
Institute of Architecture of Application Systems,
University of Stuttgart, Germany,

lastname@iaas.uni-stuttgart.de

A Method to Automate
Cloud Application Management Patterns

Uwe Breitenbücher, Tobias Binz, Frank Leymann

The full version of this publication has been presented at ADVCOMP 2014.

http://www.iaria.org/conferences2014/ADVCOMP14.html

Original Publication Reference:

http://thinkmind.org/index.php?view=article&articleid=advcomp_2014_7_30_20143

© 2014 Xpert Publishing Services

@inproceedings{Breitenbuecher2014_ADVCOMP,
 author = {Uwe Breitenb{\"u}cher and Tobias Binz and Frank Leymann},
 title = {A Method to Automate Cloud Application Management Patterns},
 booktitle = {Proceedings of the Eighth International Conference on Advanced
 Engineering Computing and Applications in Sciences (ADVCOMP 2014)},
 year = {2014},
 pages = {140-145},
 publisher = {Xpert Publishing Services (XPS)}
}

:

Institute of Architecture of Application Systems

http://www.iaria.org/conferences2014/ADVCOMP14.html
http://thinkmind.org/index.php?view=article&articleid=advcomp_2014_7_30_20143

A Method to Automate Cloud Application Management Patterns

Uwe Breitenbücher, Tobias Binz, Frank Leymann
Institute of Architecture of Application Systems

University of Stuttgart, Stuttgart, Germany
{breitenbuecher, lastname}@iaas.uni-stuttgart.de

Abstract—Management patterns are a well-established con-
cept to document reusable solutions for recurring application
management issues in a certain context. Their generic nature
provides a powerful means to describe application management
knowledge in an abstract fashion that can be refined for in-
dividual use cases manually. However, manual refinement of
abstract management patterns for concrete applications prevents
applying the concept of patterns efficiently to the domain of Cloud
Computing, which requires a fast and immediate execution of
arising management tasks. Thus, the application of management
patterns must be automated to fulfill these requirements. In this
paper, we present a method that guides the automation of Cloud
Application Management Patterns using the Management Planlet
Framework, which enables applying them fully automatically to
individual running applications. We explain how existing manage-
ment patterns can be implemented as Automated Management
Patterns and show how these implementations can be tested
afterwards to ensure their correctness. To validate the approach,
we conduct a detailed case study on a real migration scenario.

Keywords—Application Management; Cloud Computing; Man-
agement Patterns; Management Automation.

I. INTRODUCTION

Management patterns are a well-established concept to
document reusable solution expertise for frequently recurring
application management problems in a certain context [1].
They provide the basis for the implementation of management
processes and influence the architecture and design of appli-
cations. The generic nature of patterns enables management
experts to document knowledge about proven solutions for
challenging management issues in an abstract, structured,
and reusable fashion. This supports application managers in
solving concrete instances of the general problem. Applying
management patterns, e. g., to scale or to migrate application
components, to concrete real use cases in the form of running
applications requires, therefore, typically a manual refinement of
the pattern’s abstract high-level solution towards the individual
use case [2]. However, the manual refinement and application
of management patterns is time-consuming and, therefore, not
appropriate in the domain of Cloud Computing since the
immediate and fast execution of arising management tasks
is of vital importance to achieve Cloud properties such as
pay-as-you-go pricing models and on-demand computing [1].
This is additionally underscored by the fact that human
errors are the largest cause of failures of internet services
and large systems [3][4]. Especially the rapid evolution of
management technologies additionally strengthens this effect:
complex management tasks can be executed much easier and
quicker due to powerful management interfaces offered by
Cloud providers that abstract from technical details. However,
this increases the probability of human errors because there
is hardly any notion of the underlying physical infrastructure

and the actual impact the executed tasks may have [1]. As a
consequence, to use the concept of patterns efficiently in the
domain of Cloud Application Management, the (i) refinement of
management patterns for individual use cases as well as (ii) the
execution of the refined solution must be automated since
manual realizations are too slow, costly, and error prone [2].

