
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{gomez-saez, andrikopoulos, leymann, wettinger}@iaas.uni-stuttgart.de

Dynamic Tailoring and Cloud-based Deployment of
Containerized Service Middleware

Santiago Gómez Sáez, Vasilios Andrikopoulos, Roberto Jiménez Sánchez,
Frank Leymann, Johannes Wettinger

© 2015 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings {INPROC-2015-19,

 author = {Santiago G{\'o}mez S{\'a}ez and Vasilios Andrikopoulos and Frank Leymann and

Johannes Wettinger},

 title = {{Dynamic Tailoring and Cloud-based Deployment of Containerized Service Middleware}},

 booktitle = {Proceedings of the 8th International Conference on Cloud Computing (CLOUD

2015)},

 address = {New York, USA},

 publisher = {IEEE Computer Society},

 institution = {University of Stuttgart, Faculty of Computer Science, Electrical Engineering, and

Information Technology, Germany},

 pages = {1--8},

 type = {Conference Paper},

 month = {June},

 year = {2015},

 }

:

Institute of Architecture of Application Systems

Dynamic Tailoring and Cloud-based Deployment of
Containerized Service Middleware

Santiago Gómez Sáez, Vasilios Andrikopoulos, Roberto Jiménez Sánchez, Frank Leymann, Johannes Wettinger
Institute of Architecture of Application Systems (IAAS),

University of Stuttgart, Stuttgart, Germany
{gomez-saez, andrikopoulos, leymann, wettinger}@iaas.uni-stuttgart.de

Abstract—The emergence and consolidation of
container-based virtualization techniques has simplified
and accelerated the development, provisioning, and
deployment of applications for the Cloud. When consid-
ering the case of composite service-based applications
that rely on service middleware solutions for their oper-
ation, container-based virtualization offers the opportu-
nity for rapid and efficient building and deployment of
lightweight, optimally configured middleware instances.
As such, it provides an ideal tool for the purposes of
cloudifying existing middleware solutions and offering
them as part of larger PaaS offerings. As part of this
effort, our investigation focuses on leveraging and eval-
uating a container-based virtualization environment
towards enabling the assembly, provisioning, and execu-
tion of dynamically tailored instances to satisfy service
middleware communication requirements of specific ap-
plications. For these purposes we scope the discussion
on one particular type of messaging middleware for
composite service applications, the Enterprise Service
Bus (ESB) technology.

Keywords—Platform-as-a-Service (PaaS); ESB Ser-
vice Middleware; Container Virtualization; SOA; Perfor-
mance Analysis; Cost Analysis

I. Introduction
Many modern applications are designed and imple-

mented as a combination of multiple services, leveraging ex-
isting functionalities offered in the Everything-as-a-Service
(*aaS) model. Application developers have a plethora of
SaaS, PaaS and IaaS offerings to choose from in hosting,
deploying, and running their applications, completely or
partially (e.g. in a cloud bursting scenario). Looking into the
PaaS delivery model in particular, a fundamental building
block of PaaS solutions is the capability to offer service
middleware as a service [1] which enables the realization of
composite service applications following the service-oriented
computing paradigm [2]. Service middleware allows for the
deployment and execution of service-based applications
typically defined as sets of executable process models.
Previous works [1], [3], [4] have demonstrated that the
concept of middleware as a service is both feasible and
efficient, focusing however on resource sharing expressed
as multi-tenancy of the offered middleware.

In this work we start with the same premise but focus
on one particular type of service middleware, and more
specifically the Enterprise Service Bus (ESB) technology,
which essentially acts as the messaging hub between services

ensuring their integration. Our previous experiences in
cloudifying an ESB solution [5], [6] showed that while
scaling an ESB solution horizontally by adding more VMs is
easy to implement, it results in underutilization of resources
inside each VM. Furthermore, we have also concluded that
a significant amount of resources are overutilized due to the
provisioning and installation tasks of the ESB in the form of
retrieving and deploying a number of features like different
queuing mechanisms, messaging format transformers, etc.,
that are not actually used in conjunction in practice.

The advent of mature container-based virtualization
techniques like Docker, as discussed for example by [7],
offer us the opportunity to address both these issues in
a comprehensive solution. Our work is motivated by the
possibility to efficiently and rapidly provision and manage
lightweight containers, each one of which hosts a custom
configuration of a ESB solution that is dynamically tailored
to the needs of a particular application. While we focus on a
particular ESB solution for the purposes of this discussion,
the approach followed is equally applicable to any service
middleware solution. The main contributions of this work
can be summarized by the following:

1) A process-based approach aimed at building and
deploying dynamically tailored service middleware
components for satisfying application requirements.

