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Abstract— The ability to repeat an experiment, known as rep-

licability, is a basic concept of scientific research and also an 

important aspect in the field of eScience. The principles of Ser-

vice Oriented Computing (SOC) and Cloud Computing, both 

based on high runtime dynamicity, are more and more adopted 

in the eScience domain. Simulation experiments exploiting these 

principles introduce significant challenges with respect to repli-

cability. Current research activities mainly focus on how to ex-

ploit SOC and Cloud for eScience, while the aspect of replicabil-

ity for such experiments is still an open issue. In this paper we 

define a general method to identify points of dynamicity in simu-

lation experiments and to handle them in order to enable replica-

bility. We systematically examine different types of service bind-

ing strategies, the main source of dynamicity, and derive a meth-

od and corresponding architecture to handle this dynamicity 

with respect to replicability. Our work enables scientists to per-

form simulation experiments that exploit the dynamicity and 

flexibility of SOC and Cloud Computing but still are repeatable. 

Keywords— replicability; SOC; SOA; Cloud; on-demand 

provisioning and deprovisioning; eScience; 

I.  INTRODUCTION 

Service oriented architectures are well established as a 
suitable approach for building huge, complex and massively 
distributed systems that are nevertheless reliable, manageable 
and flexible. The underlying paradigm of service oriented 
computing (SOC) defines services as the basic building blocks 
of such architectures. A service encapsulates certain functional-
ity, provides it over a unified interface and is loosely coupled 
with other services [2]. The concept of cloud computing builds 
on the foundations of SOC. Cloud computing provides IT re-
sources as services having well defined properties such as elas-
ticity or pay-as-you-go [9]. The use of cloud services eases the 
provisioning of and the access to IT resources and allows for 
far more dynamic approaches for the provisioning and man-
agement of complex software systems. 

The field of eScience comprises a variety of research disci-
plines where scientific progress depends on the use of IT [8]. 
One of these disciplines is simulation technology, where real 
world phenomena are formally modeled and then simulated 
based on these models. Experiments based on simulations are 
typically complex processes incorporating different activities, 
data, and tools. The use of process modeling languages and 
workflow systems is a common approach to manage the com-
plexity of such experiments. In our previous work, we have 

developed a scientific workflow management system (SWfMS) 
based on conventional workflow technology and SOC but es-
pecially extended and adapted to the needs of eScience [10][5]. 
In our current work, we are taking this work one step further by 
not only exploiting the benefits of SOC but also adopting the 
principles of cloud computing. We introduced an approach and 
architecture for the on-demand provisioning and de-
provisioning of workflow execution middleware and services 
including their underlying middleware and infrastructure [1]. 

Scientific progress is based on the concept of validation and 
reuse of research results. In our work we focus on experiments, 
especially "virtual" experiments conducted based on simula-
tions. The validation of results obtained by an experiment de-
pends on the ability to reproduce these results [6]. The term 
reproducibility in general refers to the ability to obtain the 
result of an experiment again, either by conducting the same 
experiment again (possibly in a different environment) or by 
following a completely different approach [11][12]. While the 
term reproducibility mostly focuses on the validity of the result 
of an experiment, in many cases the validity of the experiment 
itself, i.e. the method and process it is based on, is also of inter-
est. In this context, the more specific concept of replicability 
comes into play [7], it describes the ability to conduct an exper-
iment again resulting in the same outcome. 

The application of the principles of SOC and cloud compu-
ting in the domain of eScience provide a multitude of benefits 
like automation, flexibility and better integration support. Such 
workflow-based experiments typically show a high degree of 
runtime dynamicity by for example dynamic service selection 
or resource provisioning. This altogether leads to significant 
challenges with respect to replicability. In this paper we there-
fore contribute (1) a general concept for replicability in work-
flow-based experiments, (2) a method to realize this replicabil-
ity, (3) an extension of our architecture that supports replicabil-
ity, and (4) an example of a realization of our approach. 

The rest of this paper is structured as follows. In section II 
we introduce our general concept for replicability in workflow-
based and service-oriented scientific experiments. In section III 
we refine this concept by linking it to service binding strate-
gies. In section IV we show how we adapted our existing archi-
tecture to support replicability. Section V gives an example 
showing some details of our approach. We give an overview 
about related work in section VI and close the paper with a 
short summary and outlook in section VII. 