However, the difficulties of automating management patterns
are manifold. Especially the immense technical expertise
required to refine a pattern’s abstract solution towards a concrete
use case is one of the biggest challenges in terms of automation.
To tackle these issues, we presented the pattern-based Manage-
ment Planlet Framework in former works [2][5][6][7][8], which
enables applying management patterns automatically to concrete
running applications for executing typical management tasks
such as migrating applications or updating components without
downtime [2]. The framework employs so called Automated
Management Patterns, which implement a certain management
pattern in a way that enables its application to various individual
use cases either semi-automatically or even fully-automatically.
However, the implementation of these automated patterns is a
non-trivial task that requires special attention to ensure a high
quality and correctness of their automated executions on real
applications. This issue is tackled in this paper. We present a
method that enables automating Cloud Application Management
Patterns using the Management Planlet Framework introduced
above. We show how management patterns described in natural
text can be analyzed and implemented in a generic way that
enables applying the captured solution logic automatically
to concrete use cases in the form of running applications—
independently from individual manifestations. To guide this
analysis, the method describes how the relevant information
required to automate a management pattern can be extracted
from its textual description. The presented method can be
used to automate various kinds of management patterns, which
enables applying this concept efficiently in the domain of
Cloud Application Management. We prove the feasibility of our
approach by a detailed case study that considers the automation
of an existing migration pattern and various applications of the
presented method to automate other management patterns.

The remainder of this paper is structured as follows: in
Section II, we explain the employed Management Planlet Frame-
work, which provides a generic means to automatically apply
management patterns to individual applications. Section III
presents the main contribution of this paper in the form of a
method to automate existing Cloud Application Management
Patterns using the employed Management Planlet Framework.
We conduct a detailed case study in Section IV to illustrate how
the method can be applied to automate an existing migration
pattern. Section V discusses related work. Section VI concludes
the paper and provides an outlook on planned future work.

140Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

Enterprise
Topology Graph

Management
Workflow

Desired Application
State Model

Plan
Generator

ETG
Discovery

Framework

Automated
Management

Pattern

Figure 1. Architecture and concept of the Management Planlet Framework (adapted from [2][6][7][8]).

II. EMPLOYED MANAGEMENT FRAMEWORK

In this section, we present the employed Management
Planlet Framework [2][5][6][7][8] that provides the basis for
automating management patterns. The framework can be used
for the (i) initial provisioning of applications [7] as well as
(ii) for runtime management of applications [6], which is the
focus of this paper. The framework’s management approach is
shown in Figure 1 and can be summarized as follows: first, the
application to be managed is captured by a formal model called
Enterprise Topology Graph. In the second step, an Automated
Management Pattern is applied that transforms this Enterprise
Topology Graph into a Desired Application State Model, which
declaratively specifies the management tasks to be performed.
This DASM is then transformed into an executable Management
Workflow by a Plan Generator in the last step. In the following,
we explain these steps and the involved artifacts in detail.

A. Enterprise Topology Graph (ETG)

An Enterprise Topology Graph (ETG) [9] is a formal model
that describes the current structure of a running application
including its state. ETGs are modelled as directed graphs that
consist of nodes and relations (elements) representing the
application’s components and dependencies. Each element has
a certain type and provides properties that capture runtime
information. For example, a node may be of type “VirtualMa-
chine” and provides properties such as its “IP-Address”. ETGs
can be discovered fully automatically using the ETG Discovery
Framework [10]. This framework only requires an entry point of
the application, e. g., the URL of an application’s Web frontend,
to discover the whole ETG fully automatically including all
software and infrastructure components of the application.

