
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{vukojevic, haupt, karastoyanova, leymann}@iaas.uni-stuttgart.de

Replicability of
Dynamically Provisioned Scientific Experiments

Karolina Vukojevic-Haupt, Florian Haupt, Dimka Karastoyanova, and Frank Leymann

© 2014 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the IEEE.

@inproceedings{INPROC-2014-77,

author = {Karolina Vukojevic-Haupt and Florian Haupt and

Dimka Karastoyanova and Frank Leymann},

title = {Replicability of Dynamically Provisioned Scientific

Experiments},

booktitle = {Proceedings of the 7th IEEE IEEE International Conference on

Service Oriented Computing & Applications, SOCA 2014,

17. – 19. November 2014, Matsue, Japan},

year = {2014},

pages = {119 - 124},

doi = {10.1109/SOCA.2014.54},

publisher = {IEEE}

}

:

Institute of Architecture of Application Systems

Replicability of

Dynamically Provisioned Scientific Experiments

Karolina Vukojevic-Haupt, Florian Haupt, Dimka Karastoyanova, and Frank Leymann

Institute of Architecture of Application Systems (IAAS)

University of Stuttgart, Stuttgart, Germany

lastname@iaas.uni-stuttgart.de

Abstract— The ability to repeat an experiment, known as rep-

licability, is a basic concept of scientific research and also an

important aspect in the field of eScience. The principles of Ser-

vice Oriented Computing (SOC) and Cloud Computing, both

based on high runtime dynamicity, are more and more adopted

in the eScience domain. Simulation experiments exploiting these

principles introduce significant challenges with respect to repli-

cability. Current research activities mainly focus on how to ex-

ploit SOC and Cloud for eScience, while the aspect of replicabil-

ity for such experiments is still an open issue. In this paper we

define a general method to identify points of dynamicity in simu-

lation experiments and to handle them in order to enable replica-

bility. We systematically examine different types of service bind-

ing strategies, the main source of dynamicity, and derive a meth-

od and corresponding architecture to handle this dynamicity

with respect to replicability. Our work enables scientists to per-

form simulation experiments that exploit the dynamicity and

flexibility of SOC and Cloud Computing but still are repeatable.

Keywords— replicability; SOC; SOA; Cloud; on-demand

provisioning and deprovisioning; eScience;

I. INTRODUCTION

Service oriented architectures are well established as a
suitable approach for building huge, complex and massively
distributed systems that are nevertheless reliable, manageable
and flexible. The underlying paradigm of service oriented
computing (SOC) defines services as the basic building blocks
of such architectures. A service encapsulates certain functional-
ity, provides it over a unified interface and is loosely coupled
with other services [2]. The concept of cloud computing builds
on the foundations of SOC. Cloud computing provides IT re-
sources as services having well defined properties such as elas-
ticity or pay-as-you-go [9]. The use of cloud services eases the
provisioning of and the access to IT resources and allows for
far more dynamic approaches for the provisioning and man-
agement of complex software systems.

The field of eScience comprises a variety of research disci-
plines where scientific progress depends on the use of IT [8].
One of these disciplines is simulation technology, where real
world phenomena are formally modeled and then simulated
based on these models. Experiments based on simulations are
typically complex processes incorporating different activities,
data, and tools. The use of process modeling languages and
workflow systems is a common approach to manage the com-
plexity of such experiments. In our previous work, we have

developed a scientific workflow management system (SWfMS)
based on conventional workflow technology and SOC but es-
pecially extended and adapted to the needs of eScience [10][5].
In our current work, we are taking this work one step further by
not only exploiting the benefits of SOC but also adopting the
principles of cloud computing. We introduced an approach and
architecture for the on-demand provisioning and de-
provisioning of workflow execution middleware and services
including their underlying middleware and infrastructure [1].

