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Abstract—The state-of-art approaches in structural similar-
ities of process models base their operations on behavioral
data and text semantics. These data is usually missing from
mock-up or obfuscated process models. This fact makes it
complicated to apply current approaches on these types of
models. We examine the problem of the automated detection of
re-occurring structures in a collection of process models, when
text semantics or behavioral data are missing. This problem
is a case of (sub)graph isomorphism, which is mentioned as
NP-complete in the literature. Since the process models are
very special types of attributed directed graphs we are able to
develop an approach that runs with logarithmic complexity. In
this work we set the theoretical basis, develop a configurable
approach for the detection of re-occurring structures in any
process models collection, and validate it against a set of BPMN
2.0 models. We define two execution scenarios and discuss
the relation of the execution times with the complexity of the
comparisons. Finally, we analyze the detected structures, and
propose the configurations that lead to optimal results.

Keywords-structural similarities, process models, BPMN 2.0,
process fragments, subgraph isomorphism

I. INTRODUCTION

Re-usability of process models is frequently discussed
in the literature [1]–[5]. An efficient approach of re-using
parts of the process models will improve the engineering
of process models. It will increase the performance of the
designers, because they will not need to start everything from
scratch [2], and reinforce the usage of best design practices
[6].

In order to determine these parts of a process model that
can be re-used, one needs to analyze large collections of
process models, and identify similar labels, structures, or
behavior. In these terms the emerging research has done great
steps towards the process models similarities by focusing
on three different streams: 1) Text semantics, 2) Structural
analysis and 3) Behavioral analysis of the process models
[7].

It is however a usual phenomenon that large collections
of process models (e.g. IBM Industry Models, Process
Models from research projects etc.) contain non-executable
or obfuscated models. These means that text semantic data
or behavioral information are not available. This lack of

data basically burdens the application of text semantics or
behavioral similarity approaches.

One would conclude that the appropriate choice in this case
is the structural similarities approach. However, the current
approaches [7]–[10] are highly dependent to text semantics,
and behavioral similarities. So, it is expected that there can
be a limited application on such collections of models. In
these terms the only option left is the application of similarity
comparisons with a unique focus on the structural topology
of the process models. This process is defined in graph theory
as (sub) graph isomorphism. It is currently widely applied
on different fields of computer science, such as networks,
bio-informatics, and semantic web. However, it is rarely met
in the field of Business Process Management, and we were
not able to locate any approach with a focus on BPMN 2.0
process models.

In this sense, we define a configurable approach of sub-
graph isomorphism to automate the detection of re-occurring
structures in a collection of process models. Although the
method that we present can be applied to process models
expressed in any workflow-language we make a focus on
BPMN 2.0 process models for this work. More particularly,
the main contributions of this paper are to:

• Set the theoretical framework that will be used as a
basis to our approach. In these terms, we extend the
definition of “Process Fragments” presented in [2] and
introduce the concept of “Checkpoints”.

• Define a configurable approach of sub-graph isomor-
phism that can be applied to any type of process models,
without the usage of data information, or text semantics.

• Apply the approach on a collection of BPMN 2.0 process
models.

• Define the metric of “Comparison Complexity” to
support the evaluation of the approach.

• Evaluate the approach on a set of BPMN 2.0 process
models.

• Discuss the corresponding execution times and the
detected structures, and

• Suggest the optimal configuration options of our ap-
proach.



The rest of this paper is structured as follows: Section II-A
motivates the goal of this work, section II-B describes the
emerging related work, section II-C defines the concepts that
will be used as a basis to our approach. Section III describes
the detection of the re-occurring structures in a collection
of BPMN 2.0 process models, section IV validates our
approach against a collection of process models, examines the
algorithm’s behavior with respect to two execution scenarios
and analyses the results. Section V gives a summary of our
work and an outlook to our future plans.

II. BACKGROUND

A. Problem Definition

In this work we address the problem of the automatic
discovery of reoccurring structures in a collection of process
models. The approach described in this paper will be applied
in a collection of 5372 BPMN 2.0 [11] process models
that were collected from the IBM Industry Models, BPM
Academic Initiative [12], and research projects. Most of these
process models are obfuscated or mock-ups. This means that
we do not know their text semantics, and we cannot execute
them. We therefore examine the graph-nature of process
models, and intend to apply approaches from the graph
theory in order to find their reoccurring structures.

