptions to generate workflows such as Eilam
et al. (Eilam et al., 2011), Maghraoui et al. (Maghraoui
et al., 2006), and Keller et al. (Keller et al., 2004). The
first two focus mainly on provisioning of applications
whereas the third also considers application manage-
ment. In general, the proposed method can be applied
to approaches and frameworks that transform declara-
tive descriptions into imperative processes. However,
it must be ensured that the declarative descriptions
(i) provide the whole context and (ii) that the man-
agement tasks to be executed are described by this
model somehow. In a former work (Breitenbücher
et al., 2014), we showed how declarative provisioning
descriptions can be transformed automatically into im-
perative provisioning workflows based on the TOSCA
standard (OASIS, 2013). The application to be pro-
visioned is described as a topology, which models all
components and relations of the application. As the
tasks to be executed are clear (create each application
component and instantiate the relations between the
components) and the whole context of the provisioning
is provided by this model in the form of the application
topology, the presented method can be applied to this
standards-based provisioning approach, too.

6 CONCLUSIONS

In this paper, we introduced an abstract Context-
Aware Application Management Method that enables
applying context-aware management expertise to run-
ning Cloud applications. We showed that separating
models for context-aware analysis and management
execution provides a powerful means to benefit from
advantages of both worlds. Therefore, we employed
abstract Declarative Management Description Models
for describing the context as well as the management
tasks to be executed themselves that are transformed
into Imperative Management Description Models. The
presented method is validated by an automated proto-
typical realization for Cloud Application Management
using existing frameworks and technologies. In future,
we plan to integrate non-functional requirements into
the method and its realization and to apply both to the
OASIS standard TOSCA.

ACKNOWLEDGEMENTS

This work was partially funded by the BMWi project
CloudCycle (01MD11023).

REFERENCES

Binz, T., Breitenbücher, U., Kopp, O., and Leymann, F.
(2013). Automated Discovery and Maintenance of
Enterprise Topology Graphs. In SOCA, pages 126–134.
IEEE.

Binz, T., Fehling, C., Leymann, F., Nowak, A., and Schumm,
D. (2012). Formalizing the Cloud through Enterprise
Topology Graphs. In CLOUD, pages 742–749. IEEE.

Breitenbücher, U., Binz, T., Képes, K., Kopp, O., Leymann,
F., and Wettinger, J. (2014). Combining Declarative
and Imperative Cloud Application Provisioning based
on TOSCA. In IC2E. IEEE.

Breitenbücher, U., Binz, T., Kopp, O., and Leymann, F.
(2013a). Pattern-based Runtime Management of Com-
posite Cloud Applications. In CLOSER. SciTePress
Digital Library.

Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., and
Wettinger, J. (2013b). Integrated cloud application pro-
visioning: Interconnecting service-centric and script-
centric management technologies. In CoopIS, pages
130–148. Springer.

Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., and
Wieland, M. (2013c). Policy-Aware Provisioning of
Cloud Applications. In SECURWARE, pages 86–95.
Xpert Publishing Services.

Breitenbücher, U. et al. (2012). Vino4TOSCA: A Visual
Notation for Application Topologies based on TOSCA.
In CoopIS, pages 416–424. Springer.

Brown, A. B. and Patterson, D. A. (2001). To err is human.
In EASY, page 5.

Dey, A. K., Abowd, G., and Salber, D. (2000). A context-
based infrastructure for smart environments. In Man-
aging Interactions in Smart Environments, pages 114–
128. Springer.

Dey, A. K., Abowd, G. D., and Salber, D. (2001). A con-
ceptual framework and a toolkit for supporting the
rapid prototyping of context-aware applications. Hum.-
Comput. Interact., 16:97–166.

Distributed Management Task Force (2010). Common Infor-
mation Model.

Eilam, T. et al. (2011). Pattern-based composite applica-
tion deployment. In Integrated Network Management.
IEEE.

Fehling, C., Leymann, F., Rütschlin, J., and Schumm, D.
(2012). Pattern-based development and management
of cloud applications. Future Internet, 4:110–141.

Großmann, M., Bauer, M., Hönle, N., Käppeler, U.-P., Nick-
las, D., and Schwarz, T. (2005). Efficiently Managing
Context Information for Large-Scale Scenarios. In
PerCom. IEEE.

Henricksen, K. and Indulska, J. (2004). A Software Engi-
neering Framework for Context-Aware Pervasive Com-
puting. In PerCom. IEEE.

Judd, G. and Steenkiste, P. (2003). Providing contextual
information to pervasive computing applications. In
PerCom. IEEE.

Keller, A., Hellerstein, J. L., Wolf, J. L., Wu, K.-L., and
Krishnan, V. (2004). The champs system: change
management with planning and scheduling. In NOMS,
pages 395–408. IEEE.

Leonhardt, S. (2013). A generic artifact-driven approach for
provisioning, configuring, and managing infrastructure
resources in the cloud. Diploma thesis, University of
Stuttgart, Germany.

Leymann, F. (2009). Cloud Computing: The Next Revo-
lution in IT. In The Photogrammetric Record, pages
3–12.

Leymann, F. and Roller, D. (2000). Production workflow:
concepts and techniques. Prentice Hall PTR.

Maghraoui, K. E. et al. (2006). Model driven provisioning:
Bridging the gap between declarative object models
and procedural provisioning tools. In Middleware,
pages 404–423. Springer.

Malone, T., Blokdijk, G., and Wedemeyer, M. (2008). ITIL
V3 Foundation Complete Certification Kit. Art of Ser-
vice Pty Limited.

Nelson-Smith, S. (2013). Test-Driven Infrastructure with
Chef. O’Reilly Media, Inc.

OASIS (2007). Web services business process execution
language (WS-BPEL) version 2.0.

OASIS (2013). Topology and Orchestration Specification
for Cloud Applications Version 1.0.

OMG (2011). Business Process Model and Notation
(BPMN), Version 2.0.

Oppenheimer, D., Ganapathi, A., and Patterson, D. A. (2003).
Why do internet services fail, and what can be done
about it? In USITS. USENIX Association.

Roman, M. and Campbell, R. H. (2000). Gaia: Enabling
active spaces. In SIGOPS, pages 229–234. ACM.

Scheibenberger, K. and Pansa, I. (2008). Modelling depen-
dencies of it infrastructure elements. In BDIM, pages
112–113. IEEE.

	Introduction
	Motivation
	Problem Statement
	Management Automation
	Motivating Scenario

	Context-Aware Management Method
	Step 1: Capture Application as Formal Model
	Step 2: Create Declarative Management Description Model
	Step 3: Analyze Declarative Management Description Model
	Step 4: Adapt Declarative Management Description Model
	Step 5: Create Imperative Management Description Model
	Step 6: Execute Imperative Management Description Model

	Validation
	Formalizing Applications Using Enterprise Topology Graphs
	Automating DMDM Creation Using Automated Management Patterns
	Context-Aware Task Analyzer
	Management Plan Generation
	Evaluation of the Realization

	Related Work
	Conclusions