2) A categorization of the different features offered by
well known ESB solutions, e.g. Apache ServiceMix,
WSO2, Fuse ESB etc. that is used by this process.

3) A performance evaluation of our proposal considering
both dimensions, i.e. the effectiveness of bulding and
executing tailored ESB instances, and the impact of
dynamic provisioning of tailored ESB instances using
the container-based virtualization technology.

The rest of this paper is structured as follows. Section II
provides a deeper background on both the ESB technology,
as well as additional motivation for the use of container-
based virtualization. Section III presents the core of our
proposal, including the tailoring and deployment process,
and the categorization of ESB solutions into features that
allow their dynamic tailoring to specific application require-
ments. Section IV discusses the experimental evaluation of
our proposal and presents our findings. Finally, Sections V
and VI close the paper with related work, and conclusions
and future work, respectively.

II. Background & Motivation
A. Enterprise Service Bus (ESB)

The Enterprise Service Bus (ESB) technology has
been introduced as the fundamental service middleware
component in service-oriented architecture (SOA), as it
enables the interoperability among applications in a loosely
coupled manner [8]. As such, in the last years it has
become ubiquitous in service-oriented enterprise computing
environments. ESBs typically provide the means for an
abstract decoupling between connected applications by
creating logical endpoints which are exposed as services
and conform a multi-protocol environment, where routing
and data transformation are transparent to the service
connected to it [8].

A strong connection between Service Oriented Com-
puting (SOC) and Cloud Computing has been forced
in the last years towards enabling a rapid adaptation
to business changes by using different Cloud services
as the underlying resources to provision and host SOA-
based applications [9]. The efficient usage of the ESB as
the main service middleware component in PaaS Cloud
infrastructures to enable the deployment and execution
of service-based applications has been widely investigated
in [1], [4], [6]. More specifically, in the context of the 4CaaSt1

EU Project the ESB technology has been adopted as the
main building block towards enabling the communication
among multi-tier applications in an elastic manner [5].
However, as a first step towards this challenge, multiple
works focused on cloudifying the ESB, i.e. enhancing the
service middleware with multi-tenant aware management
and communication capabilities, e.g. [4], [6].

Provisioning and executing multi-tenant aware service
middleware instances, however, introduces fundamental
challenges related to how and where to manage and
allocate, respectively, ESB instances in order to maximize
the resources utilization while satisfying the end user
QoS requirements. Previous works have targeted such
investigations by evaluating the performance under different
VM-based deployment scenarios [4], [6]. Such approaches
focus on provisioning and executing full blown ESBs
instances shared among multiple users, where most of the
resources required for their execution are spent on overhead,
resulting essentially in underutilization of the available
resources. Typical ESB solutions are packaged and shipped
in different flavors. For example, the Apache ServiceMix2

ESB solution is built and shipped as a full, JBI, or minimal
assembly, with different numbers of features in each option.
We aim in this work to leverage the existence of minimal
assembly ESB packages towards building and tailoring ESB
instances to satisfy specific application requirements.

B. Hypervisor-based vs. Container-based Virtualization
Virtualization is one of the key enablers for Cloud

computing. Different kinds of resources such as storage,
servers, and networks are virtualized to improve utilization
of the underlying physical resources and to keep work-
load distribution flexible, e.g., by migrating virtual server

14CaaSt EU Project: http://www.4caast.eu/
2Apache ServiceMix: http://servicemix.apache.org/

instances on demand. In terms of server virtualization,
hypervisor-based approaches are predominant: a physical
server runs a host operation system plus or including
the hypervisor, a special piece of software to manage
virtual machine instances running on top of the physical
machine. Each virtual machine (VM) runs a separate
operating system, independent of the operating system
on the physical server. This is technically enabled by the
hypervisor that provides a complete set of virtualized
hardware (CPU, memory, disk, etc.) to each guest operating
system. The hypervisor-based approach provides a lot
of freedom in building application stacks (including the
operating system, middleware, and application components)
as well as hosting and moving them between physical
machines. VMs can also be packaged as VM images in
a portable way, so multiple hypervisor implementations
can instantiate such an image to run VMs. Xen3 and
VMware4 are two prominent examples for hypervisor-based
virtualization solutions. Today, such solutions are used by
Cloud providers at large scale to offer virtual servers with
a huge variety of guest operating systems.