Scientific progress is based on the concept of validation and
reuse of research results. In our work we focus on experiments,
especially "virtual" experiments conducted based on simula-
tions. The validation of results obtained by an experiment de-
pends on the ability to reproduce these results [6]. The term
reproducibility in general refers to the ability to obtain the
result of an experiment again, either by conducting the same
experiment again (possibly in a different environment) or by
following a completely different approach [11][12]. While the
term reproducibility mostly focuses on the validity of the result
of an experiment, in many cases the validity of the experiment
itself, i.e. the method and process it is based on, is also of inter-
est. In this context, the more specific concept of replicability
comes into play [7], it describes the ability to conduct an exper-
iment again resulting in the same outcome.

The application of the principles of SOC and cloud compu-
ting in the domain of eScience provide a multitude of benefits
like automation, flexibility and better integration support. Such
workflow-based experiments typically show a high degree of
runtime dynamicity by for example dynamic service selection
or resource provisioning. This altogether leads to significant
challenges with respect to replicability. In this paper we there-
fore contribute (1) a general concept for replicability in work-
flow-based experiments, (2) a method to realize this replicabil-
ity, (3) an extension of our architecture that supports replicabil-
ity, and (4) an example of a realization of our approach.

The rest of this paper is structured as follows. In section II
we introduce our general concept for replicability in workflow-
based and service-oriented scientific experiments. In section III
we refine this concept by linking it to service binding strate-
gies. In section IV we show how we adapted our existing archi-
tecture to support replicability. Section V gives an example
showing some details of our approach. We give an overview
about related work in section VI and close the paper with a
short summary and outlook in section VII.

II. CONCEPT OF REPLICABILITY

In this work we focus on the replicability of workflow-
based and service-oriented experiments. The execution of an
experiment is modeled as a workflow comprising a set of activ-
ities together with control flow and dataflow dependencies.
The activities of a workflow model are described in terms of
functional and non-functional requirements. For each activity
the modeler of a workflow defines the required abstract service
interface as well as additional non-functional requirements.
Following the principles of SOC, the functionality (or inter-
face) required by an activity is provided by services.

The execution of a workflow-based experiment, depicted in
Fig. 1 on the left side, is based on a workflow model describing
the course of the experiment, input data (X) and an execution
context (A). The execution context contains the non-functional
requirements for the execution of the workflow model, for
example cost or time constraints. When starting an experiment,
the workflow model, input data and the execution context are
passed to an execution environment (E). This environment is
inter alia responsible for the fulfillment of the non-functional
requirements during the execution of an experiment. The exe-
cution of an experiment finally results in output data (Y).

The workflow model does not need to specify any specific
services to use; it only defines the needed functionality and
non-functional requirements. The selection of a suitable service
is realized at runtime by the execution environment. In SOC
this concept is well-known as publish-find-bind [2]. A service
provider publishes services to a service registry (“publish”). A
service consumer queries this service registry for a service
fulfilling his requirements (“find”) and then binds to the select-
ed service (“bind”). To achieve loose coupling between service
consumer and service provider, the find and bind steps are
typically carried out at runtime by the execution environment.

Replicated Execution

with low degree of freedom

Original Execution

with high degree of freedom

Input Data

X

Execution

Context

A

Execution

E

Auditing

Output Data

Y

Input Data

X

Execution

Context

B

Execution

E’
Output Data

Y‘

generate context

for replicability

Fig. 1. Concept of replicability for scientific experiments.

During the execution of a workflow, this so called dynamic
binding results in degrees of freedom for the selection of ap-
propriate services. A tangible example is an activity requiring a
web search. Google (www.google.com) and Bing
(www.bing.com) both provide this functionality (web search
based on a given string) with the same non-functional capabili-
ties (free of cost and fast). The decision which of these web
search services is selected at runtime is left to the execution
environment. As a consequence, the replicability of workflow-
based and service-oriented experiments is limited. For each
execution the execution environment might select a different
set of services fulfilling the functional and non-functional re-
quirements of the workflow model and execution context.

