
Enabling Reusable and Adaptive Modeling,
Provisioning & Execution of BPEL Processes

Santiago Gómez Sáez, Vasilios Andrikopoulos, Michael Hahn, Dimka Karastoyanova, and Andreas Weiß
Institute of Architecture of Application Systems (IAAS)

University of Stuttgart, Stuttgart, Germany
Email: {gomez-saez, andrikopoulos, hahn, karastoyanova, andreas.weiss}@iaas.uni-stuttgart.de

Abstract—The Business Process Execution Language (BPEL)
is a well established language for the definition of process
models as service orchestrations. Service orchestrations are used
in conjunction with service choreographies in order to create
distributed, complex service-based applications. An important
requirement for such applications is the need for flexibility during
both their modeling and their execution. This work builds on this
need by proposing an extension of BPEL in order to allow the
definition of abstract constructs on the level of executable process
models. Such constructs can be refined to concrete activities
at any time, enabling the reuse of existing models and the
dynamic adaptation to changing requirements. The design and
implementation of the language extension, as well as that of the
supporting environment required for the modeling, provisioning,
and execution of such process models is further discussed. A
case study on a city-wide public transportation system offers the
means for an evaluation of the proposed approach.

I. INTRODUCTION

The service oriented computing paradigm provides an
ideal platform for the development and operation of complex
distributed systems spanning multiple organizations. Different
application areas for such systems usually focus on their
domain-specific requirements, creating a fragmented landscape
of service based systems. However, a closer examination of
the requirements that each application area imposes shows
many commonalities and opportunities for cross-domain solu-
tions [1], [2]. Based on our experience with three of these ap-
plication areas, in [1] we propose the concept of Collaborative,
Dynamic, and Complex (CDC) systems. Participants of CDC
systems are services, representing software systems of different
granularity, virtual and physical devices, and individuals. Such
participants join and leave the system at will in order to fulfill
their individual goals. CDC systems are capable of adapting
with respect to different triggers in the system and/or in their
environment. Such systems have three fundamental aspects:
Modeling, Provisioning and Execution. Service choreographies
and service orchestrations (as implementations of the roles
prescribed by each choreography) are used for modeling
purposes. This creates the need for adaptive and context-aware
provisioning mechanisms that enable the distributed execution
of choreographies across potentially multiple organizations.

A central concept of CDC systems is flexibility, expressed
as the ability to modify on demand predefined regions in the
choreography and orchestration models by means of abstract
placeholders in them [3]. Beyond the ability to dynamically
adapt the execution of a model based on e.g. the context of
its execution, such placeholders also enable the reusability
of models by promoting the creation of generic and agnostic

models to be refined and made concrete during provisioning
or execution. In [3] we focused the discussion on the concep-
tual mechanisms that are required for enabling such abstract
placeholders on the level of service choreographies and as
an extension of the BPEL4Chor [4] choreography definition
language. In this work we focus on orchestration models
expressed as BPEL processes1. BPEL provides an inherent
extensibility mechanism at both process and activity level, on
which we build in our approach in order to allow the modeling,
provisioning, and execution of flexible and configurable BPEL
process models coordinated by flexible choreographies.

The contributions of this work can be summarized as:

1) the extension of the BPEL language with abstract place-
holder constructs in executable process models that can
be refined into concrete activities at different phases of
the life cycle,

2) the design of an architecture for an execution environment
that supports this extension and allows for the dynamic
injection of process fragments for refinement purposes,

3) the implementation and proof-of-concept evaluation of
the proposed architecture in the context of the ALLOW
Ensembles EU project.

The rest of this paper is structured as follows: Section II
provides the motivation behind this work. Requirements are
subsequently derived in Section III, which are then used as
the basis to create the conceptual foundations for the extension
of BPEL in Section IV. The architecture and implementation
of the execution environment is discussed in Section V. Sec-
tion VI presents the case study evaluation. Finally, Section VII
summarizes related works and Section VIII concludes with
some future work.