However, hypervisor-based virtualization is not the
only way of providing virtualized environments to host
applications independently of the underlying physical
resources. Whereas hypervisors virtualize all hardware
components required to run a completely independent
guest operating system, container virtualization follows
the idea of sharing and virtualizing resources on the level
of the operating system. Each isolated and virtualized
environment in the operating system is a container instead
of a full-blown VM. Technically, the kernel of the operating
system is shared among containers, so hardware is not
emulated as in the hypervisor-based approach. To ensure
isolation of containers, the system processes, filesystem,
and network devices are strictly bound to a particular
container. Consequently, one container cannot access other
containers in an uncontrolled manner. Moreover, there are
mechanisms to ensure performance isolation to prevent a
single container from offensively consuming all available re-
sources. Container virtualization is not new, but Docker [10],
[11] established a strong and open ecosystem, so several
Cloud providers seriously support and promote this kind of
virtualization, too. As a result, a number of solutions like
AWS Beanstalk5, Google App Engine6, or Microsoft Azure7

provide an ecosystem capable of deploying containerized
components and applications.

The conceptual differences [12]–[14] between hypervisor-
based and container-based virtualization has impact on the
performance when using the one or the other. In general, the
overhead of container-based virtualization is lower because
(i) hardware is not emulated and (ii) there is not a separate
guest operating system for each virtualized environment.
Consequently, container virtualization tends to perform
better. This effect combined with portable packaging and
distribution to move containers as proposed by Docker

3Xen: http://www.xenproject.org
4VMware: http://www.vmware.com
5AWS Elastic Beanstalk: http://aws.amazon.com/elasticbeanstalk/
6Google App Engine: https://appengine.google.com/
7Microsoft Azure: http://azure.microsoft.com/

http://www.4caast.eu/
http://servicemix.apache.org/
http://aws.amazon.com/elasticbeanstalk/
https://appengine.google.com/
http://azure.microsoft.com/

leads to better utilization of available resources. However,
as shown in a recent comparison [7], performance benefits
may depend on the application profile. Thus, there is a
need for minimizing the overhead caused by the components
deployed within each container to fully leverage the benefits
of container virtualization. Therefore, a major goal of
our work is to dynamically build tailored middleware
components in the form of containerized ESB instances.

III. Dynamic Tailoring & Deployment

In the following section we present our proposal for
an approach to dynamically create tailored service mid-
dleware instances that can efficiently share and utilize the
resources of a VM. This approach aims at building towards
a middleware as a service solution in the PaaS model
supporting and assisting in the constitution, provisioning,
and deployment of service-based composite applications.
Moreover, it tackles the performance issues and limited
flexibility that occur when using a monolithic, general-
purpose middleware, before focusing specifically on ESB
solutions as a case study for its realization.

A. Tailoring & Deployment Process

The process outlined in Figure 1 shows how tailored
service middlewares can be built and deployed. The entry
point of the process is to identify the communication
requirements of a given application. Such a task is typically
performed by Application Developers responsible for ana-
lyzing the application-specific communication requirements
and developing new or provisioning existing components
to satisfy them. As an example, a Web application may
use an HTTP endpoint (typically listening on TCP port
80) to enable the interaction of users through a Web-based
user interface and/or a Web API. Moreover, an application
typically connects to further back-end systems such as
databases, messaging systems, and caching infrastructures.
The communication between the application and such
back-end systems is covered by additional communication
channels based on various kinds of protocols. All these
aspects have to be captured as communication requirements
to enable the selection of a service middleware solution
as provided, for instance, by an ESB implementation.
Such service middleware solutions typically provide a huge
variety of features. The selection of features is driven by the
communication requirements that have been identified in
the previous step. The selection of the middleware solution
itself can be revised or refined, e.g., in case it turns out that
some required features are not provided by the selected
solution. Optionally, custom communication components
can be selected (or developed, if necessary) to be used
as plug-ins for the service middleware solution. This is
required in order to support any custom communication
requirements of an application (e.g., proprietary commu-
nication protocols) that cannot be met by the features of
the selected service middleware. In case it turns out that
one of the custom components is not compatible with the
selected service middleware solution or the selected set of
features, the previous selections can be revised and refined
correspondingly.

Identification of
communication
requirements of
the application

Selection of a
service middleware

solution

Selection of service
middleware

features

Selection of custom
communication

components
(optional)

Configuration of
selected features

(and custom comm.
components)

Configuration of
network access

properties

Package
tailored service

middleware

Deploy and use
instances of

tailored service
middleware

Undeploy
instances of

tailored service
middleware

Figure 1: Service middleware tailoring & deployment
process

After identifying the communication requirements and
selecting the means to resolve these requirements, the
selected features are configured by defining, e.g., which
transport protocols are used and how communication
channels are secured. In addition, if custom communication
components have been selected previously they are typically
configured, too. After configuring the features (and poten-
tially custom components), network access properties are
configured. This includes which ports are required and how
they are provided to the application to communicate with
the service middleware. Based on the previously performed
configurations and selections, a tailored service middleware
is packaged, satisfying the application-specific requirements
identified in the beginning. Because we are utilizing con-
tainer virtualization in the scope of this work, containers
are used as packaging technique. Such a container can
finally be deployed and used as tailored service middleware
for the given application by creating corresponding service
middleware instances. Additional instances are deployed
and existing instances are undeployed on demand, for
instance, depending on the load the application receives.