Our approach for the replicability of workflow-based ex-
periments is based on the principle depicted in Fig. 1. During
the execution of an experiment, shown in the left part, we ob-
serve the execution of the original experiment and capture
specific execution data in an auditing system. To achieve repli-
cability, the original execution context A is replaced by a new
execution context B (Fig. 1, right part) generated based on the
auditing data captured before. It defines very strict require-
ments and thereby reduces the degree of freedom during
runtime in a way that further executions of the experiment are
replications of the original execution. The execution E’ based
on the execution context B then results in output data Y’.

The replication of a workflow-based experiment does not
necessarily imply the complete replication of every aspect of an
experiment. Due to the abstraction levels introduced by SOC
we can in general not control every aspect of the execution of
an experiment and the involved services. If for example the
hardware a specific service is running on is changed or recon-
figured, this might not affect the functional and non-functional
capabilities declared by this service at all. Nevertheless, this
change might have an impact on experiments using this ser-
vice, for example by introducing a slightly different timing
behavior. When talking about replication, we therefore aim at a
repeated execution “as similar as possible” to the original exe-
cution.

III. REPLICABILITY AND SERVICE BINDING STRATEGIES

As already discussed in the last section, the main source of
dynamicity is in the service binding at runtime. In our previous
work we have developed an extended classification for service
binding strategies [1]. In the following we will show how to
achieve replicability for each of these classes. Our method is
based on that we first identify the dynamic aspects for each
binding strategy. Subsequently we show which information are
needed to replicate a service call.

In Fig. 2 the different binding strategies are illustrated. A
service composition is shown as an example implementation of
an experiment. The service calls are passed to the so-called
enterprise service bus (ESB) [3], a middleware component that
realizes the different binding strategies.

When using the strategy static binding (Fig. 2, A), the ESB
receives a service call already including a target address, the
so-called service endpoint. The service call is directly forward-
ed to the given address. Static binding is the only binding strat-
egy without a dynamic component. Service calls using the
static binding strategy are readily replicable.

In case of dynamic binding (Fig. 2, B), the target of a ser-
vice call is determined dynamically at runtime based on func-
tional and non-functional requirements. The ESB carries out a
service discovery and service selection finally resulting in a
service fulfilling both, the functional requirements as well as
the non-functional requirements. The service call is then for-
warded to the endpoint of the selected service. To replicate a
service call with dynamic binding, during repeated execution
the ESB has to forward the service call exactly to the endpoint
selected in the original service call. This can be achieved by the
ESB logging the selected endpoint during the original execu-
tion. For a further execution no service discovery and service

selection are performed, instead the before logged service end-
point is selected.

Using the strategy dynamic binding with service deploy-
ment (Fig. 2, C), the required service will be initially deployed
before it can be used. First the ESB receives the service call
and carries out a service discovery and service selection. The
difference is that the ESB does not get an endpoint but a ser-
vice implementation of a suitable service. The service imple-
mentation is then deployed on an existing middleware and then
the service call is passed to its service endpoint. To replicate
such a service call during repeated execution the ESB has to
deploy exactly the same service implementation on exactly the
same middleware as in the original execution. This can be
achieved by the ESB logging which service implementation
was deployed on which middleware. For repeated execution
the service discovery and service selection are skipped. Instead
the service implementation logged before is deployed on the
middleware also logged before.

In the case of dynamic binding with software stack provi-
sioning (Fig. 2, D) not only the service implementation but also
the underlying middleware and infrastructure are provisioned
before the service call can be forwarded. First the ESB receives
the service call and carries out a service discovery and a service
selection. As result the ESB obtains a so-called service pack-
age, an archive containing all required artifacts to provision the
service implementation including its underlying middleware
and infrastructure. The service package is then provisioned in
an existing cloud infrastructure and the service call is forward-
ed to its service endpoint. To replicate such a service call, dur-
ing repeated execution the ESB has to provision exactly the
same service package in exactly the same cloud infrastructure
as in the original execution. This is achieved by the ESB log-
ging which service package is provisioned in which cloud in-
frastructure. During repeated execution the ESB uses exactly
the service package logged before and provisions it on the
cloud infrastructure also logged before using exactly the same
parameters as in the original execution.