B. Automated Management Patterns (AMP)

An Automated Management Pattern (AMP) is a generic
implementation of a management pattern that can be applied
automatically to individual applications that match a predefined
application structure, e. g., to migrate an application without
downtime. An AMP consumes the ETG of the application
to which the implemented pattern shall be applied and au-
tomatically specifies the management tasks that have to be
performed on the application’s nodes and relations. Therefore,
AMPs consist of two parts: the (i) Topology Fragment describes
the application structure to which an AMP can be applied, i. e.,
it models the nodes and relations that must match elements in
an ETG to apply the pattern to these matching elements. The
(ii) Topology Transformation consumes the application’s ETG
and automatically creates a Desired Application State Model,
in which it specifies the management tasks to be performed in
the form of abstract Management Annotations that are declared
by the transformation on nodes and relations of the ETG.

C. Desired Application State Model (DASM)

A Desired Application State Model (DASM) describes
management tasks to be performed on nodes and relations of a
running application in a declarative manner. It consists of (i) the
application’s ETG and (ii) Management Annotations, which are
declared on nodes or relations of the ETG. A Management
Annotation (depicted as coloured circle) specifies a small
management task to be executed on the associated element, but
defines only the abstract semantics of the task, e. g., that a node
shall be created, but not its technical realization. For example, a
Create-Annotation attached to a “MySQLDatabase” that has a
“hostedOn” relation to an “UbuntuVM” means that the database
shall be installed on the VM. Similarly, there are annotations
that specify specific management tasks, e. g., an ImportData-
Annotation attached to a database defines that data has to be
imported. Management Annotations may additionally define
that they must be executed before, after, or concurrently with
another annotation. Due to the declarative nature of DASMs,
only the what is described, but not the how. Thus, in contrast to
imperative descriptions such as executable workflows [11] that
define all technical details, DASMs can not be executed directly
and are transformed into workflows by the Plan Generator.

D. Management Planlets & Plan Generator

In the last step, the created DASM is automatically trans-
formed into an executable Management Workflow. This is
done by the framework’s Plan Generator, which orchestrates
so called Management Planlets. A Management Planlet is
a small workflow that executes one or more Management
Annotations on a certain combination of nodes and relations.
For example, a Planlet may deploy a Java application on a
Tomcat Webserver. The Plan Generator tries to find a suitable
Management Planlet for each Management Annotation specified
in the DASM that executes the corresponding management task.
Thus, Management Planlets are reusable building blocks that
provide the low-level imperative management logic to execute
the declarative Management Annotations declared in DASMs.

E. Development of Automated Management Patterns

DASMs provide the basis to implement AMPs on a high-level
of abstraction: management tasks need to be specified only
abstractly in the form of declarative Management Annotations
without the need to deal with the complex, low-level, and
technical issues required for their execution. These technical
details are considered only by the responsible Management
Planlets. However, since management patterns typically capture
multiple steps to be performed, the development of AMPs is
a challenging task and needs careful consideration. Therefore,
we present a method that guides the development of AMPs.

141Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

Only for SAMPs

1. Development Phase 2. Test Phase

Model the pattern’s
context as Topology

Fragment

A

Implement the pattern’s
solution as Topology

Transformation

B

Apply the automated
pattern and verify
declarative models

C

Refine declarative
models for concrete

use cases

D

Generate executable
workflows and verify

their correctness

E

Figure 2. Method to automate existing Cloud Application Management Patterns.

III. A METHOD TO AUTOMATE CLOUD APPLICATION
MANAGEMENT PATTERNS

In this section, we present a method to automate existing
management patterns through implementing them as AMPs. We
distinguish here between two kinds of AMPs: Semi-Automated
Management Patterns (SAMPs) [6] implement patterns on an
abstract level, e. g., to migrate any kind of application to
another location. Therefore, applying SAMPs typically requires
a manual refinement of the resulting DASMs before they can be
transformed into the corresponding workflows, e. g., abstract
nodes types must be replaced, additional nodes or relations have
to be inserted, or further Management Annotations have to be
added. An Automated Management Idiom (AMI) [2] implements
a refined version of a management pattern for a concrete use
case, e. g., to migrate a Java application hosted on an Apache
Tomcat Webserver to the Amazon Cloud. As a consequence,
applying AMIs results in already refined DASMs that can be
translated directly into workflows. The method is shown in
Figure 2 and consists of two phases: in the (i) Development
Phase, the management pattern to be automated is analyzed
and implemented as SAMP or AMI. In the (ii) Test Phase, the
implementation is verified for correctness. In the following
subsections, we explain the five steps of the method in detail.