The presented process to build and deploy tailored
service middleware instances is generic enough to be applied
to any kind of service middleware. Our work focuses on
ESB instances as a prominent representative of service
middleware. Therefore, in the following we are looking into
how ESB features can be categorized and selected to meet
application-specific communication requirements.

B. ESB Features Categorization & Selection

To enable the expression of application-specific com-
munication requirements that can be potentially resolved
by ESB features, an initial categorization of such fea-
tures is required. Figure 2 provides an overview of such
an ESB features categorization. Figure 2 is the result
of analysis of prominent ESB implementations such as

Table I: Selected ESB features provided by Apache ServiceMix 4

Feature Category Description Functionality

webconsole Management & Orchestration Web UI to manage and monitor the ESB - Install/uninstall features
- Change configuration
- View logs

camel-core Management & Orchestration Run Apache Camel8 in ServiceMix - Camel in OSGi integration
camel-xmljson Message Transformation Convert message data between formats - Convert from XML to JSON

- Convert from JSON to XML
servicemix-validation Validation Schema validation using JAXP 1.3 - Supports XML schema definitions

- Supports RelaxNG definitions
camel-sql Storage Interact with SQL databases - Provides JDBC interface
camel-http Communication Interact with external systems through HTTP - Consumes HTTP endpoints

- Serves HTTP endpoints
camel-jetty Communication Simple, embedded Web server - Handles HTTP sessions

- Supports CORS
- Supports data streams

servicemix-http Communication Serve HTTP/SOAP endpoints - Supports SOAP 1.1 and 1.2
- Supports WS-Security

ESB Features

Routing
Management &
Orchestration

Communication

Storage

Message
Handling

Message
Transformation

Security

Validation

Figure 2: Overview of ESB features

JBoss ESB9, Apache ServiceMix10, and Mule ESB11, with
respect to which features they offer, and how they can
be grouped. More specifically, the validation category
comprises all features related to ensuring the correctness
of data processed by an ESB. For instance, XML data
may be validated against an XML schema definition. An
ESB also offers features to define and control routing
behavior for incoming and outgoing messages. This includes
decisions where to send, and how to forward messages,
e.g., according to routing rules. Moreover, the management
& orchestration category covers all features related to
managing the ESB and its components (e.g., dynamically
changing configuration parameters) as well as orchestrating
external and additional functionality provided by scripts,
workflows, and other kinds of executables. All features
related to the interaction between the ESB and external
networking endpoints (not only service endpoints) fall in

9JBoss ESB: http://jbossesb.jboss.org
10Apache ServiceMix: http://servicemix.apache.org
11Mule ESB: http://www.mulesoft.com/platform/soa/mule-esb-

open-source-esb

the communication category. These may include features
to interact with Web service endpoints such as RESTful
APIs as well as to connect to a server using, for example,
SSH.

Storage is another class of ESB features, comprising
various functionalities provided in order to manage and
interact with storage systems such as database management
systems. The category message handling consists of features
to provide tools for dealing with messages in various ways
beside routing. For example, the scheduled delivery of
messages can be performed by corresponding message
handlers. In addition, the message transformation category
covers features that provide tooling to convert message
data between different formats (JSON, XML, etc.) and
to re-structure the message payload, e.g., using XSLT.
Finally, all security-related features are covered by the
security category. This includes, for instance, providing
secure communication channels (e.g., using HTTPS) as
well as signing and encrypting message data.

Table I presents a selected set of features provided by
Apache ServiceMix 4, an open-source ESB that we use for
evaluating our concepts. Depending on the functionality
required by a particular application (e.g., an HTTP/SOAP
endpoint), the corresponding feature (e.g., servicemix-http)
needs to be selected and configured according to the
tailoring process, as discussed in Section III-A.

IV. Evaluation
In the following, we focus on presenting an evaluation

and comparative analysis of the benefits and drawbacks
introduced by our proposed approach.