We summarize our method in Table 1. For “static binding”
there are no dynamic aspects and therefore replicability is giv-
en without any further action. For “dynamic binding” the ser-
vice endpoint is determined dynamically and therefore has to

be logged for repeatable execution. For “dynamic binding with
service deployment” middleware and service implementation
are determined dynamically. Consequently, the service end-
point is also dynamic. For repeatable execution the same mid-
dleware and the same service implementation have to be used
and therefore be logged. In case the deployment of the service
implementation on the middleware can be parameterized, these
parameters also have to be logged. The service endpoint de-
pends on the service deployment and is therefore not logged.
For “dynamic binding with software stack provisioning” the
cloud infrastructure as well as the service package is deter-
mined dynamically. Therefore the service endpoint is also dy-
namic for this binding strategy. For repeatable execution the
cloud infrastructure and the service package as well as the pro-
visioning parameters have to be logged. The service endpoint is
not logged as it depends on the provisioning of the service
package.

TABLE I. METHOD FOR REPLICABILITY

binding strategy dynamic aspects replicability needs

static binding - -

dynamic binding service endpoint service endpoint

dynamic binding

with service

deployment

middleware,

service

implementation,

service endpoint

middleware,

service implementation,

deployment parameters

dynamic binding

with software stack

provisioning

cloud infrastructure,

service stack

(infrastructure,
middleware, service

implementation),
service endpoint

cloud infrastructure,

service package,

deployment parameters

We assume that the used services, service implementations,
service packages and cloud infrastructures are in principle
available for repeated execution. In practice, it is quite possible
that this assumption is violated and e.g. a certain service end-
point is no more available for later execution. In this case a
replication of the original execution is not possible. The execu-
tion of the workflow would be canceled at this point. Neverthe-
less, to ensure a robust workflow execution, the strength of
dynamic binding can be exploited to select an alternative ser-
vice with the same functional and non-functional properties. It
is important to log this deviation of the replication and to

Fig. 2. Extended classification of service binding strategies, based on [1]

Middleware and

Infrastructure

Middleware and

Infrastructure

dynamic

binding (EPY)

Service Composition

E
S

B

Interface

Service S1

Interface

static

binding

A

dynamic

binding (EPX)

Interface

Service Discovery

Service Selection

Service S2

Interface

B Interface

Service

Implementation S3

Deployment

Logic

1
deploy

Service

2 EPY

3

C

Interface

Interface

Service

Implementation S4

provision

Infrastructure and

Middleware

3 EPZ

dynamic

binding (EPZ)

4

Provisioning

Logic

1

2
deploy

Service

D

Interface

S
e
rv

ic
e
 T

o
p
o
lo

g
y

Cloud Infrastructure

service callservice call
service call

Legend

deployed in advance

deployed on demand

communicate it to the user. He can then decide if this repeated
execution is usable despite the deviation.

In our previous work we have developed the concept of the
on-demand provisioning of workflow execution middleware
and services [1], which is based on the binding strategy “dy-
namic binding with software stack provisioning” (Fig. 2, D).

IV. ARCHITECTURE FOR REPLICABLE EXPERIMENTS

In the following we will show how we realized the general
concept of replicability for scientific experiments introduced in
section II in our existing architecture for on-demand provision-
ing of workflow execution middleware and services [1][4].
This architecture realizes the service binding strategy “dynamic
binding with software stack provisioning” and in addition also
supports “static binding” and “dynamic binding”. We distin-
guish between “provisioned services” and “not provisioned
services”. A provisioned service is a functionality provided at
an endpoint with certain non-functional properties, everything
else is transparent. In contrast, a not provisioned service at first
has to be explicitly provisioned before it can be used.