A. Model the pattern’s context as Topology Fragment

Analyze the management pattern’s context with focus on the
application structures to which the pattern can be applied and
model this information as Topology Fragment.

Cloud Application Management Patterns typically consist
of several parts that describe the pattern in natural text [1]. In
the method’s first step, the textual description of the pattern to
be automated is analyzed in terms of the application structures
to which the AMP shall be applicable. This information is
then modelled as Topology Fragment. If a concrete AMI shall
be created, the fragment typically needs to be refined for the
respective use case. For example, the aforementioned refinement
of the pattern that migrates a Java application to the Amazon
Cloud results in a Topology Fragment that models a node of
type “JavaApplication” that has a relation of type “hostedOn”
to a node of type “ApacheTomcat”. This AMI is then applicable
to all ETGs that contain this combination of elements. Thus,
as the Topology Fragment provides the basis for matchmaking
SAMPs and AMIs with ETGs, it must define exactly the nodes
and relations to which the automated pattern is applicable. This
kind of information is typically described in the context section
of management patterns, but also other sections such as problem
or even the solution can be used to extract this information.

B. Implement the pattern’s solution as Topology Transformation

Analyze the management pattern’s solution and implement the
described management logic as Topology Transformation.

In the second step, the pattern’s solution logic is captured
in a way that enables its automated application to individual
applications. Therefore, the textual description of the pattern’s
solution is analyzed in terms of the management tasks that have
to be executed to apply the pattern. The analyzed procedure
is then implemented as Topology Transformation that acts on
the nodes and relations defined by the Topology Fragment: the
Topology Transformation must declare exactly the Management
Annotations on the ETG that declaratively specify the analyzed
management tasks to be executed following the pattern’s
solution. In case of automating a management pattern as
abstract SAMP, the Topology Transformation implements only
the pattern’s original abstract solution logic and remains rather
vague: executing this transformation on an ETG typically results
in a DASM that additionally needs to be refined manually
afterwards. If the pattern is automated as detailed AMI for
a concrete use case, the abstract solution logic must be first
(i) refined towards this use case in order to provide detailed
information about the management tasks to be executed. These
are (ii) implemented afterwards in the Topology Transformation
that specifies the corresponding Management Annotations.
Executing such fine-grained AMI-transformations typically
results in fully refined DASMs that can be transformed directly
into executable workflows without further manual effort.

C. Apply the automated pattern and verify declarative models

Apply the created SAMP / AMI to concrete use cases and
compare the resulting DASMs with the solution described by
the original pattern or refinement to verify their correctness.

After the textual description of the pattern is translated into
its corresponding SAMP / AMI, the correctness of the realization
needs to be verified. Therefore, in the first part of the Test Phase,
the implemented patterns are tested against various concrete
use cases, i. e., ETGs of different running applications. First, a
set of appropriate use cases must be identified that captures
all possible application structures to which the pattern can be
applied and that are affected by the pattern’s transformation.
This requires an explicit and careful analysis of the pattern’s
Topology Fragment and Topology Transformation to cover all
possible scenarios. Additional use cases must be identified to
which the pattern can not be applied to additionally ensure the
correctness of the pattern’s Topology Fragment. Afterwards, the
pattern is tested against these cases. The test is subdivided into

142Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

two steps: (i) testing the Topology Fragment and (ii) testing
the Topology Transformation. In the first step, the automated
pattern is applied to different use cases which are not all suited
for the pattern. Thus, some use cases match with the Topology
Fragment, others not. The results of these matchmakings are
then compared with the semantics of the original pattern or
refinement, respectively, to verify the correct modelling of the
Topology Fragment: the Automated Management Pattern must
be applicable exactly to the same use cases as the original
pattern or the refinement, respectively. In the second step, the
Topology Transformation is executed on the correctly matching
use cases. The resulting DASMs are then compared with (i) the
solution section of the original pattern / refinement to verify if
the declaratively specified tasks comply with the description
and (ii) the result section to verify that the results are equal.
This is possible as the created DASMs contain information about
both solution and result: they describe the management tasks
to be executed as well as the final application structure and
partially the application’s state after executing the workflow.

D. Refine declarative models for concrete use cases

Only for creating SAMPs: refine the resulting DASMs for
concrete use cases in order to provide all missing information
required to generate executable workflows.

If a pattern is semi-automated as SAMP, the DASMs resulting
from the previous steps cannot be translated directly into
executable workflows as the refinement is missing: the SAMP’s
Topology Transformation implements only the pattern’s abstract
solution and provides not all information required to generate
the workflow. As a result, the resulting DASMs must be refined
manually in this step for providing all required information.
DASMs resulting from the application of AMIs are not affected.

E. Generate executable workflows and verify their correctness

Transform the final DASMs into the corresponding workflows,
compare them with the solution described by the original
pattern or refinement, and verify the result of their execution.

In the last step, the final DASMs resulting from the previ-
ous steps are transformed into the corresponding executable
Management Workflows using the framework’s Plan Generator.
Then, the correctness of these imperative management descrip-
tion models are verified by two manual steps: (i) verifying the
correctness of the generated workflow implementations and (ii)
verifying the correctness of the final application states after
executing the Management Workflows. In the first step, the
implementation of the generated workflows are compared with
the abstract solution of the pattern or its refined incarnation if
the tested pattern is implemented as AMI. This last verification
ensures that the finally executed management tasks including all
technical details are correct. In particular, this step is required
to ensure that the employed Management Annotations lead to
correct workflows, e. g., that there are Management Planlets
available to execute all the Management Annotations declared
in the DASMs. In the second verification step, the generated
Management Workflows are executed on the real running test
applications and the results are compared with the result section
of the original management pattern or the refined result if the
tested automated pattern is implemented as AMI.

IV. CASE STUDY AND VALIDATION

In this section, we validate the approach by a detailed case
study that considers the automation of an existing management
pattern using the proposed method. Due to the important issue of
vendor lock-in in the domain of Cloud Computing, we automate
a migration management pattern. First, we describe the most
important facts of the original pattern and derive a refined idiom
afterwards that enables migrating Java-based applications to
the Amazon Cloud. The refined idiom is then implemented as
Automated Management Idiom using the presented method.

The pattern to be automated is called Stateless Component
Swapping Pattern [12] and originates from the Cloud Comput-
ing pattern language developed by Fehling et al. [1][12][13].
The pattern deals with the problem “How can stateless
application components that must not experience downtime
be migrated?”. The context observed is that for many business
applications downtime is unacceptable, e. g., for customer-
facing applications. Hence, its intent is migrating stateless
applications from one environment into another transparently to
the accessing human users or other applications. Therefore, the
stateless application is active in both environments concurrently
during the migration to avoid downtime. Here, “stateless” means
that the application does not handle internal session state [12].

Decommission
Component

Update
References

Provision
Component

Stateless Component Swapping Process Origin
Environment

Target
Environment

application
files

Recreate
Application Stack

Extract
Component

application
files

stack
config

Figure 3. Abstract Stateless Component Swapping Process (adapted from [12]).

Figure 3 describes the pattern’s solution as Business Process
Model and Notation (BPMN) [14] diagram: first, the component
to be migrated is extracted from the origin environment while
the required application stack is provisioned concurrently in
the target environment. After the new application stack is
provisioned, a new instance of the component is deployed
thereon while the original component is still active. When
deployment has finished and the new component is running,
all references pointing to the old component are updated to the
new one and the original component gets decommissioned.

143Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

Stateless Java Application from Tomcat7
to Amazon Beanstalk Swapping AMI

Topology
Transformation Topology Fragment

(StatelessJavaApplication)

(ApacheTomcat7)

(hostedOn)

Figure 4. Automated Management Idiom.

Since this case study aims at fully automating this man-
agement pattern, we implement it as Automated Management
Idiom using the presented method. Therefore, we have to refine
the pattern towards a more specific context to which it can
be applied fully automatically in a generic manner, i. e., all
applications that correspond to this context can be managed
by applying the created AMI. In this case study, the refined
context is defined by migrating a stateless Java application
that is hosted on an Apache Tomcat 7 Webserver to Amazon’s
Cloud offering “Beanstalk”, which provides a platform service
(PaaS) for directly hosting Java applications. The pattern’s core
intent of migrating the application without downtime remains.

We now apply the presented method to automate the pattern
for this refined context. In the first step, the kinds of applications
to which the AMI can be applied must be defined. Therefore,
we analyze the description of the pattern and the described
refinement to model the Topology Fragment shown in Figure 4;
according to the description, the automated pattern can be
applied to all nodes of type “StatelessJavaApplication” that are
connected by a relation of type “hostedOn” with a node of
type “ApacheTomcat7”. In the second step, we implement the
pattern’s solution as executable Topology Transformation. We
first have to refine the pattern’s abstract solution to the concrete
use case considered in this study. Therefore, we (i) analyze the
abstract solution process shown in Figure 3, (ii) transfer and
refine the described information to our Java-based migration
use case, and (iii) implement the Topology Transformation
accordingly. We now step through this process and transfer each
activity into our transformation implementation in consideration
of the refinement. The transformation described in the following
is implemented in a generic manner. It acts exclusively on the
nodes and relations defined by the Topology Fragment or applies
generic transformation rules that are not bound to a particular
application. Therefore, it can be executed on all applications
that match the pattern’s Topology Fragment defined above.
We explain the transformation directly on a real scenario that
is depicted in Figure 5; on the left, there is the current ETG
of a Java-based application that runs on a Apache Tomcat 7
installation hosted on a local physical server. The application
implements a stateless Webservice that is publicly reachable
via an internet domain. This Webservice shall be migrated to
Amazon Beanstalk. As the defined Topology Fragment shown
in Figure 4 matches this ETG, our refined pattern can be applied.
All nodes and relations that are surrounded by dotted lines and
Management Annotations are inserted by the transformation.
The numbers in white circles represent the transformation steps.

Provider: uniteddomains
Name: myservice.org
Account: myUser
Password: myPassword

(hostedOn)

(Domain)

File: serviceimpl.war
URL: 92.68.1.1:80/service

(StatelessJavaApplication)

HTTP-Port : 80
Username: TomcatAdmin
Password: jfwf?jowwßj

(ApacheTomcat7)

….

(Ubuntu12.04)

…

(Server)

(hostedOn)

(hostedOn)

(refersTo) (refersTo)

(hostedOn)

File: $extractedFile
URL:

(StatelessJavaApplication)

Account: MyAccount
Password: ffksf?4is1

(AmazonBeanstalk)

= Create-Annotation

= Destroy-Annotation

= ExtractApplicationFiles-Annotation

1

2

3

4

5

6 6
8 7

9

x = Step of Topology Transformation

5

Figure 5. DASM that results from applying the created AMI.

