
Cloud Adaptation & Application (Re-)Distribution: Bridging the
two Perspectives

Santiago Gómez Sáez, Vasilios Andrikopoulos
Institute of Architecture of Application Systems,

University of Stuttgart
Stuttgart, Germany

{gomez-saez, andrikopoulos}
@iaas.uni-stuttgart.de

Florian Wessling, Clarissa Cassales Marquezan
Software Systems Engineering,

paluno, University of Duisburg-Essen
Essen, Germany

{florian.wessling, clarissa.marquezan}
@paluno.uni-due.de

Abstract

Cloud developers have to make several decisions
when running their application in a cloud envi-
ronment that may lead to conflicting objectives,
inefficient deployment, and inappropriate or not ex-
isting adaptation strategies. Proper decision-support
tools and processes are therefore needed to make
cloud developers aware of the issues that need to be
considered when deploying and running applications
in the Cloud. Current decision support tools for
cloud developers do not provide a structured and
organized process in which the cloud developers can
systematically check their choices when planning the
deployment, execution, and adaptation of applica-
tions in the Cloud. In this paper, we combine two pre-
vious works and introduce an approach for identifying
the options for (re-)deploying application in cloud
providers infrastructures and the possible strategies
of adaptation that can be used by the deployed
application at runtime. The key contribution is a
support process that synthesizes the two approaches.
We also describe a case study where our support
process is applied and we indicate the alternatives
for application (re-)deployment and adaptation.

1. Introduction

In the recent years the Cloud computing model
has been largely adopted by industry and investi-
gated by researchers. Even without considering the
different types of cloud service offerings currently
available, cloud application developers are faced
with a large amount of options and decisions to
be made. This includes addressing a multitude of

issues such as the partial versus complete migration
of the application to the Cloud model, various appli-
cation deployment options, appropriate adaptation
strategies at runtime, and selection among the same
type service offered by different cloud providers.
Conflicting objectives, inappropriate deployment
decisions, and adaptation strategies that fail to
change during runtime may result in sub-optimal
application performance and unnecessary incurred
costs. Appropriate decision support tools and pro-
cesses are therefore needed to make cloud applica-
tion developers, which are the main stakeholders of
this work, aware of these issues.

Current decision support tools for cloud applica-
tion developers focus on the migration of the appli-
cation to the Cloud environment [1], estimation of
the application load [2] or the costs when deploying
the application [3], [4], among others. However, the
proposed solutions do not provide a structured and
organized process in which the cloud application
developers can systematically check their choices
when planning the deployment and execution of
applications in the cloud. In previous works [5], [6],
we drew attention to the impact and dependencies
of such developer choices, but focused either on
(re)deployment [5] or runtime adaptation strategies
[6] for cloud applications.

In this paper, we combine the previous works
and we introduce an approach for identifying the
options for (re-)deploying applications in a cloud
provider and the possible strategies of adaptation
that can be used by the deployed application at
runtime. The goal of this approach is to support
the cloud application developers to become aware
of the type of choices to be made when planning



and executing applications using cloud offers at
various service delivery models. This work considers
that the cloud application developer has already
decided to migrate the application to the cloud.
The key contribution of this paper is a process that
formalizes the proposed approach. In this paper,
we also conduct a case study based on the Apache
Olio application1. Using this example, we show how
our process is applied, and the results of options to
support the cloud application developer that can
be generated by our process.

The remainder of the paper is organized as
follows. Section 2 summarizes the key ideas from our
previous work. Section 3 introduces our approach.
In Section 4, we present the case study and discuss
the use of our approach. The related work is
summarized in Section 5. Finally, Section 6 describes
our conclusions and future work.

2. Background

Optimal Application Distribution. The expo-
nential growth of cloud service offerings in the last
years has increased the number of alternatives for en-
gineering and re-engineering applications to be par-
tially or completely run in a cloud environment [1].
Towards ensuring portability and interoperability
among different Cloud providers, initiatives like the
TOSCA standard [7] or Cloud Blueprints [8] enable
the application developer to enhance the application
design by providing the means to model which cloud
offering is used to host which parts of the application
stack. The existence of multiple migration types
and cloud offerings broadens the application design
alternatives space that developers must take into
account when utilizing one or multiple cloud services.
However, such space can be narrowed by specifying
non-functional aspects.