A. Methodology & Setup
The experiments driven as part of this work aim at

investigating and analyzing three fundamental aspects
concerned with the performance of the proposed Cloud-
based middleware system: (i) the variation when providing
support for tailoring, deploying, and executing minimal

Load Driver

AWS EC2 m3.xlarge

Docker Engine

Ubuntu Linux 14.04

ESB1
F/T ESB2

F/T ESB3
F/T ESB4

F/T

AWS EC2
m3.medium

ESB1
F/T

AWS EC2 m3.xlarge

MySQL

Ubuntu Linux 14.04

Wikipedia
Application

VM-based
Virtualization

Container-based Virtualization

Legend

VM-based Virtualization Communication

Container-based Virtualization Communication

Full Assembly / Tailored Assembly of the ESB

ESB instance i

ESBF/T

ESBi

Figure 3: Experimental Setup

ESB assemblies, (ii) the impact of utilizing a container-
based virtualization approach and infrastructure as the
basis for the provisioning and deployment of the service
middleware instances, and (iii) the trade-off between
performance and incurred monetary cost for provisioning
and executing the different ESB assemblies in the various
deployment approaches. For this purpose, the experiments
must consider as a first step the impact on the perfor-
mance when provisioning, deploying and executing multiple
service middleware instances in VM- vs. container-based
environments. The existence of a wide spectrum of VM
configurations introduces a further challenge in the design
of the experiments, as these must be selected accordingly
to the number of service middleware instances, and in an
equivalent manner to the selected deployment approach.

The experimental setup depicted in Fig. 3 comprises
different deployment and execution scenarios of the ser-
vice middleware solution Apache ServiceMix ESB 4.5.312.
Apache ServiceMix 4.5.3 is currently shipped in different
assembly flavors like full, JBI, or minimal assemblies,
among others. For the purposes of this work, we selected
the full and minimal assemblies for the creation of full

12Apache ServiceMix 4.5.3:http://servicemix.apache.org/
downloads/servicemix-4.5.3.html

Table II: Workload Characteristics

Operation Type #Requests Ratio
Read 199925 99.96%
Write 75 0.04%

Image Retrieval 8971 4.49%
Skins Retrieval 66926 33.46%

Wiki Pages Retrieval 106347 53.17%
Others 7634 3.81%

(ESBF) and tailored (ESBT) service middleware clusters,
respectively (see Fig. 3). The evaluation scenarios comprise
a cluster of four ESB instances deployed in the following
manner: (i) a VM-based deployment of one ESB instance
per VM, and (ii) the container-based deployment of one
ESB instance per container, constituting a cluster of four
containers deployed in one VM. All scenarios were run in the
AWS EC213 infrastructure and the provisioned VM were
selected to suit the following configuration equivalently:

• four AWS EC2 m3.medium VM instances with 1 vCPU
and 3.75GB RAM per VM, running Ubuntu 14.04 LTS,
and with a usage cost of 0.077U$/h, and

• one AWS EC2 m3.xlarge VM instance with 4 vCPUs
and 15GB RAM, running Ubuntu 14.04 LTS and
Docker14 version 1.4.1, and with a usage cost of
0.308U$/h.

These configurations of EC2 were equivalently selected, as
one m3.xlarge image has roughly four times the computing
capacity of one m3.medium. As such, the comparison
between the container-based instances with the VM-based
ones is fair in terms of their available computational
resources.

For all the previously depicted scenarios, a back-
end MediaWiki15 service was deployed in an AWS EC2
m3.xlarge, hosting the Wikipedia 2008 content [15]. The
communication with the MediaWiki application is wired
through the deployment of Apache Camel Jetty16 endpoints
deployed in each ESB instance. The deployment of such
endpoints requires the previous installation of the Apache
Camel17 and Apache Camel Jetty bundles in the ESB.
For the ESBF assembly scenarios, such packages already
contains such bundles. However, in the ESBT assembly
scenarios, such bundles are dynamically installed during the
ESB tailoring process. In terms of workload, we randomly
extracted and generated a realistic workload of 200K
requests from the Wikipedia access traces, which is then
distributed among (concurrent) users and ESB instances.
The load driver depicted in Fig. 3 acts as the services’
consumer emulator and generates a set of 100 concurrent
users per ESB instance in an uniformly distributed manner
with an interval creation of 50ms. In all scenarios, the

13AWS EC2: http://aws.amazon.com/ec2/
14Docker: https://www.docker.com/
15MediaWiki: https://www.mediawiki.org/wiki/MediaWiki
16Apache Camel - Jetty Endpoint: http://camel.apache.org/jetty.

html
17Apache Camel: http://camel.apache.org/

http://servicemix.apache.org/downloads/servicemix-4.5.3.html
http://servicemix.apache.org/downloads/servicemix-4.5.3.html
http://aws.amazon.com/ec2/
https://www.docker.com/
https://www.mediawiki.org/wiki/MediaWiki
http://camel.apache.org/jetty.html
http://camel.apache.org/jetty.html
http://camel.apache.org/

Non-Tailored ESB Tailored ESB
0

5

10

15

20

25

30

35
T
h
ro

u
g
h
p
u
t

(r
e
q
./

s)