II. CONCEPT OF REPLICABILITY 

In this work we focus on the replicability of workflow-
based and service-oriented experiments. The execution of an 
experiment is modeled as a workflow comprising a set of activ-
ities together with control flow and dataflow dependencies. 
The activities of a workflow model are described in terms of 
functional and non-functional requirements. For each activity 
the modeler of a workflow defines the required abstract service 
interface as well as additional non-functional requirements. 
Following the principles of SOC, the functionality (or inter-
face) required by an activity is provided by services. 

The execution of a workflow-based experiment, depicted in 
Fig. 1 on the left side, is based on a workflow model describing 
the course of the experiment, input data (X) and an execution 
context (A). The execution context contains the non-functional 
requirements for the execution of the workflow model, for 
example cost or time constraints. When starting an experiment, 
the workflow model, input data and the execution context are 
passed to an execution environment (E). This environment is 
inter alia responsible for the fulfillment of the non-functional 
requirements during the execution of an experiment. The exe-
cution of an experiment finally results in output data (Y). 

The workflow model does not need to specify any specific 
services to use; it only defines the needed functionality and 
non-functional requirements. The selection of a suitable service 
is realized at runtime by the execution environment. In SOC 
this concept is well-known as publish-find-bind [2]. A service 
provider publishes services to a service registry (“publish”). A 
service consumer queries this service registry for a service 
fulfilling his requirements (“find”) and then binds to the select-
ed service (“bind”). To achieve loose coupling between service 
consumer and service provider, the find and bind steps are 
typically carried out at runtime by the execution environment. 
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Original Execution 
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Fig. 1. Concept of replicability for scientific experiments. 

During the execution of a workflow, this so called dynamic 
binding results in degrees of freedom for the selection of ap-
propriate services. A tangible example is an activity requiring a 
web search. Google (www.google.com) and Bing 
(www.bing.com) both provide this functionality (web search 
based on a given string) with the same non-functional capabili-
ties (free of cost and fast). The decision which of these web 
search services is selected at runtime is left to the execution 
environment. As a consequence, the replicability of workflow-
based and service-oriented experiments is limited. For each 
execution the execution environment might select a different 
set of services fulfilling the functional and non-functional re-
quirements of the workflow model and execution context. 

Our approach for the replicability of workflow-based ex-
periments is based on the principle depicted in Fig. 1. During 
the execution of an experiment, shown in the left part, we ob-
serve the execution of the original experiment and capture 
specific execution data in an auditing system. To achieve repli-
cability, the original execution context A is replaced by a new 
execution context B (Fig. 1, right part) generated based on the 
auditing data captured before. It defines very strict require-
ments and thereby reduces the degree of freedom during 
runtime in a way that further executions of the experiment are 
replications of the original execution. The execution E’ based 
on the execution context B then results in output data Y’. 

The replication of a workflow-based experiment does not 
necessarily imply the complete replication of every aspect of an 
experiment. Due to the abstraction levels introduced by SOC 
we can in general not control every aspect of the execution of 
an experiment and the involved services. If for example the 
hardware a specific service is running on is changed or recon-
figured, this might not affect the functional and non-functional 
capabilities declared by this service at all. Nevertheless, this 
change might have an impact on experiments using this ser-
vice, for example by introducing a slightly different timing 
behavior. When talking about replication, we therefore aim at a 
repeated execution “as similar as possible” to the original exe-
cution. 

III. REPLICABILITY AND SERVICE BINDING STRATEGIES 

As already discussed in the last section, the main source of 
dynamicity is in the service binding at runtime. In our previous 
work we have developed an extended classification for service 
binding strategies [1]. In the following we will show how to 
achieve replicability for each of these classes. Our method is 
based on that we first identify the dynamic aspects for each 
binding strategy. Subsequently we show which information are 
needed to replicate a service call. 

In Fig. 2 the different binding strategies are illustrated. A 
service composition is shown as an example implementation of 
an experiment. The service calls are passed to the so-called 
enterprise service bus (ESB) [3], a middleware component that 
realizes the different binding strategies. 

When using the strategy static binding (Fig. 2, A), the ESB 
receives a service call already including a target address, the 
so-called service endpoint. The service call is directly forward-
ed to the given address. Static binding is the only binding strat-
egy without a dynamic component. Service calls using the 
static binding strategy are readily replicable. 