II. MOTIVATION

For purposes of further motivating our work we focus
on Collective Adaptive Systems (CAS) as a type of CDC
systems that we are particularly interested in. CAS comprise
heterogeneous entities that collaborate towards achieving their
own objectives, and the overall objective of the collective [5].
These entities can be either virtual or physical, and organiza-
tionally as well as geographically distributed. The interaction
of such entities with the collective highly influences the
behavior of the system. The objectives of individual entities
may be in agreement or conflict with the behavior or decisions

1WS-BPEL 2.0 Specification: http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.pdf

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

of other entities. Furthermore, unexpected changes in the
entities’ environment may trigger an individual or collec-
tive behavioral change. For purposes of providing a system
capable of supporting this behavioral definition, monitoring,
and adaptation, in the ALLOW Ensembles EU project2 we
define the underpinning concepts for modeling, execution, and
adaptation of CAS entities and their interactions. In particular,
we propose to model and manage entities as collections of
cells encapsulating their functionalities; cells are realized by
service orchestrations. Entities collaborate with each other to
achieve their objectives in the context of ensembles, enacted
as choreographies, describing the interactions among them [5].

The case of an Urban Mobility System as a combination of
non-fixed route buses, taxis, and car-sharing options acts as a
use case for the ALLOW Ensembles project. In this scenario,
physical entities like passengers and drivers (of buses, taxis,
or cars) have to collaborate with software entities like bus
route planners and managers to allow the former to reach their
destinations. Joining a bus route, for example, is reflected in
the system as the respective passenger entity becoming part
of the ensemble consisting of the bus driver, the passengers
already on the bus, as well as the route manager software
agent which keeps track of the progress of the route. The
flexibility of the system stems from the fact that no separate
processes have to be modeled for the passenger taking the
bus or using a taxi. Instead, following the work on Adaptive
Pervasive Flows (APF) [6], [7], each passenger acquires the
necessary process logic for e.g. joining the bus route ensemble
from the route manager and inserts it into his model. As a
result, adaptability in this context is required on the level of
both cells and ensembles and has to be supported by means
of flexible orchestrations and the interactions among them in
choreographies. The cells’ behavior can be partially or fully
specified during the modeling phase. The partial specification
of the cell behavior covers the partial definition of one or
more of their tasks as abstract tasks, which must be refined
by concrete tasks during run time.

III. REQUIREMENTS IDENTIFICATION

Developing a system such as the one described in the
previous section entails satisfying the following requirements:

R1. Life Cycle: reusability and adaptiveness of BPEL pro-
cesses must be supported throughout the modeling, pro-
visioning, and execution phases of the process life cycle.

R2. Modeling Support & Graphical Notation: towards
easing the modeling of reusable and adaptive BPEL
processes, the modeling environment must incorporate
appropriate graphical artifacts, as well as the serialization
mechanisms for generating executable BPEL processes.

R3. Process Adaptation: dynamic and customizable process
adaptation mechanisms must be offered by the system.
Moreover, the specification of concrete process adaptation
and refinement points in the process modeling language
must also be supported.

R4. Manual and Dynamic refinement: The refinement of
placeholders with concrete activities must be possible
both manually by modelers, and automatically by the
underlying system, as required.

2ALLOW Ensembles: http://www.allow-ensembles.eu

R5. Dynamic Fault Handling & Compensation: the defini-
tion of custom adaptation mechanisms must incorporate
the dynamic handling of faults and the specification of
their corresponding compensation actions due to failures
occurred during the execution of adapted processes.

R6. Partial specification of interactions: as incoming
and outgoing interactions may be partially speci-
fied in the business process model, the corresponding
communication-related process constructs must allow the
partial definition of communication details, to be finalized
during the runtime phase.

R7. Refinement phase definition: The process adaptation
point must be able to be annotated with information in
which life cycle phase the refinement has to take place.
The modeling and execution environment must interpret
the annotated information accordingly.

R8. Generality: The concept of the adaptation points (place-
holders) should be generic and not tailored to a specific
application domain, but rather support its usage for dif-
ferent domain-specific requirements. It also should allow
for different adaptation triggers.