2
7

.7
0

2
7

.9
1

2
7

.9
9

2
8

.3
0

Throughput Comparison
VM-based Deployment

Containerized Deployment

Figure 4: Average Throughput per Scenario

load driver is deployed on-premise in order to emulate
the network latency introduced in the requests. The load
driver profile, generated workload sample, and Camel
Jetty endpoint configurations are publicly available18. The
workload characteristics are depicted in Table II. As it can
be observed, most of the Wikipedia accesses consist of read
operations which retrieve different kinds of data, e.g. images,
pages, style skins, etc. The workload analysis, however,
does not yet measure popularity aspects, e.g. which are
the most accessed Wikipedia pages. Moreover, due to
the read intensive nature of the MediaWiki (Wikipedia)
application, such workload only comprises a minimum set
of write operations. Sampling and generating workload
focusing on increasing the number write operations as
well as incorporating data popularity aspects is part of
ongoing work and will be included when required in future
investigations.

Our experimental evaluation offers a two dimensional
analysis. On the one dimension, we aim at analyzing the
impact on the performance in terms of the amount of users
that the system is able to cope with. For this purpose,
we measure the throughput in terms of requests per
second for the different deployment scenarios. The second
dimension consists of analyzing the monetary expenses
incurred when hosting the ESB instances in different VM
instances types and deployment scenarios. The monetary
costs are calculated by first calculating the elapsed time
of the experiments, and by subsequently using the hourly
usage cost established by Amazon AWS.

B. Results

The following results can be observed with respect to
the performance variation of the system (see Fig. 4):

• the overall system’s capacity is increased by an aver-
age of 1% when building and running tailored ESB
instances.

18Tailored ESB MediaWiki Evaluation: https://github.com/
sgomezsaez/Tailored ESB MediaWiki Eval

Table III: Monetary Cost Evaluation (in AWS EC2 Febru-
ary 2015 Usage Prices)

Scenario Elapsed
Time (h)

Cost
(US$)

VM Depl. / ESBF 1.976 0.608
Containerized Depl. / ESBF 2.041 0.628

VM Depl. / ESBT 1.942 0.598
Containerized Depl. / ESBT 1.953 0.601

• Such a performance improvement breaks down into
an increase of 0.75% and 1.1% for the VM-based and
container-based deployment scenarios, respectively.

• Focusing on the performance variation introduced by
the usage of container-based technologies, the usage of
container-based virtualization provides a performance
improvement of 1% and 1.37% for the non-tailored
and tailored ESB scenarios, respectively.

With respect to the monetary costs incurred by running
the previous experiments in an off-premise public Cloud
infrastructure, Table III summarizes the most relevant
findings:

• Building and executing tailored ESB instances reduces
the average monetary costs by approximately 3%.

• More specifically, the deployment of tailored ESBs in
VMs reduces the incurred monetary costs by approx-
imately 1.6%. However, when utilizing a container-
based technology, such a cost increases by approxi-
mately 4.3%.

• In line with the previous observation, when provision-
ing and deploying ESB instances in VMs, the usage of
container-based virtualization technologies increases
the operational cost by approximately 10%.

C. Discussion
The experimental results of the previous section enable

us to perform a deeper bi-dimensional analysis, taking into
consideration the impact on the performance and monetary
costs when applying the approach presented in this work.
The generated Wikipedia-based workload used as part of
this experiments describes a read intensive application,
which is mostly accessed to retrieve Wikipedia pages and
skin styles.

The performance variation results presented in Sec-
tion IV-B can drive the following conclusions:

• Building, provisioning and executing tailored ESB
instances as part of the fundamental PaaS service
middleware towards satisfying the application’s re-
quirements has a beneficial impact in the performance.
Such improvement is due to the usage of ESB minimal
assembly packages which can be dynamically tailored
and provisioned by our framework.

• The usage of container-based virtualization technolo-
gies as part of the underlying infrastructure has indeed
improved in all scenarios the performance of service
middleware infrastructre.

https://github.com/sgomezsaez/Tailored_ESB_MediaWiki_Eval
https://github.com/sgomezsaez/Tailored_ESB_MediaWiki_Eval

• The derived monetary costs is indeed reduced when
provisioning and executing tailored ESB instances.
However, the costs of running the ESB instances
increase when utilizing a container-based underlying
infrastructure.