In its most basic format a graph G = (V,E) is composed
of nodes and edges. We call V the set of nodes and E ⊂
V × V the set of edges of a graph G. If two nodes (u, v) are
connected by an edge e ∈ E this is denoted by e = (u, v)
and these two nodes are called adjacent. In the case where
an edge has a direction, then it is called “directed”, and the
graph “directed graph”. Graph’s elements can also contain
information such as labels, or other attributes. In this case
the graph is called attributed graph [13].

In graph theory the task of discovering similar structures
is expressed as sub-graph discovery problem. There we need
to find sub-graphs that reoccur in a set of bigger graphs. Sub-
graph discovery is a sub-category of the general problem of
subgraph isomorphism which is proven to be NP-Complete
[14], [15]. However there are special cases of graphs and
matching problems that are proven to be of lower complexity
[16].

Figure 1 presents two process models expressed in BPMN
2.0. We can observe in the figure 1 that the models comply
with the above definition of attributed directed graphs. There
are nodes (in BPMN 2.0 tasks, events and gateways), directed
edges (in BPMN 2.0 sequence flows), and labeling (BPMN
2.0 language semantics on events and gateways, and names on
tasks). Hence, process models are a special type of directed
attributed graphs. Our goal is to define a method for automatic
discovery of reoccurring structures in a collection of process
models, with a complexity lower than NP-Complete.

Figure 1 shows four pairs of structures that reoccur in
two BPMN 2.0 process models. These structures are not the
complete set of reoccurring structures in these two process

models. However we considered these as representative cases
as they demonstrate the following attributes:

1) Structures can be nested within each other. Example
structures of this attribute are marked with the red solid
and the blue dash-dot line.

2) Reoccurring structures can appear in different positions
of the process model. As position we define the number
of nodes that we need to traverse from the model’s
start node until we discover the first node of a marked
structure. Beginning from the model’s first node. This
attribute applies to all represented structures.

3) Structures can be “partially” similar. This means that
some of the outgoing edges of a node can lead to
matching mappings. Structures marked with the orange
dash line, the green dot line are some examples of this
attribute.

It is also possible that a structure demonstrates more than
one of the above attributes. For example the structure marked
with the blue dash-dot line is nested (attribute 2) and appears
in different positions of the diagram (attribute 3).

In order to discover the structures with the aforementioned
attributes we need to specify techniques to traverse and
fragment the models. Going back to the basics, for graph
traversals we backdated to the approaches of Depth-First-
Search (DFS) or Breadth-First-Search (BFS) [17]. However,
it was soon clear that a straightforward application of these
approaches would not lead to the discovery of all reoccurring
structures. In BFS and DFS each edge of the model is
“discovered” only once. While we need to traverse the models
in parallel and check all possible pairs of edges between the
two models for matching. This means that a node should
be traversed more than once. For example, the structures
that start with the node marked with C in Model A, and
B ′ in Model B match. This is because the lower part of
the structure in Model A has the same sequence of node
types (exclusive gateway, task, task, exclusive gateway) with
the upper part of the structure marked in Model B. These
structures are marked with green dotted line in figure 1).
In order to cover cases like that, we use DFS algorithm
and customize it to traverse and compare all possible path
combinations of the two models. This approach is explained
in detail in section III.

As mentioned before, a fragmentation methodology also
needs to be defined. Extracting arbitrary parts out of complex
process models is an essential technique [18]. In [19], [20]
and [21] a methodology to decompose the structure of a
process model into single-entry single-exit (SESE) regions
is defined. In [22] it is explained how to detect sub-graphs
within a BPMN models through the identification of SESE
regions. These approaches focus on the definition of the
Refined Process Structure Tree (RPST) which is basically
an hierarchical structure of sub-graphs that comply with
structural constraints. We considered to create the RPSTs of



Figure 1: Manually Recognized Relevant Process Fragments

the process models, to compare them, and then to apply tree
comparison techniques to export the reoccurring structures.
However, the methodology of RPSTs divides the process
model into SESE regions, and results in a subset of regions,
out of which only a small subset of the existing re-occurring
structures would be discovered (e.g. only the structure marked
with the blue dash-dot line in figure 1). In order to create
the complete set of sub-regions that should be examined as
possible re-occurring structures, it is imperative to define
a new methodology of fragmentation. This is described in
detail in section II-C.