In case of dynamic binding (Fig. 2, B), the target of a ser-
vice call is determined dynamically at runtime based on func-
tional and non-functional requirements. The ESB carries out a 
service discovery and service selection finally resulting in a 
service fulfilling both, the functional requirements as well as 
the non-functional requirements. The service call is then for-
warded to the endpoint of the selected service. To replicate a 
service call with dynamic binding, during repeated execution 
the ESB has to forward the service call exactly to the endpoint 
selected in the original service call. This can be achieved by the 
ESB logging the selected endpoint during the original execu-
tion. For a further execution no service discovery and service 



selection are performed, instead the before logged service end-
point is selected. 

Using the strategy dynamic binding with service deploy-
ment (Fig. 2, C), the required service will be initially deployed 
before it can be used. First the ESB receives the service call 
and carries out a service discovery and service selection. The 
difference is that the ESB does not get an endpoint but a ser-
vice implementation of a suitable service. The service imple-
mentation is then deployed on an existing middleware and then 
the service call is passed to its service endpoint. To replicate 
such a service call during repeated execution the ESB has to 
deploy exactly the same service implementation on exactly the 
same middleware as in the original execution. This can be 
achieved by the ESB logging which service implementation 
was deployed on which middleware. For repeated execution 
the service discovery and service selection are skipped. Instead 
the service implementation logged before is deployed on the 
middleware also logged before. 

In the case of dynamic binding with software stack provi-
sioning (Fig. 2, D) not only the service implementation but also 
the underlying middleware and infrastructure are provisioned 
before the service call can be forwarded. First the ESB receives 
the service call and carries out a service discovery and a service 
selection. As result the ESB obtains a so-called service pack-
age, an archive containing all required artifacts to provision the 
service implementation including its underlying middleware 
and infrastructure. The service package is then provisioned in 
an existing cloud infrastructure and the service call is forward-
ed to its service endpoint. To replicate such a service call, dur-
ing repeated execution the ESB has to provision exactly the 
same service package in exactly the same cloud infrastructure 
as in the original execution. This is achieved by the ESB log-
ging which service package is provisioned in which cloud in-
frastructure. During repeated execution the ESB uses exactly 
the service package logged before and provisions it on the 
cloud infrastructure also logged before using exactly the same 
parameters as in the original execution. 

We summarize our method in Table 1. For “static binding” 
there are no dynamic aspects and therefore replicability is giv-
en without any further action. For “dynamic binding” the ser-
vice endpoint is determined dynamically and therefore has to 

be logged for repeatable execution. For “dynamic binding with 
service deployment” middleware and service implementation 
are determined dynamically. Consequently, the service end-
point is also dynamic. For repeatable execution the same mid-
dleware and the same service implementation have to be used 
and therefore be logged. In case the deployment of the service 
implementation on the middleware can be parameterized, these 
parameters also have to be logged. The service endpoint de-
pends on the service deployment and is therefore not logged. 
For “dynamic binding with software stack provisioning” the 
cloud infrastructure as well as the service package is deter-
mined dynamically. Therefore the service endpoint is also dy-
namic for this binding strategy. For repeatable execution the 
cloud infrastructure and the service package as well as the pro-
visioning parameters have to be logged. The service endpoint is 
not logged as it depends on the provisioning of the service 
package. 

TABLE I.  METHOD FOR REPLICABILITY 

binding strategy dynamic aspects replicability needs 

static binding - - 

dynamic binding service endpoint service endpoint 

dynamic binding  

with service 

deployment 

middleware, 

service 

implementation, 

service endpoint 

middleware, 

service implementation, 

deployment parameters 

dynamic binding  

with software stack 

provisioning 

cloud infrastructure, 

service stack  

(infrastructure, 
middleware, service 

implementation), 
service endpoint 

cloud infrastructure, 

service package, 

deployment parameters 

We assume that the used services, service implementations, 
service packages and cloud infrastructures are in principle 
available for repeated execution. In practice, it is quite possible 
that this assumption is violated and e.g. a certain service end-
point is no more available for later execution. In this case a 
replication of the original execution is not possible. The execu-
tion of the workflow would be canceled at this point. Neverthe-
less, to ensure a robust workflow execution, the strength of 
dynamic binding can be exploited to select an alternative ser-
vice with the same functional and non-functional properties. It 
is important to log this deviation of the replication and to 

Fig. 2. Extended classification of service binding strategies, based on [1] 
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communicate it to the user. He can then decide if this repeated 
execution is usable despite the deviation. 

In our previous work we have developed the concept of the 
on-demand provisioning of workflow execution middleware 
and services [1], which is based on the binding strategy “dy-
namic binding with software stack provisioning” (Fig. 2, D). 