In Fig. 3 we present the part of our architecture realizing
the service binding. The workflow engine is responsible for the
execution of the workflows. The ESB coordinates the pro-
cessing of the service calls. The service registry is a global
directory containing information about all services. It offers
information about functional and non-functional properties of a
service. For provisioned services the endpoint is stored, while
for not provisioned services a reference to the service package
repository is stored. For each not provisioned service the ser-
vice package repository contains the corresponding service
package together with provisioning metadata. The provisioning
manager is capable to provision service packages using a suita-
ble provisioning engine.

Service calls are initiated by the workflow engine (Fig. 3,
step 1) and contain the actual payload as well as different
metadata (step 2). The functional requirements (FR) describe
the required interface; the non-functional requirements (NFR)

describe requirements concerning the quality of a service.
Whereas these requirements correspond to traditional SOC
concepts, the provisioning requirements (PR) are specific for
our on-demand provisioning approach. They describe require-
ments specific for the provisioning process, for example al-
lowed cloud providers or the region where resources have to be
provisioned.

All service calls are processed by the ESB. When receiving
a service call, the ESB first executes a service discovery (step
3). In this step all service offers which are compliant with the
functional requirements of the service call are determined by
the service registry (step 4). Afterwards a service selection is
carried out (step 5). In this step all service offers fulfilling addi-
tional to the functional requirements also the non-functional
requirements are determined (step 6). If the result set contains
at least one provisioned service, the service selection compo-
nent returns exactly one endpoint (of a provisioned service) and
the ESB forwards the service call to the selected endpoint (step
7a). If the result set however contains no provisioned services,
the service selection component returns a service package ref-
erence for each service offer in the result set. The ESB for-
wards these service package references together with the provi-
sioning requirements to the provisioning manager (step 7b).
The provisioning manager executes a service package selection
by passing the set of service package references, the provision-
ing requirements and its own provisioning capabilities to the
service package repository (step 8). In this step a service pack-
age of the provided set is determined which on the one hand
fulfills the provisioning requirements of the service request and
which on the other hand can be processed by one of the availa-
ble provisioning engines of the provisioning manager (step 9).
The provisioning manager then provisions the resulting service
package using a suitable provisioning engine (step 10). In the
last step the ESB forwards the service request to the service
provisioned before (step 11).

In section III we discussed that, depending on the service
binding strategy, different information has to be logged during
the workflow execution to enable replicability. Considering the

Fig. 3. Architecture for replicable experiments provisioned on demand

Service Package

SelectionWorkflow Engine

service call

1

2 3

7a

Interface

Service Sx

7b service offers

8 9

service packages

Interface

Middleware

and Infrastructure

Service

Implementation Sy

forward

service call

provision

service package of Sy
a) provision

infrastructure

and middleware

b) deploy

service implementation

10

forward

service call11

service offers

create

FEM

parameters

FR
NFR

PR

FR

PR

Service Package Repository

4

5

NFR
6

Service

Discovery

Service

Selection

Service Registry

service offers

Legend
FR functional requirements

NFR traditional non-functional

requirements

PR provisioning requirements

PC provisioning capabilities
ccc

provision engine is able

to provision service packages

of type SPT1 in the Clouda

SPT1, Clouda

Enterprise

Service Bus

PR
PC

Provisioning

Manager
SPT1, Clouda

SPT1, Cloudb

SPT2, Cloudb

provisioned

in advance
provisioned

on demand

AUDITING

AUDITING

architecture presented before, both the ESB and the provision-
ing manager have to store information for replicability. For the
case that the service selection step returns exactly one service
endpoint, this information is logged by an auditing component
in the ESB. Otherwise, an auditing component in the provision-
ing manager logs which service package is provisioned by
which provisioning engine in which cloud environment using
which parameters. Using the data captured by the auditing
components, an execution context can be generated that ena-
bles the replication of the original execution.

V. REALIZATION EXAMPLE

In section II we introduced a generic concept to enable the
replication of workflow-based and service-oriented scientific
experiments. In the previous section we demonstrated the ex-
tension of our architecture in order to support this concept. In
the following we will show, using a simplified example, how
the execution context, the auditing, and the exchanged messag-
es can be realized in a SOAP web service-based system.