B. Related Work
We consider our work related to the following major fields

of research: process fragmentation, process model similarities,
and graph matching approaches. Process fragmentation plays
a big role in the reuse of process models [1]–[5]. In [4], [5]
“Process Fragments” are introduced as incomplete process
parts that can be dynamically glued together during runtime.
This approach has been extended by [2] where they add
Business Process Management compliance features to the
definition of process fragments. For our work we used this
definition of [2] as a base, but as explained in section II-A
we extended it according to our needs.

Process model similarities is a topic frequently discussed
in the literature. According to [7] process similarities can be
researched from three different perspectives:
• Text similarity: where comparisons are applied on the

labels that appear in the elements of process models
(e.g. task labels, event labels etc.).

• Structural similarity: a comparison of the topologies of
the process models. Process models are seen here as
graphs, and text similarities possibly also play a role in
this case.

• Behavioral similarity: focuses on the execution seman-
tics of the process models.

We could not find any approach that focuses on the
detection of reoccurring structural parts in BPMN 2.0 models
with a sole focus on their structural topology. In [7], [8]
a set of algorithms for process model structural matching
is presented. These algorithms do not focus on a specific
workflow language. The presented methods rely on text
information of process models, to detect similar mappings.
It is also argued that these approaches will under perform or
crash for process models that miss text information, or for
models with a size bigger than 20 nodes.

A prototype for the comparison of BPMN 2.0 process
models is introduced by [9]. The prototype is very promising,
however it is argued that it might not be applicable to large,
complex, real world models in its current state. A method
to detect similar parts of process models is also proposed in
[10]. With respect to our work, both of these approaches have
a strong focus on text semantics, and it was therefore not
possible to be further used. Our work focuses solely on the
topologies of the process models, and is independent of text
or behavioral information that is occasionally missing from
process model collections (e.g. obfuscated models, mock-up
models etc.). An approach with a goal similar to ours is
found in [23]. This work focuses on BPEL processes, which



are transformed to a BPEL process tree, in order to apply
tree mining algorithms to discover reoccurring structures in a
process. Although the further goal of this work is very similar
to our goal, the different nature of BPMN 2.0 language does
not allow to apply the same tree mining techniques for similar
structures detection.

In order to achieve our goal we also needed to study
current approaches in graph matching. To the extend of our
research we were not able to find algorithms which take two
graphs as an input, and return the set of matching structures
as an output. In most of the cases, the input is a given sub-
graph and the output is the mappings of this sub-graph in
bigger graphs. The most relevant approach to our work, is
considered the work of [24]. This approach (VF-2 algorithm)
makes a propagating traversal in the graphs, and detects pairs
that can be mapped to each other according to feasibility
rules. These pairs are then returned as an output. In a broader
sense our approach can be considered as a customization
of VF-2 algorithm. As seen in section III we also apply a
propagating traversal, and rules to check if two elements
match with each other.

C. Basic Concepts

As already discussed, the first step towards the definition of
our algorithm is to define the methodology of fragmentation
that we are going to follow. In this context we extend the
definition of “Process Fragment”, initially given by [2], to
match our needs. According to [2] a “Process Fragment”
is a piece of process model with loose completeness and
consistency. The existence of process graph elements (start,
end, activities, context etc.) is possible but not imperative in
a process fragment. However, a process fragment must have
at least one activity and there must be a way to convert it to
an executable process graph.

With respect to our needs this definition needs refinement
in the following points:

1) the process fragment is not necessarily related to a
complete process models

2) the starting point of a process fragment is not defined
3) the existence of a split or merge node is optional
Before we proceed to the extension of the ‘process

fragment” definition, we need to define the concept of a
“Checkpoint”. As Checkpoint we define any type of node
that can be used as a starting point of our extended process
fragments. The types of checkpoints are configurable from
the user, and vary with respect to the process language that
describes the models.