Therefore, in [5] we propose a technology-
agnostic formal framework towards deriving the
optimal distribution of the application across cloud
offerings in a flexible manner. We propose to model
the application topology as a typed topology graph
model, which then can be partitioned into a graph
model that depicts the application specific and non-
application specific (and possibly reusable) compo-
nents of the application stack. Application specific

1. Apache Olio Application v2.0: http://incubator.apache.
org/olio/index.data/Olio Overview long.pdf

components are unique and specific for each applica-
tion, e.g., the front- and back-end components of a
Web application, while the application non-specific
components can be, e.g., middleware components
like an Apache Web server or cloud offerings. By
analyzing the typed topology graph model, a set of
viable topologies describing alternative application
deployment scenarios can be inferred.

The inference of multiple viable topologies in-
troduces a multi-dimensional problem related to
evaluating and deciding among such alternatives.
Cloud providers nowadays focus on targeting one
dimension, and provide proprietary tools that cal-
culate and analyze the monetary cost when using
their offered services, such as the Amazon Simple
Monthly Calculator2, and provide configuration
samples for different types of applications and
resources demands. To quantitatively evaluate these
multiple dimensions, in [5] we propose the usage
of utility functions towards building a ranked set
of alternative viable topologies and identifying the
optimal application distribution focusing on non-
functional aspects, e.g., monetary cost, performance,
etc. Optimizing the application distribution towards
balancing the performance-cost trade-off must be
considered as a long-term collaborative task which
focuses on the one hand on the evolutionary aspect
of the application workload, and on the other hand
ensures that the triggered resource adaptations
comply with expected service objectives. Focusing
on three-layered applications, in [9] we identified
the need to partially or completely distribute the
application layers among multiple cloud offerings
to cope with application workloads fluctuations. A
significant performance improvement of the appli-
cation database layer was observed when migrating
its data to IaaS or DBaaS solutions, showing the
latter to have the most improved performance for
different workload characteristics.

Identifying Adaptation Strategies. In general
there are several entities in a cloud environment
that can trigger and be influenced by adaptation
actions. These adaptation actions may interfere due
to direct or indirect relationships among entities.
Indeed, runtime adaptation can be triggered by
the cloud application itself as well as by the in-
frastructure. Considering the point of view of the
cloud application, the actual adaptation action can

2. Amazon Simple Monthly Calculator: http://calculator.
s3.amazonaws.com/index.html

http://incubator.apache.org/olio/index.data/Olio_Overview_long.pdf
http://incubator.apache.org/olio/index.data/Olio_Overview_long.pdf
http://calculator.s3.amazonaws.com/index.html
http://calculator.s3.amazonaws.com/index.html


vary greatly depending on the envisioned applica-
tion distribution. For instance, it is possible to
use a pool of virtual machines between which a
load balancer distributes the incoming traffic [10].
Another approach [11] establishes a framework that
abstracts from the application logic and manages
its deployment inside the reserved cloud resources.
The specification of adaptation triggers and actions
is also supported by commercial solutions such
as Google Compute Engine, Windows Azure and
Amazon EC2, which allow the creation of rules or
policies for load balancing or auto-scaling features.
For the infrastructure point of view, adaptation,
such as redeploying and relocating virtual resources
between physical resources can also be triggered
when e.g., SLA QoS requirements are violated.

As discussed above, a cloud environment is a
complex system made up of many different entities
with different capabilities for changing and adapting.
The specific adaptation capabilities of these entities
can be exploited to support the developers on
identifying adaptation strategies tailored to their
application focus. This is only possible when adap-
tation actions and their interrelations are identified.
This means that the range of options that can be
used for engineering cloud application adaptations is
much broader than just elasticity. In [6] a conceptual
model was introduced to structure the dependencies
among the cloud entities with adaptation capabili-
ties. The goal of this model is to make developers
aware of the possible adaptation options. The model
consists of four layers characterizing the entities of
the cloud environment: The Physical Layer repre-
sents the data centers and physical infrastructure.
The entities associated with the virtual resources
are part of the Virtualization Layer. The Logical
Application Architecture Layer comprises the entities
associated with the topology and structure of the
application and are typically hosted inside the
virtual resources. Finally, the entities related to the
core application logic implementation are enclosed
in the Application Business Logic Layer. In [6] we
present a step towards the identification of potential
adaptation options in the cloud environment.

3. Approach

In the following we discuss how the approaches
discussed in the previous section can be synthesized
into a support process, starting with its require-
ments.

3.1. Requirements

The functional and non-functional requirements
presented in this section aim to provide support
for analyzing the application functional and
non-functional aspects, enable the dynamic
(re-)distribution of application in the Cloud, and
trigger the dynamic adaptation of Cloud resources
utilized by such application.