IV. BPELREAD

Towards fulfilling these requirements in the following we
present our proposal for BPELReAd, an extension of BPEL that
supports the modeling, provisioning, and execution of reusable
and adaptive processes.

A. Life-Cycle

Figure 1 depicts the life cycle of CDC systems as discussed
in [2], focusing on the reusability and adaptive aspects for
modeling, provisioning, and executing BPEL processes. The
three major phases in the proposed life cycle are: Modeling,
Provisioning, and Execution phases. The modeling, provision
and execution can be performed in top-down and bottom-up
way. The top-down approach starts with creating, provisioning,
and enacting the complete or partial choreography model from
which the orchestrations are derived. The bottom-up approach
derives the complete or partial choreography model from
orchestrations which have to be performed in a coordinated
manner. The adaptation and in particular the refinement of
choreographies and orchestrations can be performed in any
of the life cycle phases.

With respect to the adaptation of orchestrations or pro-
cesses, during the modeling phase, the control flow and mes-
sage flow (of BPEL processes) are specified. Process model
refinement tasks, i.e. adaptation during the modeling phase,
can be performed by means of selecting reusable process frag-
ments, which can replace the refinement points with concrete
fragment logic. The deployment and instantiation operations
in the provisioning phase use the BPEL process specification,
their service interface, and deployment information for enact-
ing and exposing the interfaces to access the deployed process
in the process engine. The adaptation of partially specified
deployable processes is supported in this phase by means of
resolving the process refinement points with concrete process
logic w.r.t. non-functional aspects, e.g. based on the service
QoS characteristics. During the execution phase of the life
cycle, the process engine is responsible for the creation of
the process instances and the correlation of incoming and

http://www.allow-ensembles.eu

Process Models

Process Instances

M

o

d

e

l

i

n

g

E

x

e

c

u

t

i

o

n

Deployment
&

Instantiation Bottom-up Top-down

P

r

o

v

i

s

i

o

n

i

n

g

Adaptation
&

Propagation

Figure 1. CDC System Life Cycle & Modeling Approaches Support [2].

outgoing messages with the corresponding process instances.
Process adaptation operations at this phase allow the manual
or dynamic refinement of incomplete processes. A manual
refinement requires pausing the instance and waiting for a
human intervention. On the other hand, a dynamic refinement
relies on the automatic retrieval of process fragments from an
appropriate repository.

B. Abstract Constructs & Operations

As previously discussed, our approach builds upon the
definition of refinement points which are subsequently adapted
with concrete process logic within one of the phases of the life
cycle. For this purpose, in the remainder of this section we
present the artifacts that build the set of Abstract Constructs
and the corresponding operations which build the basis of this
work. The definition of abstract constructs for service chore-
ographies was realized as part of previous research in the scope
of building the necessary infrastructure capable of enabling the
execution of complex interactions in a CDC system [2], [3].
As the existing artifacts for building such interaction models in
such a system are coupled with the BPEL4Chor choreography
language, the majority of the abstract construct artifacts defined
in [3] are also applicable in the scope of this work.

More specifically, an Abstract Activity represents a generic
placeholder comprising the following ingredients: (i) a name
used as identifier, (ii) the earliest and latest life cycle phase
in which its refinement must take place, (iii) the type of the
mechanism to be used for the discovery of an appropriate
fragment and subsequent refinement of the activity using this
fragment, and (iv) a failure handling strategy for the refinement
process. For example, a context-aware adaptation abstract ac-
tivity requires the specification of context-aware pre-conditions
and effects as attributes that specify the desired behavior of
the logic the abstract activity represents without limiting it to
predefined execution patterns. Pre-conditions specify in which
state the context of the particular process has to be prior to
the refinement of the abstract activity. The effects specify the
desired state after the execution of the refined logic.