EXECUTION CONTEXT (Generated)

Service Calls

Activity A

Endpoint: http://example.org/X

Activity B

Provisioning requirements

Cloud: AWS

Backup Information (Or. Ex. C.)

Nonfunctional requirements

Region: Europe
Service Package: calc.csar
SP Repository: SPR_TOSCA

A

B

<invoke name="A"

portType="X"...>

...

</invoke>

<invoke name= "B"

portType="Y"...>

...

</invoke>

EXECUTION CONTEXT (Original)

Provisioning Requirements

Cloud 1: AWS
Cloud 2 vCloud
Service Calls

+

+

Activity A

Nonfunctional requirements

Provisioning requirements

Encryption: true

+

+

Activity B

Nonfunctional requirements

Provisioning requirements

Cloud:

+

+ AWS

- - -

Nonfunctional Requirements +
- - -

- - -

Fig. 4. Original (left) and generated execution context (right)

In the upper right of Fig. 4 a workflow model fragment
containing two activities A and B is depicted. Activity A calls a
service implementing interface X, activity B calls a service
implementing interface Y. On the left side of Fig. 4 an execu-
tion context for this process model fragment (original execu-
tion context) is shown. On the one hand, the execution context
allows specifying non-functional and provisioning require-
ments applying to the whole workflow. In our example we
define that AWS or vCloud have to be used as cloud environ-
ments. The execution context also allows specifying require-
ments for a single activity. In our example any service used by
activity A has to support encryption. For activity B it is re-
quired to use only AWS as cloud infrastructure. We assume
that local requirements always supersede global requirements.

In Listing 1 and Listing 2 it is shown, which messages are
sent during the execution of the workflow model fragment
depicted in Fig. 4, and which data is captured in the auditing
system. On the left side of Listing 1 the service call of activity
A is depicted. The requirements specified in the original execu-
tion context are integrated into the header block of the mes-
sage. The element <repEx> specifies if the service call is part

of an original or part of a replicated execution. Depending on
this either the original execution context or the generated exe-
cution context is considered by the execution environment.

<soap:Envelope>

<soap:Header>

<messageId>MI_102</messageId>

<portType>X</portType>

<repEx>no</repEx>

<originalExecution>

<nfr>

<encryption>true</encryption>

</nfr>

<pr>

<cloud name="AWS"/>

<cloud name="vCloud"/>

</pr>

</originalExecution>

<reproducedExecution/>

</soap:Header>

<soap:Body>...</soap:Body>

</soap:Envelope>

<log>

<serviceCall timestamp="... "

type="dynamicBinding">

<sender>

<pModel>PM_304</pModel>

<pInstance>PI_12</pInstance>

<activity>A</activity>

</sender>

<repEx>no</repEx>

<portType>X</portType>

<target>http://example.org/X</target>
...

</serviceCall>
...

</log>

Listing 1. Service call of actitivity A, based on original context

On the right side of Listing 1 a consolidated log for this
service call is depicted. It incorporates logging data from the
workflow engine, the enterprise service bus and the provision-
ing manager. In our example the log shows that activity A was
executed by a provisioned service with the endpoint address
“http://example.org/X”. This data can then be used to generate
an execution context for the repeated execution.

<soap:Envelope>

<soap:Header>

<messageId>MI_103</messageId>

<portType>Y</portType>

<repEx>no</repEx>

<originalExecution>

<nfr/>

<pr>

<cloud name="AWS"/>

</pr>

</originalExecution>

<reproducedExecution/>

</soap:Header>

<soap:Body>...</soap:Body>

</soap:Envelope>

<log>

<serviceCall timestamp="..."

type="onDemandProvisioning">

<sender>

<pModel>PM_304</pModel>

<pInstance>PI_12</pInstance>

<activity>B</activity>

</sender>

<repEx>no</repEx>

<portType>Y</portType>

<cloud>AWS</cloud>

<servicePackage>calc.csar</servicePackage>

<SPRep>SPR_TOSCA</SPRep>

<target>http://ec2-176-34-81-162.eu-west-1.

compute.amazonaws.com/calc</target>
...