IV. ARCHITECTURE FOR REPLICABLE EXPERIMENTS  

In the following we will show how we realized the general 
concept of replicability for scientific experiments introduced in 
section II in our existing architecture for on-demand provision-
ing of workflow execution middleware and services [1][4]. 
This architecture realizes the service binding strategy “dynamic 
binding with software stack provisioning” and in addition also 
supports “static binding” and “dynamic binding”. We distin-
guish between “provisioned services” and “not provisioned 
services”. A provisioned service is a functionality provided at 
an endpoint with certain non-functional properties, everything 
else is transparent. In contrast, a not provisioned service at first 
has to be explicitly provisioned before it can be used. 

In Fig. 3 we present the part of our architecture realizing 
the service binding. The workflow engine is responsible for the 
execution of the workflows. The ESB coordinates the pro-
cessing of the service calls. The service registry is a global 
directory containing information about all services. It offers 
information about functional and non-functional properties of a 
service. For provisioned services the endpoint is stored, while 
for not provisioned services a reference to the service package 
repository is stored. For each not provisioned service the ser-
vice package repository contains the corresponding service 
package together with provisioning metadata. The provisioning 
manager is capable to provision service packages using a suita-
ble provisioning engine. 

Service calls are initiated by the workflow engine (Fig. 3, 
step 1) and contain the actual payload as well as different 
metadata (step 2). The functional requirements (FR) describe 
the required interface; the non-functional requirements (NFR) 

describe requirements concerning the quality of a service. 
Whereas these requirements correspond to traditional SOC 
concepts, the provisioning requirements (PR) are specific for 
our on-demand provisioning approach. They describe require-
ments specific for the provisioning process, for example al-
lowed cloud providers or the region where resources have to be 
provisioned. 

All service calls are processed by the ESB. When receiving 
a service call, the ESB first executes a service discovery (step 
3). In this step all service offers which are compliant with the 
functional requirements of the service call are determined by 
the service registry (step 4). Afterwards a service selection is 
carried out (step 5). In this step all service offers fulfilling addi-
tional to the functional requirements also the non-functional 
requirements are determined (step 6). If the result set contains 
at least one provisioned service, the service selection compo-
nent returns exactly one endpoint (of a provisioned service) and 
the ESB forwards the service call to the selected endpoint (step 
7a). If the result set however contains no provisioned services, 
the service selection component returns a service package ref-
erence for each service offer in the result set. The ESB for-
wards these service package references together with the provi-
sioning requirements to the provisioning manager (step 7b). 
The provisioning manager executes a service package selection 
by passing the set of service package references, the provision-
ing requirements and its own provisioning capabilities to the 
service package repository (step 8). In this step a service pack-
age of the provided set is determined which on the one hand 
fulfills the provisioning requirements of the service request and 
which on the other hand can be processed by one of the availa-
ble provisioning engines of the provisioning manager (step 9). 
The provisioning manager then provisions the resulting service 
package using a suitable provisioning engine (step 10). In the 
last step the ESB forwards the service request to the service 
provisioned before (step 11). 

In section III we discussed that, depending on the service 
binding strategy, different information has to be logged during 
the workflow execution to enable replicability. Considering the 

Fig. 3. Architecture for replicable experiments provisioned on demand 
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architecture presented before, both the ESB and the provision-
ing manager have to store information for replicability. For the 
case that the service selection step returns exactly one service 
endpoint, this information is logged by an auditing component 
in the ESB. Otherwise, an auditing component in the provision-
ing manager logs which service package is provisioned by 
which provisioning engine in which cloud environment using 
which parameters. Using the data captured by the auditing 
components, an execution context can be generated that ena-
bles the replication of the original execution.  

V. REALIZATION EXAMPLE 

In section II we introduced a generic concept to enable the 
replication of workflow-based and service-oriented scientific 
experiments. In the previous section we demonstrated the ex-
tension of our architecture in order to support this concept. In 
the following we will show, using a simplified example, how 
the execution context, the auditing, and the exchanged messag-
es can be realized in a SOAP web service-based system. 

EXECUTION CONTEXT (Generated)

Service Calls

Activity A

Endpoint: http://example.org/X

Activity B

Provisioning requirements

Cloud: AWS

Backup Information (Or. Ex. C.)

Nonfunctional requirements

Region: Europe
Service Package: calc.csar
SP Repository: SPR_TOSCA

A

B

<invoke name="A" 

portType="X"...>

...