Functional Requirements.
FR1 Top-down and bottom-up application evalua-

tion: The process must support the analysis and
evaluation of the application topology alterna-
tives both based on previous knowledge and
empirical analysis, and during the application
production phase, by e.g., monitoring.

FR2 Enrichment of the Topology Specification: The
process has to support the definition of appli-
cation topologies in various formats such as
TOSCA [7] or Blueprints [8] and must consider
non-functional aspects specified as extensions
of the previous formats.

FR3 Management and Configuration: Any tool sup-
porting such a process must provide manage-
ment and configuration capabilities for cloud
services from different providers covering all
cloud service and delivery models. Furthermore,
it must provide the means to support the
inference of multiple alternative viable topology
instances which specify the usage of such
services under the different deployment models.

FR4 Support of Different Migration Types: In order
to (re-)distribute an application the process
has to support all Cloud native and non Cloud
native application migration types identified
in [1]: replacement, partial migration, whole
software stack migration, and cloudification.

FR5 Characterization of Adaptation Strategies: The
process must support the characterization of
different adaptation actions that can be used
during runtime for a given application. These
different types of adaptation are related to
the distinct mechanisms for enforcing changes
spread among the cloud layers.

FR6 Independence from Architectural Paradigm: In-
dependence from the architecture paradigm the
application to be (re-)distributed is based on,
e.g., Service-Oriented Architecture [13] or three-
layered architecture [14], must be supported.

FR7 Support & Reaction to Application Resources
Demand Evolution: As the workload of an



application is subject to fluctuations over time,
the process must support the identification of
these fluctuations and react by automatically
and dynamically adapting the cloud resources
based on the resource adaptation constraints
specified by the developer, or by proposing an
alternative application distribution.

FR8 Support of Hardware, Software, and Applica-
tion Characteristics: The process must consider
such characteristics for optimizing the overall
application performance.

FR9 Creation of Workload Behavior Model: The
process has to support the derivation of appli-
cation workloads with different behaviors and
must provide fitting capabilities in order to
create the workload behavior model, e.g., using
probability and statistical techniques [15].

FR10 Multi-dimensional Evaluation and Analysis:
different parameters must be taken into con-
sideration for (re-)distributing an application.
The process must be aware of the developer ob-
jectives, and provide the means to empirically
target a multi-dimension analysis, e.g., focusing
on cost, performance, consistency, etc.

FR11 Application (Re-)Distribution & Adaptation
Utility Calculation: The process must provide
the means to calculate and analyze the value
perceived by the developer of (re-)distributing
the application. Such calculations and analysis
must take into consideration the objectives of
two parties involved in the application distri-
bution, which can be expressed as developer
and cloud provider preferences.

Non-functional Requirements.

NFR1 Security: (Re-)distribution and
(re-)configuration of applications requires
root access and administrative rights to
the application. Any tool supporting the
process should therefore enforce user-wide
security policies and incorporate necessary
authorization, authentication, integrity, and
confidentiality mechanisms.

NFR2 Extensibility: The methodology should be
extensible, e.g., in order to incorporate further
provisioning, deployment, and configuration
approaches and technologies for re-distribution
and runtime adaptation of the application.

NFR3 Reusability: The application topology al-
ternative set analysis, application behavior evo-
lution observation, application (re-)distribution

and adaptation mechanisms as well as under-
lying concepts should not be solution-specific
and technology dependent.

3.2. Process

In this section we propose a process-based re-
alization approach that fulfills the requirements
identified in the previous section. As depicted in
Figure 1, three main participants can be identified
in our process: the Application Developer, the
Distribution Support System, and the Infrastructure
Management System. For the purpose of simplifying
the textual description of the process, we describe in
this section the sequence of mandatory tasks of each
participant separately, and identify the interactions
among them. In all participants’ perspectives the
existence of an explicit specification of a synchro-
nized loop among them can be observed. Such loop
is introduced in [9] as the Collaborative Loop, and
it focuses on the performance evolution aspect of
the application. In this work we aim to broaden
the dimensional analysis of such collaboration by
incorporating a multi-dimensional analysis from
both cloud provider and consumer perspectives.
Our goal is to achieve an optimal and adaptation-
aware distribution of the application that takes into
account the interests of both.

Application Developer. The Application Devel-
oper mandatory functionalities are the ones related
to designing the application architecture and imple-
menting its components, defining the application
topology model, describing the expected runtime
adaptability properties of the application, and select-
ing the application distribution alternatives offered
by a distribution support system, as discussed
in [5]. Optional but recommended functionalities
entail the specification of application non-functional
aspects, e.g., expected performance and monetary
cost, workload behavior and variation (if available),
required deployment regions, etc.