</serviceCall>
...

</log>
Listing 2. Service call of actitivity B, based on original context

In Listing 2 the service call for activity B is depicted. The
requirements are again integrated into the header block. The
consolidated log (right side of Listing 2) shows that a not pro-
visioned service was selected. Specifically, the service package
“calc.csar” was provisioned in the Europe region of AWS.

<soap:Envelope>

<soap:Header>

<messageId>MI_145</messageId>

<portType>X</portType>

<repEx>yes</repEx>

<originalExecution>

<nfr>

<encryption>true</encryption>

</nfr>

<pr>

<cloud name="AWS"/>

<cloud name="vCloud"/>

</pr>

</originalExecution>

<reproducedExecution>

<nfr>

<target>http://example.org/X

</target>

</nfr>

<pr/>

</reproducedExecution>

</soap:Header>

<soap:Body>...</soap:Body>

</soap:Envelope>

<soap:Envelope>

<soap:Header>

<messageId>MI_146</messageId>

<portType>Y</portType>

<repEx>yes</repEx>

<originalExecution>

<nfr/>

<pr>

<cloud name="AWS"/>

</pr>

</originalExecution>

<reproducedExecution>

<nfr/>

<pr>

<cloud name="AWS" region="Europe"/>

<servicePackage>calc.csar</servicePackage>

<SPRep>SPR_TOSCA</SPRep>

</pr>

</reproducedExecution>

</soap:Header>

<soap:Body>...</soap:Body>

</soap:Envelope>

Listing 3. Call of actitivity A (left) and B (right), based on generated context

On the lower right part of Fig. 4 the execution context gen-
erated from the auditing data captured during the original exe-

cution is depicted. For activity A the specific endpoint
“http://example.org/X” is specified - thus the same service as in
the previous execution should be called. For activity B the
service package “calc.csar” should be used and likewise be
provisioned in the Europe region of the AWS Cloud. In Listing
3 we show the resulting service calls of activity A and B during
the repeated execution based on the generated execution con-
text. The header blocks now contain the more specific require-
ments to ensure the same execution as the original one.

VI. RELATED WORK

In [13] the authors show how cloud related technologies
can be used to setup and run eScience software independent of
the underlying cloud platform. Experiments are assumed to be
simple programs or scripts; there is no notion of SOC or work-
flows and consequently no runtime dynamicity like dynamic
binding. Replicability is mainly related to the technical setup
process, an aspect that is in our work encapsulated by service
packages and the related provisioning engines together with a
dynamic service package selection process at runtime [4].

The work presented in [14] proposes the use of cloud based
virtual machines as a means to archive, distribute and docu-
ment IT-based experiments. The approach focuses mainly on
single machine scenarios; there is no generic way to handle
complex application architectures. In contrast to our work, the
execution and coordination of complex experiments is not
covered at all. Replicability is mainly seen as the replicable
setup of a complex set of tools on a (virtual) machine. Our
approach tackles the replication of the whole process of dy-
namically setting up complex application architectures and
executing long running workflows incorporating extensive
dynamic binding. In addition, the work presented in [14] does
not exploit the power of cloud computing at all; it is solely
based on the use of virtual machines without considering as-
pects like elasticity or pay-as-you-go.

The work presented in [15] provides an algorithm that ana-
lyzes provenance information to determine if an experiment
has been replicated. Our work in contrast focuses on the
runtime of experiments and aims to ensure that a running ex-
periment is a replication of a previous execution. In addition,
our approach focuses on control flow centric workflow models.
The workflow execution system the work in [15] is based on
realizes the binding strategy “dynamic binding with service
deployment” (Fig. 2, C) while our architecture realizes the
more dynamic strategy of “dynamic binding with software
stack provisioning” (Fig. 2, D).