</invoke>

<invoke name= "B" 

portType="Y"...>

...

</invoke>

EXECUTION CONTEXT (Original)

Provisioning Requirements

Cloud 1: AWS 
Cloud 2 vCloud 
Service Calls

+

+

Activity A

Nonfunctional requirements


Provisioning requirements

Encryption: true

+

+



Activity B

Nonfunctional requirements


Provisioning requirements

Cloud:

+

+ AWS

- - -

Nonfunctional Requirements +
- - -

- - -

 
Fig. 4. Original (left) and generated execution context (right) 

In the upper right of Fig. 4 a workflow model fragment 
containing two activities A and B is depicted. Activity A calls a 
service implementing interface X, activity B calls a service 
implementing interface Y. On the left side of Fig. 4 an execu-
tion context for this process model fragment (original execu-
tion context) is shown. On the one hand, the execution context 
allows specifying non-functional and provisioning require-
ments applying to the whole workflow. In our example we 
define that AWS or vCloud have to be used as cloud environ-
ments. The execution context also allows specifying require-
ments for a single activity. In our example any service used by 
activity A has to support encryption. For activity B it is re-
quired to use only AWS as cloud infrastructure. We assume 
that local requirements always supersede global requirements. 

In Listing 1 and Listing 2 it is shown, which messages are 
sent during the execution of the workflow model fragment 
depicted in Fig. 4, and which data is captured in the auditing 
system. On the left side of Listing 1 the service call of activity 
A is depicted. The requirements specified in the original execu-
tion context are integrated into the header block of the mes-
sage. The element <repEx> specifies if the service call is part 

of an original or part of a replicated execution. Depending on 
this either the original execution context or the generated exe-
cution context is considered by the execution environment. 

<soap:Envelope>   

<soap:Header>   

<messageId>MI_102</messageId>

<portType>X</portType>

<repEx>no</repEx>

<originalExecution>

<nfr>

<encryption>true</encryption>  

</nfr>

<pr>

<cloud name="AWS"/> 

<cloud name="vCloud"/>

</pr>

</originalExecution>

<reproducedExecution/>

</soap:Header>

<soap:Body>...</soap:Body>

</soap:Envelope>

<log>

<serviceCall timestamp="... "

type="dynamicBinding">

<sender> 

<pModel>PM_304</pModel>

<pInstance>PI_12</pInstance>

<activity>A</activity>

</sender>  

<repEx>no</repEx>

<portType>X</portType>

<target>http://example.org/X</target>
...

</serviceCall>
...

</log>

 
Listing 1. Service call of actitivity A, based on original context 

On the right side of Listing 1 a consolidated log for this 
service call is depicted. It incorporates logging data from the 
workflow engine, the enterprise service bus and the provision-
ing manager. In our example the log shows that activity A was 
executed by a provisioned service with the endpoint address 
“http://example.org/X”. This data can then be used to generate 
an execution context for the repeated execution. 

<soap:Envelope>   

<soap:Header>   

<messageId>MI_103</messageId>

<portType>Y</portType>

<repEx>no</repEx>

<originalExecution>

<nfr/>

<pr>

<cloud name="AWS"/> 

</pr>

</originalExecution>

<reproducedExecution/>

</soap:Header>

<soap:Body>...</soap:Body>

</soap:Envelope>

<log>

<serviceCall timestamp="..." 

type="onDemandProvisioning">

<sender> 

<pModel>PM_304</pModel>

<pInstance>PI_12</pInstance>

<activity>B</activity>

</sender>  

<repEx>no</repEx>

<portType>Y</portType>

<cloud>AWS</cloud>

<servicePackage>calc.csar</servicePackage>

<SPRep>SPR_TOSCA</SPRep>

<target>http://ec2-176-34-81-162.eu-west-1.

compute.amazonaws.com/calc</target>
...

</serviceCall>
...

</log>  
Listing 2.  Service call of actitivity B, based on original context 

In Listing 2 the service call for activity B is depicted. The 
requirements are again integrated into the header block. The 
consolidated log (right side of Listing 2) shows that a not pro-
visioned service was selected. Specifically, the service package 
“calc.csar” was provisioned in the Europe region of AWS. 