The extended definition of “Process Fragment” is called
a “Relevant Process Fragment” because its detection is
dependent to its existence at least K process models. We
define a “Relevant Process Fragment” (RPF) as a “Process
Fragment” that exists in at least K process models and
satisfies the following structural requirements:
• starts with a checkpoint

• has at least N nodes included the checkpoint. Where N
is a natural number and pre-configured from the user.
We use N ≥3.

• contains at least one activity
For this paper we focus on the detection of RPFs when

K = 2, while in future work the threshold K may vary.

III. IMPLEMENTATION

This section describes the methodology we developed for
the discovery of the RPFs. For a better comprehension the
algorithm is separated in two main parts “Get Matching Path”
and “Comparison”. Algorithm 1 shows the main procedure of
our algorithm. Algorithm 2 shows a complementary recursive
procedure. Algorithm 1 starts the traversal of the model, calls
Algorithm 2, and returns the discovered RPF. Algorithm 2
compares two models with each other and extracts the
discovered similar structures.

As explained in Section II-A, it is required to traverse
all possible sets of paths between the models. In order
to address this requirement algorithm 1 takes as input
one set for each model, that contains one entry for every
outgoing sequence flows of each checkpoint. For example,
see checkpoint B and checkpoint E ′ in figure 1. The corre-
sponding sets given as input to the algorithm will be S1 =
{{exclusivegateway → TaskA }, {exclusivegateway →
Task C }} for Model A and S2 = {{parallel gateway →
Task E }, {parallel gateway → Task F }} for Model
B. These sets of checkpoint sequence flows are called
checkpointFlows in lines 3-4 of algorithm 2.

For all possible pairs of checkpointFlows in the two
checkpoint sets, namely for their Cartesian Product, we
call algorithm 2 (line 6 of algorithm 1). It takes as pa-
rameters the current instances of checkpointFlows, and an
empty fragment. By iteratively calling algorithm 2 for the
different checkpointFlows we manage to check all possible
checkpointFlows combinations as a possible start point of an
RPF. The comparison procedure returns the calculated RPF.
At this point we need to validate if the returned structure
comprises a fragment or not. The validation rules applied are
the requirements described in Section II-C. If the validation
is successful, then the fragment is saved in a temporary
data structure that holds all the discovered fragments (cf.
variable“relevant Process Fragments” in algorithm 1)).

The functionality of algorithm 2 is to traverse and compare
the models. The first step in this procedure is to check
if the sequence flows that are given as parameters have
sources and targets that are of the same type (e.g. task,
exclusive gateway, start event etc.). When this condition
is satisfied we say that two sequence flows match. Since
we are strictly focusing on the structural similarity of the
models this decision can be taken only based on the type
of the sequence flow’s source and target node. However,
the condition could be extended if we wanted to check
the similarity regarding more parameters e.g. labels of the



Algorithm 1 Procedure that calculates the matching paths of two models

1: procedure GETMATCHINGPATH
2: i← 0
3: for all checkpointF lows chF lowA ∈ modelA do
4: for all checkpointsF lows chF lowB ∈ modelB do
5: tmpFragment← ∅
6: tmpFragment← COMPARISON(chFlowA.sequenceFlow,chFlowB.sequenceFlow,tmpFragment)
7: if tmpFragmentisV alidFragment then
8: relevantProcessFragments.add(tmpFragment)
9: end if

10: end for
11: end for
12: end procedure

Algorithm 2 Procedure that compares the two models

1: procedure COMPARISON(sequenceF lowModelA ,sequenceF lowModelB,tmpFragment)
2: if (SourceTypeOfSequenceF lowA equals SourceTypeOfSequenceF lowB) and

(TargetTypeOfSequenceF lowA equals TargetTypeOfSequenceF lowB) then
3: outgoingA← getOutgoingA
4: outgoingB ← getOutgoingB
5: fragment.add(sequenceFlowModelB)
6: for all outgoingA ∈ModelA do
7: for all outgoingB ∈ModelB do
8: if outgoingB /∈ tmpFragment then
9: COMPARISON(outgoingA,outgoingB,tmpFragment)

10: end if
11: end for
12: end for
13: else
14: return fragment;
15: end if
16: end procedure

nodes. When the sequence flows match we add the respective
sequence flow to the a temporary fragment structure (cf.
variable tmpFragment in Algorithm 2). Afterwards we get
all the outgoing sequence flows of the previously considered
target nodes, aka. make a step forward to the traversal, and
call recursively the comparison algorithm for all pairs of
outgoing sequence flows. The terminate condition of the
recursion is two sequence flows that do not match. If this
condition is satisfied the algorithm returns the set of matched
sequence flows until this point of execution (cf. variable
tmpFragment in algorithm 2).