A Fragment Discovery operation realizes the mapping to
the custom type-specific behavior content by means of a plugin
mechanism, which is responsible for retrieving an appropriate
fragment model. For instance, the fragment discovery function
for the context-aware adaptation plugin type is responsible for

Abstract Activity

Name

RefinementStartPhase

RefinementEndPhase

PluginType

FailureStrategy

Type-specific
Content

ManualRefinement
Plugin

EMF data
model

Eclipse
UI

APF_Adaptation
Manager Plugin

EMF data
model

Eclipse
UI

Figure 2. Abstract Activity Construct in BPEL — Overview

discovering and selecting the most adequate fragment to satisfy
the current execution context, and to infer the transition to a
new context state. Failure strategies implemented as part of
such behavior can be related to compensating and continuing
the execution with a new discovered fragment, or by pausing
the execution and waiting for manual human intervention.

C. Extensions to BPEL

We based the realization of the BPELReAd language on the
usage of the BPEL extensibility mechanism towards enabling
the representation of the abstract activity as a part of an exe-
cutable BPEL process. In this manner, we remain compliant to
the BPEL standard and the existing technological frameworks
already supporting the execution of BPEL processes. The syn-
tax of the extension activity complies to the model presented
in Fig. 2. The Abstract Activity syntax schema breaks down
into two main definition sections: the Generic Information and
the Type-specific Content. The generic information definition
adheres to the main activity’s ingredients: Name, Refinement
Start Phase, Refinement End Phase, Plugin Type, and Fail-
ure Strategy. The plugin type definition refers to the plugin
realizing the custom behavior realization. The Type-specific
Content enables the insertion of the custom specific behavioral
syntax for defining the necessary information for the fragment
discovery operations. For example, in Fig. 2 two custom type
specific contents are depicted: (i) manual refinement based on
the retrieval of a fragment specified during design time, and (ii)
dynamic refinement based on the discovery of context-aware
process fragments during execution.

V. ARCHITECTURE & IMPLEMENTATION

The architecture of the CDC execution environment sup-
porting the BPELReAd language, and targeting the reusable and
adaptive modeling, provisioning, and execution of processes,
is depicted in Fig. 3. Two interconnected environments com-
prise the architecture: a Modeling Environment and Runtime
Environment.

A. Modeling Environment

The Modeling Environment consists of the Process Modeler
and the Fragment Repository components (Fig. 3) and provides
the necessary artifacts to create process models, persist and
retrieve reusable fragments, manually refine abstract activities

Deployment

WS-interface

Process &

InstanceManagement

WS-interface

BPEL Process

Web Services

Message Broker

(Apache ActiveMQ)

Management Queue

Event Topic

Persistence Layer

ODE

Engine DB

BPEL

Compiler

Process

Store

ODE

Data Access

Objects

...

Integration Layer

JBI Integration Layer
Axis2 Integration

Layer

Another Integration

Layer
...

Workflow Engine API

Process

Management

API

Instance

Management

API

Process

Deployment

API

Engine

Interface

API

...

Runtime Layer

BPEL

Runtime

BPEL Engine

Pluggable

Framework

Flexibility:

Migration

Flexibility:

Iteration, Re-

execution
...

Java Concurrent

Objects (JaCOb)

BPEL

Extensibility

Injection

(Abstract

Construct)

Static

Adaptation

Runtime EnvironmentModeling Environment

CDC Process Modeler

BPEL Designer

Engine & Process

Management

Process Instance

Management

Auditing

Abstract Construct

Modeling Framework

Static Adaptation

...

CDC Execution Engine

Fragment Repository

Fragment

Management

Interface

Fragment

Repository

Figure 3. CDC Modeling & Runtime Environment

with retrieved fragments, and to interact with the runtime
environment for administering and managing process models
and their corresponding instances.