The Model & Enrich Application Topology task
consists of modeling and specifying the α-topology
described in [5]. Such topology may be enriched with
non-functional aspects information which may be
specific to each application profile. The Adaptability
Properties Specification task aims to explicitly make
the application developer aware of automatic re-
sources adaptation supported by the cloud offering.
For example, the Amazon AWS Elastic Beanstalk



D
is

tr
ib

u
ti

o
n

 S
u

p
p

or
t 

Sy
st

em

A
pp

lic
at

io
n

 D
ev

el
o

p
er

In
fr

as
tr

u
ct

u
re

 M
a

n
ag

em
en

t 
Sy

st
em

Analyze App. 
Topology

Topology+ 
Spec.

Model & Enrich 
App. Topology

Retrieve
Alternative 
Topologies*

Rank App. 
Topologies*

Select App. 
Distribution

Distribute 
Application

Benchmark 
App. 

Distribution

Analyze App. 
Distribution

Select 
Topology*

Register 
Topology*

yes

no

yes

no

Receive App. 
Distribution 
Specification

Topology* 
Spec.

Resolve Cloud 
Entities 

Dependencies

Allocate 
New 

Resources

no

Deploy

Trigger 
Resources 

Adaptation

yes

Allocate 
New

Resources

yes

no

Reserve/
Release 

Resources

yes

no

Redeploy

Show 
Alternative 
Topologies*

Monitor 
Evolution

Receive App. 
Distribution 

Selection

Specify 
Adaptability 
Properties

Analyze 
Adaptability 
Properties

Configure 
Adaptation 

Policies

Adaptation
Policy

Interpret App. 
Topology*

Collaboration 
finished?

App. 
Redistribution?

New 
Resources 
Necessary?

Collaboration 
finished?

Fills App. 
Reqs.?

Figure 1: Application Distribution Support Process

allows developers to predefine load balancing and
auto scaling properties. In this task, the adaptation
model has to be specified describing which kind
of changes can be executed during the execution
of an application in the cloud. Furthermore, as
identified in [6], cloud application adaptation is not
necessarily limited to auto-scaling. The adaptation
model therefore captures the different types of
adaptations based on both application and cloud
infrastructure support for changes. Consequently to
facilitating the application description in terms of
its topology and adaptability properties, a ranked
set of concrete application distribution alternatives

is proposed to the developer, depicted as Topologies*
in Figure 1. Such alternatives may contain multiple
cloud services within one or multiple cloud providers.
After visualizing and analyzing the different appli-
cation distribution alternatives (Show Alternative
Topologies*), the application developer selects the
most suitable concrete application distribution and
adaptation options (Select Application Distribution).

The selected alternative is then used by the
Distribution Support System participant to instan-
tiate the application in the cloud environment and
evaluate its performance. The Analyze Application
Distribution task consists of retrieving, interpreting,



and analyzing the results obtained from this ap-
plication evaluation. This information can then be
visualized by the Application Developer participant.
The results from the aforementioned task are then
under the responsibility of the Topology* Selection
task. In case the topology parameters offered suit
the expected behavior and results, such a topology
can be registered as a suitable topology for a
pre-defined set of functional and non-functional
aspects for future usage, e.g., to trigger a dynamic
and transparent application redistribution to meet
application workload demands.

Distribution Support System. This system pro-
vides the application developer with the neces-
sary artifacts to generate application distribution
alternatives, rank them based on the functional
requirements, non-functional aspects, and dynamic
adaptations that cope with the properties predefined
by the developer. Furthermore, the system aims to
provide the means for application developers to
analyze the empirical evaluation of the proposed ap-
plication distributions and adaptation alternatives
indicated by the support system.

In a first step, the enriched application topology
and the adaptability properties defined by the
developer are analyzed in order to infer alternative
topologies and adaptation options sets. The Retrieve
Alternative Topologies* task retrieves the available
cloud services from a cloud offerings knowledge
base provided by this system or by external cloud
providers. The system must explore the alternatives
space, infer, and narrow the distribution alternatives
in order to provide a set constituted by alternative
topologies which fit the requirements and properties
indicated by the developer. The set of alternative
topologies has also a set of adaptation options associ-
ated with it that can be performed given the chosen
topology and respecting the pre-define properties
established by the developers. Consequently, the
Rank Application Topologies task is responsible for
ranking the different alternatives that constitute the
alternative topologies set. Such a ranking must be
performed according to the developer’s preferences,
e.g., using a utility-based calculation approach. The
Distribute Application task realizes the actual distri-
bution of the application. This task depends on the
deployment engine capabilities supported by the the
Infrastructure Management System. It must be able
to materialize the topology specification provided
by the previous task, as well as the automatic
adaptation defined by the developer properties, e.g.,