The approach presented in this work showed that
building and provisioning ESB instances in a tailored
manner as part of a custom service middleware for deploying
PaaS-based applications has a beneficial impact on the
system’s performance. Going a step further and evaluating
the usage of container-based technologies demonstrated a
further gain in the performance of the service middleware
execution. Moreover, the incurred costs due to applying
the proposed tailoring to minimal ESB instances can be
significantly reduced when using a VM-based underlying
infrastructure, but can be increased when using container-
based underlying technologies. The provisioning time and
monetary cost were not included in this experiments. Future
experiments are planned to tackle such life cycle step by
including the provisioning and management cost associated
with the usage of the proposed virtualization technologies
as the underlying infrastructure of the service middleware.
For instance, we believe that there can exist a significant
positive impact on the provisioning time when combining
tailoring and container-based deployment mechanisms. The
proof for such hypothesis is, however, part of ongoing
empirical investigations and part of future reports.

V. Related Work
In the following we present our investigations on existing

approaches in the fields of service middleware and the
tailoring of these components, the usage and evaluation
of container virtualization technologies, and the efforts
in the field of service middleware towards adapting such
components to the Cloud environment.

Service middleware solutions have been widely used as
key integration building blocks among components or de-
vices. The specialization of service middleware components
as an approach for optimizing middleware components for
domain specific environments has been proposed already
in [16], [17]. For example, [16] proposes a process-based
approach towards building specialized middleware compo-
nents for real-time systems. In the scope of SOA-based
systems and enterprise application integration, there is
currently no approach for building tailored middleware
components on an on-demand basis to satisfy application’s
functional and non-functional requirements. Focusing on
the elasticity features of message-based systems, in [18] a
generic and elastic message queue architecture adapted to
Cloud environments and capable of providing elasticity fea-
tures is proposed. In this work, message queuing capabilities
are natively supported in the ESB, and elasticity features
are planned to be supported by means of leveraging the
distribution of containerized ESB instances in a containers
cluster, such as CoreOS19.

In the scope of PaaS platforms, there have been several
efforts in the direction of provisioning and executing virtu-
alized middleware components as fundamental components

19CoreOS: https://coreos.com/

for enabling the deployment of custom applications, e.g.
taking into account performance isolation aspects [19]. For
example, in [4] and [6] multi-tenancy techniques have been
applied in ESB solutions towards enabling the sharing of the
underlying middleware resources. Such components can be
built and deployed as part of pre-configured VM instances
on an on-demand basis following, for example, middleware-
oriented deployment approaches [20]. However, the com-
plexity and management overhead can be significantly
reduced when leveraging the usage of lightweight pre-built
and reusable container images for tailoring the different
ESB components. Moreover, the advantages brought by
container-based virtualization technologies enable the pro-
visioning and execution of multiple containers in the same
VM with small adaptations overhead, e.g. port forwarding,
memory allocation, etc.

Container virtualization techniques have emerged in the
last years as an alternative to hypervisor-based virtualiza-
tion [13]. The reduction in resources usage together with
the rapid provisioning features of lightweight containers
have contributed to both application developers and Cloud
providers to adopt and provide offerings based on such
technology [14]. Several works, such as [7] and [12], have
investigated the impact of virtualizing the OS rather than
the hardware. Results showed that containers result in an
equal or better performance than virtual machine-based
approaches in most of the cases. Our work leverages such
virtualization technique and combines it with a tailoring
process towards provisioning custom ESB instances on an
on-demand basis. The performance evaluation driven as
part of this work also showed an improvement when running
the ESB instances in container-based virtualized environ-
ments. The analysis of provisioning and management tasks
performance overhead is part of future work.

VI. Conclusions and Future Work
Service middleware is an essential component for the

realization of composite service-based applications, and
a fundamental building block for PaaS solutions that
support such applications. Cloudifying and offering (service)
middleware as a service as part of PaaS solutions has
already been demonstrated to be an efficient solution,
especially when considering the resource sharing capabilities
among service providers through multi-tenancy. In this
work we reap the benefits of the ongoing developments in
container-based virtualization techniques and technologies
to provide more fine-grained control over the configuration,
deployment and execution of a service middleware solution
in the form of an Enterprise Service Bus (ESB).

More specifically, in the previous sections we proposed
a dynamic tailoring and deployment process of service
middleware components geared towards the cloud envi-
ronment. We focused the discussion on how this process
can be applied in practice on the ESB technology and
showed how minimal flavors of an ESB can be rapidly
packaged and deployed using Docker. We evaluated our
proposal using the MediaWiki application and a load
generated from Wikipedia traces, with the application
using different configuration and deployment scenarios of
the same ESB technology. The results show a small but

https://coreos.com/

promising overall improvement due to the combination of
container-based virtualization with application-specific ESB
configuration, with a significantly smaller amount of VMs
to be managed. Future work focuses on investigating and
developing the potentially required tool chain to support
the previously presented process. With respect to the
evaluation, we plan to incorporate the provisioning and
management costs of the different deployment scenarios.
Furthermore, we are already working towards allowing the
cluster-based management of containers in an automated
manner for further performance improvements with less
effort on resource provisioning on behalf of application
developers.