The CDC Process Modeler (as shown in Fig. 4) is based
on the MayFlower designer [8], an extended version of the
Eclipse BPEL designer3. Since the MayFlower editor is based
on the BPEL designer, the extensibility points defined by
BPEL are fully supported (see Fig. 3). The Engine & Process
Management component enables the execution of process de-
ployment and management operations on the CDC Execution
Engine. Operations on the running process instances, e.g. paus-
ing, resuming, or stopping a process instance, are supported
through the Process Instance Management component. Real-
time process information retrieved from the CDC Execution
Engine is aggregated and visualized within the modeling
environment through the Auditing component. For instance,
when a runtime adaptation occurs, this component retrieves the
changes and interacts with the BPEL Designer towards updat-
ing the visualization of the process model. Process and process
instance management operations, as well as process instance

3Eclipse BPEL Designer: https://eclipse.org/bpel/

control, are performed through a message-based interaction
with the CDC Execution Engine. The Fragment Repository
supports the storage and retrieval of process fragments which
are uniquely identifiable and used for subsequent refinement
operations.

Towards enabling the specification of process placeholders
through the definition of abstract constructs, a pair of Eclipse
Modeling (EMF) and User Interface (UI) plugins were devel-
oped. The EMF plugin contains the meta-model and operations
allowing serialization to XML, while the UI plugin represents
the layout and fields displayed to the user. There are two plugin
types currently supported in the modeling framework: (i) the
Static Plugin supporting the dynamic retrieval and injection
of fragments manually defined during the modeling phase of
an orchestration, and (ii) the Adaptation Plugin enabling the
dynamic retrieval and injection of fragments discovered based
on context-aware information, e.g. retrieved from an external
AI Planning Mechanism (see Fig. 3). In order to support the
reusability of process models among different scenarios, the
CDC Process Modeler also allows the injection of fragments
from a repository during the modeling phase of processes.
For this purpose, it provides a process fragment repository

https://eclipse.org/bpel/

Remote

Fragment

Repository

Local

Fragment

Repository

M
o

d
e

lin
g
 P

a
le

tte

Figure 4. CDC Process Modeler — Overview

view which allows modelers to visualize existing reusable
fragments which can be potentially refined during design time.
The definition of an Abstract Activity (as summarized by
Fig. 2) requires the specification of its properties and content
plugin type in the properties tab of the IDE, as depicted in
Fig. 4. When the content plugin type is selected, the view
automatically changes depending on the behavior realized by
the plugin. For the Adaptation plugin content type, the view
changes according to the plugin content-specific properties.

B. Runtime Environment

The Runtime Environment comprises the necessary compo-
nents to enable the execution of partially (by virtue of inclusion
of abstract activities) and completely specified processes. The
processes are deployed on one or more CDC Execution En-
gines and can be instantiated at any time. Since the deployed
processes may be only partially defined, i.e. they may contain
abstract activities which need to be refined during execution,
the CDC Execution Engine must be able to start the execution
of incomplete processes, allowing the dynamic injection of
additional activities that are discovered from the fragment
repository or triggered through the process modeler. The open
source BPEL Engine Apache ODE4 as extended in [8] is used
as the basis for the implementation of the execution engine. In
the remaining of this section we provide an overview of the
different layers and their components, including the extension
mechanisms which are developed as part of our work.

Figure 3 depicts the architecture of the CDC Execution
Engine, consisting of three main layers: Integration Layer,

4Apache ODE: http://ode.apache.org/

Runtime Layer, and the Persistence Layer. The Integration
Layer exposes the engine-internal functionality to the outside,
and provides the communication features required by deployed
BPEL processes. Administration and management functional-
ities of BPEL process models, e.g. deploy and undeploy oper-
ations, are provided through the Deployment interface. BPEL
processes and their running instances can be managed through
the Process & Instance Management interface, e.g. pausing an
instance’s execution, re-executing a fragment, etc. The Axis2
and JBI Integration Layer implementations are provided by
default with the engine. However, the extensibility features
of the engine enable the realization of further integration
layer implementations that allow to integrate the engine with
other systems. The Workflow Engine API comprises a set of
APIs for engine-internal operations. These APIs are used as
an intermediate layer between the Integration Layer and the
engine-internal functionalities grouped in the Runtime Layer.