using a policy attachment-based approach [16].
The multi-dimensional evaluation of the appli-

cation (re-)distribution is performed by the Bench-
mark Application Distribution task. Such evaluation
can be performed using existing solutions to analyze
the different problem dimensions, e.g., by using
benchmarking solutions or simulation frameworks
that focus on performance [17], [18], or mone-
tary costs using a cost calculator, etc. Alternative
topologies, adaptation properties, and evaluation
results can then be registered in the system towards
creating a knowledge base for future use.

Infrastructure Management System. This is
the intermediary support system used for managing
one or multiple cloud infrastructures. Therefore, it
must natively support managing the pulling, release,
and adaptation of cloud entity instances considering
the adaptation properties defined by the developer
and the cloud entities dependencies resolution.

The Interpret Application Topology* task inter-
prets the application topology specification and
generates an intermediate domain specific format
for interacting with the application (re-)deployment
engine. In the parallel step Configure Adaptation
Policies, the system derives the adaptation proper-
ties defined by the developer and creates applica-
tion specific adaptation policies for managing the
underlying resources dynamic adaptations. Con-
sequently to creating the means to interpret the
application distribution and adaptations specified by
the developer, the Resolve Cloud Entities Dependen-
cies analyzes the application topology alternative
instance, derives, and resolves the cloud entities
dependencies. The support system identifies the
dependencies at the different layers (Application
Business Logic Layer, etc.) and the possible runtime
adaptations. If the operation of the application
does not conform with the specified properties,
adaptations will be triggered and resources at
different levels can be used for such adaptation. If
the application has previously been deployed (appli-
cation (re-)distribution case), the underlying cloud
entities instances are adapted, and potential new
cloud entity instances are allocated as task Trigger
Resources Adaptation depicts. If the application
has not been previously deployed, then underlying
cloud entity instances must be allocated in the task
Allocate New Resources.

Consequently to the (re-)distribution conditional
analysis, in the Reserve / Release Resources task,



the cloud entity instances from the infrastructure
must be pulled and reserved for (re-)distributing
the application. The same must be taken into
consideration when releasing cloud entity instances
that were previously used by a concrete application
distribution. If the collaboration is finished, i.e. no
further application redistribution and evaluation
is necessary in the short term, then the system
monitors the application performance and behavior
evolution over time. Relevant metrics are stored
towards deriving behavioral and performance pat-
terns, e.g., based on cost, QoS, application workload
variations, triggered cloud entity adaptations, etc.

4. Evaluation

In this section, we present the evaluation of
the previously presented process-based approach
by means of a case study based on an existing
application, the Apache Olio v0.2. This applica-
tion emulates a Web 2.0 social event application
developed in various programming languages for
purposes of evaluating the performance of web
technologies. In the scope of this work we use
the PHP application release, whose architecture is
constituted by a wide landscape of components and
technologies, such as a MySQL database system,
MemCached for caching purposes, a distributed
storage system, and an external emulated service.
Such variety enables the exploration of multiple
cloud offerings and deployment scenarios, and the
derivation multiple topology alternatives.

Following the Application Cloud Distribution
Support Process, and after modeling and enriching
the application topology with functional and non-
functional aspects, the multiple viable alternative
topologies denoted with dashed lines in the Fig-
ure 2 are derived. For this purpose, an interaction
with a knowledge system capable of maintaining a
registration of available cloud offerings is required.

The alternative topologies space must be ana-
lyzed by the developer, and therefore a ranked list
according to, e.g., developer preferences, must be
generated applying, e.g., utility-based calculations
over the non-functional aspects of the application.
For the sake of simplicity, we assume that the
application developer selects the topology alter-
native constituted by the following components,
cloud offerings and relations: 1) The Apache Olio
Frontend is hosted on-premise, 2) the Geocoder

emulator is deployed in an AWS EC2 m1.medium
VM instance, 3) an AWS ElastiCache instance is
used to mitigate the web pages retrieval from the
application database migrated to 4) an AWS RDS
db.m1.large MySQL database instance.