First, the component to be migrated has to be extracted
and the new application stack needs to be created. Therefore,
the transformation (1) attaches a ExtractApplicationFiles-
Annotation to the “StatelessJavaApplication” node and (2)
inserts a new node of type “AmazonBeanstalk” to the DASM.
As the Beanstalk node provides “Account” and “Password”, the
transformation requests these properties as input parameters
and writes them directly to the node. We need no Management
Annotations on this node since the Beanstalk service is always
running. The ExtractApplicationFiles-Annotation is configured
to export the Java files of the application to a location that is
stored in a variable “$extractedFile”, which is used in the next
step. Afterwards, the transformation (3) inserts a new node
of type “StatelessJavaApplication” and a “hostedOn” relation
to the Beanstalk node, (4) specifies the files to be deployed
using the “$extractedFile” variable, and (5) attaches Create-
Annotations to the new node and the new relation. To update
the references of the old component, we first (6) copy all
incoming and outgoing relations except its “hostedOn” relation
and replace the old component node by the new node, (7) attach
Destroy-Annotations to the old relations, and (8) attach Create-
Annotations to the new relations. Then, the transformation
(9) attaches a Destroy-Annotation to the old component that
specifies to undeploy the application from the local Webserver.
To avoid downtime, the execution order of some annotations
must be defined, e. g., creating and destroying the “refersTo”
relations must be done concurrently by one planlet whereas
the old component must not be decommissioned before the
new one is ready. These orders are specified in the last step.
The resulting DASM is complete and ready to be translated
into the corresponding executable Management Workflow. In
the following Test Phase, similar use cases are taken and the
AMI gets applied to them. The resulting DASMs, as well as the
generated workflows, are then analyzed for correctness.

144Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

V. RELATED WORK

We applied the method to automate several management
patterns, e. g., the Stateless Component Swapping Pattern [12]
and the Update Transition Process Pattern [13] (published
in Breitenbücher et al. [2][8]). In Nowak et al. [15], we
automated the Green Compensation Pattern [16] to reduce
the CO2 emission of virtual machine-based business processes.

Fehling et al. [17][18] present a (i) step-by-step process
for the traceable identification of Cloud patterns, a (ii) pattern
format, and a (iii) pattern authoring toolkit that can be used to
support the identification process. Despite these works focus
mainly on Cloud architecture patterns, the core concepts can
be adapted and used to create management patterns and idioms
that can be automated afterwards using the presented method.
Fehling et al. [17] also show how the identified architectural
Cloud patterns can be applied using an existing provisioning
tool. However, they consider only application provisioning and
do not consider the automation of management patterns.

Reiners et al. [19] present an iterative pattern formulation
approach for developing patterns. They aim for documenting
and developing knowledge from the very beginning and
continuously developing findings further. From this perspective,
patterns are not just final artifacts but are developed based
on initial non-validated ideas. They have to pass different
phases until they become approved patterns. In contrast to our
work that focuses on automating patterns, this iterative pattern
formulation approach can be used to develop management
patterns that capture problem and solution in natural text. Thus,
the approaches are complementary: the formulation approach
can be used to create management patterns that are automated
afterwards using our method. Our pattern automation helps
testing the captured knowledge in each phase of the iterative
process to validate the pattern’s correctness and suitability.

Falkenthal et al. [20] present an approach that enables
reusing concrete implementations of patterns by attaching
them as so called Solution Implementations directly to the
patterns they originate from. The approach can be used to create
workflows that implement a management patterns solution for
a certain use case as Solution Implementation that is linked
with the original pattern. However, a manual implementation
of the corresponding workflows requires a lot of management
expertise for handling the technical complexity of refinement [2].
In addition, such management workflows are typically tightly
coupled to particular application structures and are not able to
provide the flexibility of Topology Transformations that may
analyze the whole application topology to ensure a correct
specification of the Management Annotations to be performed.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a method that enables automating
existing management patterns using the Management Planlet
Framework. We showed that the method enables analyzing and
implementing existing management patterns in a generically
applicable fashion. The method provides a structured means
to create and test Automated Management Patterns that guides
developers in transforming natural text into automated routines.
To validate the presented approach, we conducted a detailed
case study that shows how a Cloud Application Management
Pattern for application migration can be automated using our

method. In future work, we plan to investigate how the method
can be used to automate architectural patterns to support the
development and initial provisioning of Cloud applications, too.