VII. SUMMARY AND OUTLOOK

In this paper we have demonstrated how replicability can
be achieved for workflow-based and service-oriented experi-
ments. After presenting our general approach to control repli-
cability by means of an appropriate execution context, we used
an existing classification of service binding strategies to sys-
tematically derive how replicability can be realized in SOC
based systems. After that, we showed how our existing archi-
tecture has to be extended to support the replication of experi-
ments. In addition, we presented an example to give some de-
tails about a realization of the proposed solution. Our work

allows scientists to benefit from the dynamicity and flexibility
of SOC and cloud based experiments without losing the capa-
bility to replicate their work.

Besides the ongoing realization of the presented replicabil-
ity features in our existing system the topic of “controlled dy-
namicity” promises further potential with respect to eScience
experiments. Parameter studies are often used to run multiple
simulations that differ in just one input parameter. This concept
can also be transferred to the level of the execution environ-
ment. Service binding is then seen as a parameter of an exper-
iment. This approach can be used to analyze the influence of
specific services (algorithms) on the execution as well as the
result of an experiment.

ACKNOWLEDGEMENT

K. Vukojevic-Haupt and D. Karastoyanova would like to
thank the German Research Foundation (DFG) for financial
support of the project within the Cluster of Excellence in Simu-
lation Technology (EXC310/1) at the University of Stuttgart.
This work was partially funded by the BMWi project Migrate!
(01ME11055).

REFERENCES

[1] Vukojevic-Haupt, K.; Karastoyanova, D.; Leymann, F.: On-demand
Provisioning of Infrastructure, Middleware and Services for Simulation
Workflows. In: Proceedings of SOCA 2013

[2] Papazoglou, M.P.: Service-oriented computing: concepts, characteristics
and directions. In: Proceedings of WISE 2003

[3] Chappell, D.: Enterprise Service Bus: Theory in Practice. 2004

[4] Vukojevic-Haupt, K.; Haupt, F; Karastoyanova, D.; Leymann, F.:
Service Selection for On-demand Provisioned Services. In: Proceedings
of EDOC 2014

[5] Sonntag, M.; Karastoyanova, D.: Ad hoc Iteration and Re-execution of
Activities in Workflows. In: International Journal On Advances in
Software. Vol. 5 (1 & 2), Xpert Publishing Services, 2012

[6] Leymann, F.: Linked Compute Units and Linked Experiments: Using
Topology and Orchestration Technology for Flexible Support of
Scientific Applications. In: Software service and application engineering.
Springer

[7] Giles, J. The trouble with replication. In: news@nature 442, 7101, 344–
347. 2006.

[8] Hey, T., Tansley, S., and Tolle, K. 2009. The Fourth Paradigm: Data-
Intensive Scientific Discovery. Microsoft

[9] The NIST Definition of Cloud Computing, NIST Special Publication
800-145, 2011, http://www.nist.gov/itl/cloud/

[10] Görlach, K. et al.: Conventional Workflow Technology for Scientific
Simulation. In: Guide to e-Science, Springer-Verlag, 2011.

[11] Drummond , C.: Replicability is not reproducibility: Nor is it good
science. In Proceedings of ICML 2009

[12] Missier, P. ; Woodman, S.; Hiden, H.; Watson, P.: Provenance and data
differencing for workflow reproducibility analysis. In: Concurrency and
Computation. Practice & Experience, 2013

[13] Klinginsmith, J.; Mahoui, M.; Wu, Y.: Towards Reproducible eScience
in the Cloud. In: Proceedings of CloudCom 2011

[14] Howe, B.: Virtual Appliances, Cloud Computing, and Reproducible
Research. In: Computing in Science & Engineering, 14, 36-41. 2012

[15] Missier, P. et al.: Provenance and data differencing for workflow
reproducibility analysis. In: Concurrency and Computation. Practice and
Experience, 2013

All links were last followed on 02.10.2014