When the developer selects a topology alterna-
tive, the distributed deployment of the application
in the Cloud is triggered. This list of alternatives is
illustrated in Figure 2, where the dashed circles in
this figure indicate the alternatives of topologies for
the specific application. Together with alternative
topology nodes, we also define adaptations that can
be activated for this example. Two types of adapta-
tion elements can enrich the application topology
model. First, we define the Elastic Adaptation-
aware Specification document, which is used by the
Cloud Platform Management Support participant
in our process to configure the elastic adaptation
actions over the nodes and alternative nodes of the
application topology. In addition, we also define
the Intra-Node Adaptation-aware Specification doc-
ument. This document contains adaptation actions
that are not directly related to elasticity, but
enable changes inside the application node that can
appease problems experienced by the application,
before going for elastic solutions. Examples of
such intra-node adaptation options would be the
reconfiguration of number of connections in the
MySQL server. The Infrastructure Management
System then interprets the topology and configures
the adaptation properties and constraints for the
application and its underlying resources. Focusing
on the provided example, for the AWS ElastiCache
offering, the elasticity features can be configured,
while for the AWS RDS database instance a high
availability can be enabled through the usage of the
multi availability-zones deployment features.

The allocation and adaptation of new provi-
sioned or adapted resources, respectively, can be
performed through the usage of dynamic provision-
ing and deployment of cloud services. After the
complete deployment of the application stack in
a distributed manner, the infrastructure must be
able to provide monitoring capabilities in order
to retrieve and evaluate the evolution of the ap-
plication behavior focusing on the specified non-
functional aspects, e.g., performance in terms of
transactions per second. The resource provisioning
and application deployment phases are followed
by the evaluation of the application distribution
using benchmarking techniques. The Application
Distribution Support system must maintain and



Apache_Olio_App: 
PHP_App

Apache_PHP_Module: 
PHP_Container

Apache_HTTP_Server: 
Web_Server

Win2003Server: 
Win_OS

Apache_Olio_Geocoder_
Emulator: WAR

Apache_Olio: 
Web_App

Apache_Tomcat: 
Servlet_Container

Win7Pro: 
Virt_Win_OS

IBM_zSeries: 
Physical_Server

OlioDB: SQL_DB

MySQL: 
SQL_RDBMS_Server

 consists_of 

consists_of

consists_of

interacts_with

OracleJava7: 
JVM

uses

Ubuntu13.10: 
Virt_Linux_OS

MySQL: SQL_DBaaS

AWS_EC2_m1.large: 
AWS_EC2

AWS_EC2_m1.medi
um: AWS_EC2

AWS_RDS_mediumDB: 
AWS_RDS

hosted_on

alt_hosted_on

AWS_EC2_m1.medium: 
AWS_EC2

Physical Server XaaS Solution DBaaS Solution

Lightpd_Server: 
Web_Server

MogileFS: 
Distributed_Storage

AWS_EBS_Standard: 
Distributed_Storage

AWS_EBS_ProvisionedIOPS: 
Distributed_Storage

uses usesuses

uses

MemCached: 
Web_Cache

interacts_with

AWS_ElastiCache: 
Web_Cache

HP_Cloud_RDB: 
HP_RDB

interacts_with

interacts_with

AWS_Elastic_BeansTalk: 
App_Container

Elastic Adaptation-aware 
Specification

Alternative Topology 
Node

 Topology Node

Intra-node Adaptation-
aware specification

Figure 2: Apache Olio v0.2 Application Topology & Alternatives

provide a pool of heterogeneous benchmarks capable
of covering the different problem dimensions which
must be evaluated and analyzed, e.g., the number
of transactions per second using the Rain workload
generator and the Faban Benchmark as discussed
in [9]. Such evaluation facilitates and provides the
means to empirically and quantitatively analyze
the application distribution from the developer’s
perspective. The realization of such benchmarking
pool and empirical evaluation are future work.

5. Related Work

The creation of the viable topology alternatives
set by exploring the available cloud offerings and
focusing on a set of dimensions usually involving op-
erational expenses has been addressed in other inves-
tigations. Approaches such as Policy4TOSCA [16]
enable the policy-based description of application
non-functional aspects. However, such requirements
describe properties or configuration parameters in
the TOSCA specification which are applied to

the topology instance predefined by the developer,
rather than used to derive the topology alterna-
tives that meet such requirements. The MOCCA
framework focuses on optimizing the application
topology by introducing variability points in the
topology model and using optimization techniques
to find the most suitable cloud offerings [19]. The
CloudMig approach builds on an initial topology [20]
of the application which is adapted through model
transformation based on existing cloud offerings.
The approach in [21] uses a Palladio-based applica-
tion topology model in order to distribute an ap-
plication across different cloud providers aiming at
optimizing for availability and operational expenses.
The comparison and ranking of cloud offerings
focusing on non-functional aspects is supported
through simulation techniques in the SMICloud
Framework [22]. The analysis of cloud deployment
options for migrating software to the Cloud is
also addressed in CDOSIM [23] through simulation.
These approaches do not consider the proposed
dynamic adaptation features, but can be extended
and used as part of the process implementation.