ACKNOWLEDGEMENTS

This work is funded by the FP7 EU-FET project 600792
ALLOW Ensembles.

References
[1] M. Hahn, S. Gómez Sáez, V. Andrikopoulos, D. Karastoyanova,

and F. Leymann, “Development and Evaluation of a Multi-
tenant Service Middleware PaaS Solution,” in Proceedings of the
7th International Conference on Utility and Cloud Computing
(UCC 2014). IEEE Computer Society, December 2014, pp.
278–287.

[2] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-oriented computing: a research roadmap,” International
Journal of Cooperative Information Systems, vol. 17, no. 02, pp.
223–255, 2008.

[3] M. Pathirage, S. Perera, I. Kumara, and S. Weerawarana, “A
Multi-tenant Architecture for Business Process Executions,” in
2011 IEEE International Conference on Web Services (ICWS
2011), 2011, pp. 121–128.

[4] A. Azeez, S. Perera, D. Gamage, R. Linton, P. Siriwardana,
D. Leelaratne, S. Weerawarana, and P. Fremantle, “Multi-
tenant soa middleware for cloud computing,” in 2010 IEEE
3rd International Conference on Cloud Computing (CLOUD
2010). IEEE, 2010, pp. 458–465.

[5] S. Garcia-Gomez, M. Jiménez-Ganán, Y. Taher, C. Momm,
F. Junker, J. Biro, A. Menychtas, V. Andrikopoulos, and
S. Strauch, “Challenges for the comprehensive management
of cloud services in a paas framework,” Scalable Computing:
Practice and Experience, vol. 13, no. 3, 2012.

[6] S. Strauch, V. Andrikopoulos, S. Gómez Sáez, and F. Leymann,
“ESBM T : A Multi-tenant Aware Enterprise Service Bus,” Inter-
national Journal of Next-Generation Computing, vol. 4, no. 3,
pp. 230–249, November 2013.

[7] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An
updated performance comparison of virtual machines and linux
containers,” Technology, vol. 28, p. 32, 2014.

[8] D. Chappell, Enterprise service bus. O’Reilly Media, Inc.,
2004.

[9] Y. Wei and M. Brian Blake, “Service-oriented computing and
cloud computing: Challenges and opportunities,” IEEE Internet
Computing, vol. 14, no. 6, pp. 72–75, 2010.

[10] J. Fink, “Docker: a Software as a Service, Operating System-
Level Virtualization Framework,” Code4Lib Journal, vol. 25,
2014.

[11] J. Turnbull, The Docker Book. James Turnbull, 2014.
[12] M. J. Scheepers, “Virtualization and Containerization of Appli-

cation Infrastructure: A Comparison,” 2014.
[13] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Pe-

terson, “Container-based Operating System Virtualization: A
Scalable, High-Performance Alternative to Hypervisors,” in
ACM SIGOPS Operating Systems Review, vol. 41, no. 3, 2007,
pp. 275–287.

[14] S. J. Vaughan-Nichols, “New Approach to Virtualization is a
Lightweight,” Computer, vol. 39, no. 11, pp. 12–14, 2006.

[15] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload
analysis for decentralized hosting,” Elsevier Computer Networks,
vol. 53, no. 11, pp. 1830–1845, July 2009.

[16] A. Dabholkar and A. Gokhale, “A generative middleware
specialization process for distributed real-time and embed-
ded systems,” in 14th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed
Computing (ISORC 2011). IEEE, 2011, pp. 197–204.

[17] V. Subramonian, G. Xing, C. Gill, C. Lu, and R. Cytron,
“Middleware specialization for memory-constrained networked
embedded systems,” in Proceedings of 10th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS
2004). IEEE, 2004, pp. 306–313.

[18] N.-L. Tran, S. Skhiri, and E. Zimányi, “Eqs: An elastic and
scalable message queue for the cloud,” in IEEE Third Interna-
tional Conference on Cloud Computing Technology and Science
(CloudCom 2011). IEEE, 2011, pp. 391–398.

[19] R. Krebs, M. Loesch, and S. Kounev, “Platform-as-a-service
architecture for performance isolated multi-tenant applications,”
in IEEE 7th International Conference on Cloud Computing
(CLOUD 2014). IEEE, 2014, pp. 914–921.

[20] J. Wettinger, V. Andrikopoulos, S. Strauch, and F. Ley-
mann, “Characterizing and Evaluating Different Deployment
Approaches for Cloud Applications,” in Proceedings of 2nd IEEE
International Conference on Cloud Computing Engineering
(IC2E 2014). IEEE Computer Society, 2014.

All links were last followed on April 24, 2015.