An implementation of our algorithm is available on-
line at: http://www.iaas.uni-stuttgart.de/forschung/projects/
benchflow/tools/BPMNCompare/.

IV. EVALUATION OF THE APPROACH

This section evaluates our approach and discusses the
resulting data. We ran our experiments on a local machine
equipped with Intel Core i7-3520M CPU and 16GB RAM.

The machine is running Windows 7. We realized the
algorithm in a Java environment and used the BPMN 2.0
Meta Model of the Eclipse Modeling Framework (EMF) [25],
[26].

The process model collection that we used for the experi-
ments consists of 46 BPMN 2.0 models that originate from
the datasets1 also used in [9], and the BPMN 2.0 standard
examples2 [11]. Each model is compared against the rest
of the models in the collection. In total, 2070 comparisons
were calculated.

For the better comprehension of our results we need to
have an overview to the complexity of our models. For
this purpose we use the metric of Control-Flow-Complexity
(CFC) described in [27] to describe the complexity of process
models and we define the metric of “Comparison Complexity”
to describe the complexity of the comparisons.

1http://pi.informatik.uni-siegen.de/qudimo/bpmn/
2http://www.omg.org/spec/BPMN/20100602/

http://www.iaas.uni-stuttgart.de/forschung/projects/benchflow/tools/BPMNCompare/
http://www.iaas.uni-stuttgart.de/forschung/projects/benchflow/tools/BPMNCompare/
http://pi.informatik.uni-siegen.de/qudimo/bpmn/
http://www.omg.org/spec/BPMN/20100602/


The CFC measures all possible control flow decisions in a
process model. According to [28] CFC cannot be considered
as a metric to fully describe the model’s structural complexity.
Nevertheless, it was considered enough for giving the reader
an overview of our collection. It is calculated by:

CFC(P ) =∑
i∈{XOR−splitsofP} CFCXOR−Split(i) +∑
j∈{OR−splitsofP} CFCOR−Split(j) +∑

k∈{AND−splitsofP} CFCAND−Split(k)
(1)

The CFC functions CFCXOR−Split, CFCOR−Split and
CFCAND−Split return the following results for the node
types that are represented by the corresponding subscripts:
• XOR-split: will have n outgoing transitions. In this case

the designer has to consider all the possible outgoing
transitions even though only one will be followed at
the execution time. For this reason, each XOR-split will
add the number n to the overall CFC metric, where n
is the total number of its outgoing control flows.

• OR-split: the OR-split will also have n outgoing transi-
tions. The OR-split must lead to at least one transition.
The choice of at least one and at most n outgoing
transitions is expressed by the possibility of 2n-1. In
this case the OR-split adds n outgoing transitions to the
overall CFC metric of the model.

• AND-split: the execution of an AND-split will always
result in a decision since all outgoing flows are followed.
Therefore, the designer will only consider one possible
state that will finally result in the execution of the
AND-split. Hence, each AND split will add 1 unit to
the overall CFC metric.

In our case we calculated the CFC metric for the compared
BPMN 2.0 models. So, we adjusted the above functions to
the BPMN 2.0 elements. More particularly:

1) Exclusive Gateway: Splits are computed the same way
as the XOR split as they essentially correspond to the
same functionality. So, each Exclusive Gateway adds n
to the overall CFC metric where n is the number of the
gateway’s outgoing flows.

2) Inclusive Gateway: Splits are computed the same way
as OR-splits, as they essentially correspond to the same
functionality. So, each Inclusive Gateway: adds 2n-1 to
the overall CFC metric where n is the number of the
gateway’s outgoing flows.