It terms of cloud adaptation, approaches such
as [24] deal with the dynamic adaptation of the
infrastructure resources to both comply with the
application topology and ensure the SLA. Islam et
al. deliver a method for the consumer to measure
elasticity properties of different cloud platforms
[25]. An experimental analysis of scalability and
performance was conducted by Jayasinghe et al. [26].
They focus on the migration of n-tier applications to
IaaS clouds and employed the RUBBoS benchmark
to compare the performance of different cloud
environments (e.g., amount of concurrent users vs.
throughput (requests per second), CPU utilization
and response time). The SMICloud Framework [22]
also considers the deployment and adaptation in
terms of elasticity but ignores the developer in the
decision making process. For identifying options
of adaptation this approach can be extended to
take the developers and their desired application
focus into account. Lee et al. define a quality
model in order to evaluate Sofware-as-a-Service
in cloud environments [27]. The authors define
metrics for quality attributes such as efficiency,
reliability and availability. These metrics could be
used to determine options of adaptation by trigger-
ing actions when a certain threshold is reached.
Suleiman et al. [3] focus on the economics and
elasticity challenges of computing resources in public
cloud infrastructures. They identified metrics in the
literature which describe bottleneck points in terms
of capacity and performance.

The approaches mentioned above do not provide
any models that can be immediately used by the
developer to represent the possible options for adap-
tation. In general they only focus on elasticity as
the one type adaptation and no other types are men-
tioned (e.g., considering the reconfiguration of a load
balancer queuing algorithm). Nonetheless, the met-
rics presented can be used as a base for triggering
and determining specific adaptation actions. Finally,
in the context of the SLA@SOI research project
protocols and engines were developed which provide
mechanisms for adaptation that are triggered by
SLA violations [28]. A modelling language has been
created to express non-functional requirements and
re-negotiation. The triggering of this re-negotiation
resembles some type of adaptation but it does not
specify which actions should be performed. This
deficit is addressed by our approach.

6. Conclusions and Future Work

In this paper we introduced a detailed support
process that allows cloud application developers to
make more informed decisions about deployment
and adaptation aspects of their applications that
builds on bridging and synthesizing previous works.
For this purpose, we defined a process with three
main participants. The Application Developer is
involved in the tasks associated with enriching the
application specification and choosing among the
offered options of distribution and adaptation. The
Application Distribution Support System entails the
alternatives generating options for distribution and
adaptation based on the enriched specification. The
Infrastructure Management System is associated
with the tasks of interacting with cloud providers,
and the effective distribution and adaptation of the
application in the cloud environment.

Future work focuses on fleshing out the individ-
ual tasks identified in the process and connecting
them with the specific techniques and tools that
can be used for their realization. Consequently, the
goal moves to developing a toolkit that will allow
our proposal to be evaluated on the field based on
real world applications.

ACKNOWLEDGEMENTS

This work is funded by the EU FP7 projects
CloudWave (610802) and ALLOW Ensembles
(600792).

References

[1] V. Andrikopoulos, T. Binz, F. Leymann, and
S. Strauch, “How to Adapt Applications for the
Cloud Environment,” Computing, vol. 95, no. 6,
pp. 493–535, 2013.

[2] A. Bankole and S. Ajila, “Cloud client prediction
models for cloud resource provisioning in a multi-
tier web application environment,” in Proceedings
of SOSE’13, March 2013, pp. 156–161.

[3] B. Suleiman, S. Sakr, R. Jeffery, and A. Liu,
“On understanding the economics and elasticity
challenges of deploying business applications on
public cloud infrastructure,” Journal of Internet
Services and Applications, vol. 3, no. 2, pp. 173–
193, 2012.



[4] S. H. Liew and Y.-Y. Su, “Cloudguide: Helping
users estimate cloud deployment cost and perfor-
mance for legacy web applications,” in Proceedings
of CloudCom’12, Dec 2012, pp. 90–98.

[5] V. Andrikopoulos, S. Gómez Sáez, F. Leymann,
and J. Wettinger, “Optimal Distribution of Appli-
cations in the Cloud,” in Proceedings of CAiSE’14.
Springer, June 2014, (to appear).

[6] Clarissa Cassales Marquezan et al., “Towards
exploiting the full adaptation potential of cloud
applications,” in Proceedings of PESOS’14, 2014,
pp. 48–57.