<soap:Envelope>   

<soap:Header>   

<messageId>MI_145</messageId>

<portType>X</portType>

<repEx>yes</repEx>

<originalExecution>

<nfr>

<encryption>true</encryption>  

</nfr>

<pr>

<cloud name="AWS"/> 

<cloud name="vCloud"/>

</pr>

</originalExecution>

<reproducedExecution>

<nfr>

<target>http://example.org/X

</target>

</nfr>

<pr/>

</reproducedExecution>

</soap:Header>

<soap:Body>...</soap:Body>

</soap:Envelope>

<soap:Envelope>   

<soap:Header>   

<messageId>MI_146</messageId>

<portType>Y</portType>

<repEx>yes</repEx>

<originalExecution>

<nfr/>

<pr>

<cloud name="AWS"/> 

</pr>

</originalExecution>

<reproducedExecution>

<nfr/>

<pr>

<cloud name="AWS" region="Europe"/>

<servicePackage>calc.csar</servicePackage>

<SPRep>SPR_TOSCA</SPRep>

</pr>

</reproducedExecution>

</soap:Header>

<soap:Body>...</soap:Body>

</soap:Envelope>

 
Listing 3. Call of actitivity A (left) and B (right), based on generated context 

On the lower right part of Fig. 4 the execution context gen-
erated from the auditing data captured during the original exe-



cution is depicted. For activity A the specific endpoint 
“http://example.org/X” is specified - thus the same service as in 
the previous execution should be called. For activity B the 
service package “calc.csar” should be used and likewise be 
provisioned in the Europe region of the AWS Cloud. In Listing 
3 we show the resulting service calls of activity A and B during 
the repeated execution based on the generated execution con-
text. The header blocks now contain the more specific require-
ments to ensure the same execution as the original one. 

VI. RELATED WORK 

In [13] the authors show how cloud related technologies 
can be used to setup and run eScience software independent of 
the underlying cloud platform. Experiments are assumed to be 
simple programs or scripts; there is no notion of SOC or work-
flows and consequently no runtime dynamicity like dynamic 
binding. Replicability is mainly related to the technical setup 
process, an aspect that is in our work encapsulated by service 
packages and the related provisioning engines together with a 
dynamic service package selection process at runtime [4]. 

The work presented in [14] proposes the use of cloud based 
virtual machines as a means to archive, distribute and docu-
ment IT-based experiments. The approach focuses mainly on 
single machine scenarios; there is no generic way to handle 
complex application architectures. In contrast to our work, the 
execution and coordination of complex experiments is not 
covered at all. Replicability is mainly seen as the replicable 
setup of a complex set of tools on a (virtual) machine. Our 
approach tackles the replication of the whole process of dy-
namically setting up complex application architectures and 
executing long running workflows incorporating extensive 
dynamic binding. In addition, the work presented in [14] does 
not exploit the power of cloud computing at all; it is solely 
based on the use of virtual machines without considering as-
pects like elasticity or pay-as-you-go. 

The work presented in [15] provides an algorithm that ana-
lyzes provenance information to determine if an experiment 
has been replicated. Our work in contrast focuses on the 
runtime of experiments and aims to ensure that a running ex-
periment is a replication of a previous execution. In addition, 
our approach focuses on control flow centric workflow models. 
The workflow execution system the work in [15] is based on 
realizes the binding strategy “dynamic binding with service 
deployment” (Fig. 2, C) while our architecture realizes the 
more dynamic strategy of “dynamic binding with software 
stack provisioning” (Fig. 2, D). 

VII. SUMMARY AND OUTLOOK 

In this paper we have demonstrated how replicability can 
be achieved for workflow-based and service-oriented experi-
ments. After presenting our general approach to control repli-
cability by means of an appropriate execution context, we used 
an existing classification of service binding strategies to sys-
tematically derive how replicability can be realized in SOC 
based systems. After that, we showed how our existing archi-
tecture has to be extended to support the replication of experi-
ments. In addition, we presented an example to give some de-
tails about a realization of the proposed solution. Our work 

allows scientists to benefit from the dynamicity and flexibility 
of SOC and cloud based experiments without losing the capa-
bility to replicate their work. 

Besides the ongoing realization of the presented replicabil-
ity features in our existing system the topic of “controlled dy-
namicity” promises further potential with respect to eScience 
experiments. Parameter studies are often used to run multiple 
simulations that differ in just one input parameter. This concept 
can also be transferred to the level of the execution environ-
ment. Service binding is then seen as a parameter of an exper-
iment. This approach can be used to analyze the influence of 
specific services (algorithms) on the execution as well as the 
result of an experiment. 
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