3) Parallel Gateway: Splits are computed the same as AND-
splits. Even though the functionality is not exactly the
same, the control flows are executed concurrently and
end up to the same task. So only one decision has to be
taken in the control-flow. For this reason each Parallel
Gateway adds complexity 1 in the CFC metric.

4) Complex Gateway: Is also assigned the same complexity
as the OR-split because at least one path will be
followed, but the designer needs ot think of all 2n-
1 possible paths. So each Complex Gateway adds 2n-1
to the overall CFC metric where n is the number of the
gateway’s outgoing flows.

5) Event Based Gateway: Can be of type exclusive or
parallel gateway. The complexity assigned to it is the
complexity of the gateway that corresponds to this sub-
type.

The computed CFC of our models is shown in figure 2.
There are 14 models with complexity 0 which means that
there is not any existent gateway in the models, i.e. these
models are sequential. There is one model with 1 complexity
which means it contains one of the Gateways matched with
the AND-split complexity, so a Parallel Gateway or an Event-
Based Parallel Gateway. The rest of the models lay between
the ranges of 2-8 which means there is a combination of a
single number of different types of gateways. Finally, we
can see a very complex model with CFC = 14.

Considering the context of the models, there are some
models that represent an updated version of a source model,
that also exists in the collection, but there are also models that
have irrelevant context with each other. Here, it is important
to point out that according to the suggested practices of
process model engineering [23] we expect that also the real-
world process models with which we will have to deal with
will be of similar complexities.

For our experiments we have designed two scenarios. In
the first scenario the types of {events,gateways} are set as
types of checkpoints. That means that the checkpoint sets
for the models shown in figure 1 correspond to the set
checkpointsA = {A,B, C ,D,E ,F ,G ,H } for Model A, and
the set checkpointsB = {A ′,B ′, C ′,D′,E ′,F ′,G ′,H ′} for
Model B. In the second scenario all available element types
defined in the BPMN 2.0 standard [11] are set as checkpoint
types, ie. {events, gateways, tasks}. Consequently, in this
case all the existing nodes of the diagram play the role of
a checkpoint and each node of a process model will be
combined with all the other nodes of the model to compare.
For both scenarios we have configured the detection to find
RPFs with 3 or more nodes. According to our definition (cf.
section II-C) these is the smallest possible size an RPF might
have.

In order to conceptualize the results better, we have
assigned a value to the complexity of each comparison. As
seen in the algorithms 1 and 2 the number of checkpoints and
their outgoing flows play an important role to the complexity
of the algorithm, because the “for” loops are dependent
to these values. Also, as explained in section III, for the
realization of the algorithm, each outgoing sequence flow of
a checkpoint, is associated with an entry to the checkpoint sets
that are handled by the algorithm. Let us call S the set of the



Figure 2: The control-flow-complexity (CFC) of the process models
Figure 3: Execution times vs. comparison complexity for different
comparison scenarios

outgoing sequence flows that correspond to checkpointFlows
of model A and F the set of the checkpointFlows of model
B. We calculate the complexity of the comparisons with the
following equation

Comparison Complexity=size(S)∗size(F)

(2)

By this way we manage to include the checkpoints and their
corresponding outgoing sequence flows in the measurement
of the comparison complexity.

Moving now to the execution of the experiments, we
executed each scenario 20 times for all model combinations.
The information about execution times, is collected with the
use of JMeter [29].

The execution time needed for each comparison is depicted
in figure 3. The vertical axis shows the values of execution
times in milliseconds (ms), and the horizontal axis shows
the comparison complexity of each comparison. The circles
show the comparison complexities of the first scenario, while
the X signs show the comparison complexities of the second
scenario.

In a closer look, we can see that the results form three
main clusters:
• Cluster 1: is formed with time ranges of [0-13] ms. In

this cluster we can find comparison complexities up
to 298 for the first scenario and 798 for the second
scenario.

• Cluster 2: is formed with time ranges of [14-22] ms.
In this cluster we can find comparison complexities up
to 484 for the first scenario and 1188 for the second
scenario.

• Cluster 3: is formed with time ranges of [29-41] ms.
In this cluster we can find comparison complexities up

to 990 for the first scenario and 1404 for the second
scenario.