[7] T. Binz, G. Breiter, F. Leymann, and T. Spatzier,
“Portable Cloud Services Using TOSCA,” Internet
Computing, IEEE, vol. 16, no. 3, pp. 80–85, 2012.

[8] M. P. Papazoglou and W. van den Heuvel,
“Blueprinting the cloud,” Internet Computing,
vol. 15, no. 6, pp. 74–79, 2011.

[9] S. Gómez Sáez, V. Andrikopoulos, F. Leymann,
and S. Strauch, “Towards Dynamic Application
Distribution Support for Performance Optimiza-
tion in the Cloud,” in Proceedings of CLOUD’14,
June 2014, (to appear).

[10] M. Miglierina, G. P. Gibilisco, D. Ardagna, and
E. D. Nitto, “Model based control for multi-cloud
applications,” in Proceedings of MiSE’13, 2013, pp.
37–43.

[11] P. Leitner et al., “Cloudscale: A novel middleware
for building transparently scaling cloud applica-
tions,” in Proceedings of the SAC ’12, 2012, pp.
434–440.

[12] M. Papazoglou and W. van den Heuvel, “Blueprint-
ing the Cloud,” Internet Computing, IEEE, vol. 15,
no. 6, pp. 74–79, 2011.

[13] F. Curbera et al., Web Services Platform Architec-
ture: SOAP, WSDL, WS-Policy, WS-Addressing,
WS-BPEL, WS-Reliable Messaging and More.
Prentice Hall International, 2005.

[14] M. Fowler, Patterns of Enterprise Application
Architecture. Addison-Wesley Professional, 2002.

[15] B. J. Watson et al., “Probabilistic Performance
Modeling of Virtualized Resource Allocation,” in
Proceedings of ICAC’10, 2010.

[16] T. Waizenegger et al., “Policy4TOSCA: A Policy-
Aware Cloud Service Provisioning Approach to
Enable Secure Cloud Computing,” in OTM’13
Conferences. Springer Berlin Heidelberg, Septem-
ber 2013, pp. 360–376.

[17] A. Beitch et al., “Rain: A Workload Generation
Toolkit for Cloud Computing Applications,” Uni-
versity of California, Tech. Rep. UCB/EECS-2010-
14, 2010.

[18] W. Sobel et al., “Cloudstone: Multi-platform,
Multi-language Benchmark and Measurement
Tools for Web 2.0.”

[19] F. Leymann et al., “Moving Applications to the
Cloud: An Approach based on Application Model
Enrichment,” IJCIS, vol. 20, no. 3, pp. 307–356,
October 2011.

[20] S. Frey and W. Hasselbring, “The cloudmig ap-
proach: Model-based migration of software sys-
tems to cloud-optimized applications,” Interna-
tional Journal on Advances in Software, vol. 4, no.
3 and 4, pp. 342–353, 2011.

[21] M. Miglierina, G. Gibilisco, D. Ardagna, and
E. Di Nitto, “Model based control for multi-cloud
applications,” in Proceedings of MiSE’13, 2013, pp.
37–43.

[22] S. K. Garg, S. Versteeg, and R. Buyya, “A frame-
work for ranking of cloud computing services,”
Future Gener. Comput. Syst., vol. 29, no. 4, pp.
1012–1023.

[23] F. Fittkau, S. Frey, and W. Hasselbring, “Cdosim:
Simulating cloud deployment options for soft-
ware migration support,” in Proceedings of
MESOCA’12. IEEE, 2012, pp. 37–46.

[24] A.-F. Antonescu, P. Robinson, and T. Braun,
“Dynamic topology orchestration for distributed
cloud-based applications,” in NCCA, 2012, pp.
116–123.

[25] S. Islam, K. Lee, A. Fekete, and A. Liu, “How a
consumer can measure elasticity for cloud plat-
forms,” in Proceedings of ICPE’12. ACM, 2012,
pp. 85–96.

[26] D. Jayasinghe et al., “Variations in performance
and scalability when migrating n-tier applications
to different clouds,” in Proceedings of CLOUD’11.
IEEE Computer Society, 2011, pp. 73–80.

[27] J. Y. Lee, J. W. Lee, D. W. Cheun, and S. D.
Kim, “A quality model for evaluating software-as-
a-service in cloud computing,” in Proceedings of
SERA’09, pp. 261–266.

[28] Wieder, P., Butler, J.M., Theilmann, W.,
Yahyapour, R., Service Level Agreements for Cloud
Computing. Springer.

All links were last followed on June 23, 2014.