ACKNOWLEDGMENT

This work was partially funded by the BMWi project Cloud-
Cycle (01MD11023).

REFERENCES

[1] C. Fehling, F. Leymann, J. Rütschlin, and D. Schumm, “Pattern-Based
Development and Management of Cloud Applications,” Future Internet,
vol. 4, no. 1, pp. 110–141, March 2012.

[2] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann, “Automating Cloud
Application Management Using Management Idioms,” in PATTERNS
2014. IARIA Xpert Publishing Services, May 2014, pp. 60–69.

[3] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?” in USITS 2003. USENIX
Association, June 2003, pp. 1–16.

[4] A. B. Brown and D. A. Patterson, “To Err is Human,” in EASY 2001,
July 2001, p. 5.

[5] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and J. Wettinger,
“Integrated Cloud Application Provisioning: Interconnecting Service-
Centric and Script-Centric Management Technologies,” in CoopIS 2013.
Springer, September 2013, pp. 130–148.

[6] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann, “Pattern-based
Runtime Management of Composite Cloud Applications,” in CLOSER
2013. SciTePress, May 2013, pp. 475–482.

[7] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and M. Wieland,
“Policy-Aware Provisioning of Cloud Applications,” in SECURWARE
2013. Xpert Publishing Services, August 2013, pp. 86–95.

[8] U. Breitenbücher et al., “Policy-Aware Provisioning and Management
of Cloud Applications,” International Journal On Advances in Security,
vol. 7, no. 1&2, 2014.

[9] T. Binz, C. Fehling, F. Leymann, A. Nowak, and D. Schumm, “Formal-
izing the Cloud through Enterprise Topology Graphs,” in CLOUD 2012.
IEEE, June 2012, pp. 742–749.

[10] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “Automated
Discovery and Maintenance of Enterprise Topology Graphs,” in SOCA
2013. IEEE, December 2013, pp. 126–134.

[11] F. Leymann and D. Roller, Production Workflow: Concepts and Tech-
niques. Prentice Hall PTR, 2000.

[12] C. Fehling, F. Leymann, S. T. Ruehl, M. Rudek, and S. Verclas,
“Service Migration Patterns - Decision Support and Best Practices
for the Migration of Existing Service-based Applications to Cloud
Environments,” in SOCA 2013. IEEE, December 2013, pp. 9–16.

[13] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud
Computing Patterns: Fundamentals to Design, Build, and Manage Cloud
Applications. Springer, January 2014.

[14] OMG, Business Process Model and Notation (BPMN), Version 2.0,
Object Management Group Std., Rev. 2.0, January 2011.

[15] A. Nowak, U. Breitenbücher, and F. Leymann, “Automating Green
Patterns to Compensate CO2 Emissions of Cloud-based Business
Processes,” in ADVCOMP 2014. IARIA Xpert Publishing Services,
August 2014.

[16] A. Nowak, F. Leymann, D. Schleicher, D. Schumm, and S. Wagner,
“Green Business Process Patterns,” in PLoP 2011. ACM, October 2011.

[17] C. Fehling, F. Leymann, R. Retter, D. Schumm, and W. Schupeck, “An
Architectural Pattern Language of Cloud-based Applications,” in PLoP
2011. ACM, October 2011.

[18] C. Fehling, T. Ewald, F. Leymann, M. Pauly, J. Rütschlin, and
D. Schumm, “Capturing Cloud Computing Knowledge and Experience
in Patterns,” in CLOUD 2012. IEEE, June 2012, pp. 726–733.

[19] R. Reiners, “A Pattern Evolution Process - From Ideas to Patterns,” in
Informatiktage 2012. GI, March 2012, pp. 115–118.

[20] M. Falkenthal, J. Barzen, U. Breitenbücher, C. Fehling, and F. Leymann,
“From Pattern Languages to Solution Implementations,” in PATTERNS
2014. IARIA Xpert Publishing Services, May 2014, pp. 12–21.

145Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