From the resulting clusters we conclude that the execution
times are depending upon the comparison complexities.
Nevertheless, there seem to be more reasons that affect
performance. For example, there are bigger time values
for 0 comparison complexity, or smaller time values for
big comparison complexities (e.g. execution time 16 for
comparison complexity 1188 in the second scenario). By a
deeper analysis of the models we have observed that the
execution times are also affected by the level of nesting and
the total number of nodes participating in the models.

The number of RPFs detected in the process models does
not seem to affect the execution times, but the similarity of
the compared process models seemed to have a minor impact
in the performance. We suspect, that similar models will need
more time to compare, as the algorithm does more traversals.
However, this hypothesis needs more data for investigation,
and was left for future work.

Figure 5 shows the change of average time with respect to
the average comparison complexities for both scenarios. It
shows that the algorithm has complexity O(n log n) where
n is the value of comparison complexity. The curve that
the diagram shows between the times [10-15] for the first
scenario, and [20-25] for the second scenario result from the
small amount of data that we had in these times. This lack
of data is also shown in figure 3. From figure 3 and figure 5
we conclude that despite the increase in the comparison
complexity, there is minor difference in the execution times.
We explain this stability of time by the fact that the process
models are quite simple graphs [23].

As a conclusion to this discussion, in figure 4 we present
the RPFs that were detected in the comparison of the process
models of figure 1. As expected, we can see the RPFs that
were manually detected in figure 4. For the first scenario the



Figure 4: The detected process fragments for different comparison scenarios



Figure 5: The average execution time vs. the average comparison
complexity

algorithm detected five additional fragments that are shown
in figure 4. As seen, there are also some duplicate entries
returned (e.g. Fragment 4 and Fragment 5), which indicates
that the development of results filtering is necessary. Moving
to the second scenario where all nodes are calculated as RPFs,
we can see 11 more RPFs detected. That means 122.23%
increase of the results, and thus duplicate information as all
of the RPFs presented in the second scenario are already
included in the results of the first scenario, or can be easily
reproduced by the addition of task sequences at the beginning
or the end of the RPFs. For this reason we conclude, that
even though the usage of checkpoints does not improve the
performance in execution times, it should be a preferred
option, as it reduces duplicate information in the exported
RPFs and thus, reduces the efforts in filtering and analyzing
the results.

V. CONCLUSION AND FUTURE WORK

The work described in this paper is a first attempt to
apply sub-graph isomorphism techniques on process models,
for the automated discovery of reoccurring structures in a
collection of process models. To the best of our knowledge,
this work is the first attempt to apply graph isomorphism
techniques to BPMN 2.0 process models. The approach
presented at this work contributed (1) a theoretical basis
of our approach, with the introduction of concepts such
as “checkpoints” and “Relevant Process Fragments” and
(2) an approach that automatically detects and exports the
re-occurring fragments in a collection of process models.

We have evaluated our approach in a collection of 46
BPMN 2.0 process models, with respect to two execution
scenarios that differ in the number of checkpoints to be
compared. The resulting execution times were analyzed with
respect to the “comparison complexities” a metric that we
defined to describe how complex a comparison of two process

models is. As seen from our results, the execution times do
not differ much between the two executed scenarios, as
process models are basically graphs of small or average
complexity. We have also analyzed the RPFs that were
detected by the application of our approach on two example
process models. In this case the configuration of checkpoints
types seems to play an imperative role, as the second scenario
(larger checkpoint set) exported a lot of duplicate information.
It is therefore suggested that the types of checkpoints are
carefully configured in order to eliminate the unnecessary
information, but also gain the distinct RPFs of interest.

The future work foresees to extend the algorithm to
work for the complete set of BPMN 2.0, choreographies
and process models with cycles. We also need to apply
filtering methods on the results in order to eliminate the
duplicate information, cluster the results, assign values to
frequency of appearance on the detected RPFs, and detect
RPFs for different threshold values (i.e. K > 2). Indexing
techniques can also be applied when possible, in order to
avoid comparing every model with all the other models of the
collection, but efficiently detect models that are more possible
to be similar to each other. When these optimizations are
ready, we plan to run the approach on the complete collection
of real-world models, and run a thorough analysis on the
results.
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