The Runtime Layer provides the core functionality of
the CDC execution engine. The BPEL Engine component
comprises all the engine-related classes, such as the ones
for representing a BPEL process model or the runtime data
of a process instance (e.g. variable values). The BPEL Run-
time Component contains the implementations of all BPEL
constructs which are internally interpreted by the engine to
instantiate and execute a process model. Towards ensuring
reliability during the process execution, the BPEL runtime
relies on the capabilities of the Java Concurrent Objects
(JaCOb) framework and the persistence functionalities of the
engine’s database in the Persistence Layer. JaCOb provides an
application-level concurrency mechanism, and a mechanism
for interrupting the execution and persisting the state of

http://ode.apache.org/

running process instances in the engine’s database. In case of a
failure in the engine, once it resumes its running state again, the
runtime data of all interrupted process instances are restored
and their execution is resumed. The Pluggable Framework
realizes a generic BPEL 2.0 Event Model towards propagating
engine-internal events for process debugging purposes [9].
Such propagation is achieved through the usage of Message
Topics (depicted as Event Topic in Fig. 3). Subscribers to the
topic can influence or debug the execution of process instances
by sending management messages to the Management Queue,
e.g. to set process execution breakpoints or for setting variables
values [8]. The Flexibility component realizes the support for
iterating or re-executing parts of a running process instance, i.e.
re-starting the execution of a set of activities or compensating
before re-starting the execution of a set of activities.

The BPEL Extensibility component realizes the extensibil-
ity points defined by the BPEL specification. For purposes
of enabling the execution of cells which are partially defined
during the modeling phase and resolved during execution, a
pluggable Injection component was developed as the means to
realize the Injection Framework capable of injecting retrieved
fragments in the Runtime Environment. Since the discovery
of the fragments requires the specification of different prop-
erties and interaction with different external sources, domain
specific plugins must be realized and dynamically loaded in
the Injection framework. We already realized a Static plugin
that retrieves a fragment that is specified during the mod-
eling phase from a repository for injection during runtime.
The Adaptation plugin incorporates context and preferences
analysis during the refinement step, which then dynamically
influences the selection of the discovered fragments. The data
sharing and exchange between the running process instance
and the injected process fragment is supported in our approach
by the definition and sharing of global variables. In future
work, we plan to introduce a more complex definition and
resolution mechanism between the process instance and the
injected fragment variables.

The Persistence Layer provides the execution engine with
the database to interpret and persist all execution related
information, e.g. deployed process models, running instances
information, history of the execution, etc. The persistence
is performed through the ODE Data Access Objects and
the ODE Engine DB components. The ODE Data Access
Objects are intermediate mediation components between the
Runtime Layer and the engine’s Database. The BPEL Com-
piler interprets the BPEL, WSDL, etc. files comprised in a
deployment bundle and converts them into an engine-internal
representation suitable for execution purposes. The Process
Store handles the deployment of new process models and
triggers their compilation.

The CDC Modeling & Runtime Environment is developed
as an open source toolset and is meant to be publicly available
in the short term future.

VI. EVALUATION

The evaluation of the presented approach is performed
by means of driving a case study scoped in the domain of
CAS systems discussed in Section II, and more specifically,
in the scope of the Urban Mobility System scenario in the

ALLOW Ensembles project. Requesting a trip in the system
requires the interaction of multiple entities, e.g. the Passenger,
Trip Booking System, Transportation Mean Systems, Payment
Gateway, etc. Since in this work we focus entirely on the
adaptation and reusability of each entities’ behavior expressed
as processes, we focus on one concrete entity which requires
high adaptation and reusability functionalities: the Payment
Gateway. The Payment Gateway deals with the various pos-
sible payment methods, and the different preferences and
constraints of different users for using them. For this purpose,
it is necessary to abstract the definition of the payment process
by partially specifying it during the design phase. For instance,
one concrete passenger may require to pay using a credit
card method, while another one may require, due to security
concerns, to pay using a direct wire transfer service. The
protocol, i.e. the orchestration logic, required for interacting
with different back-end services is different for each service,
and requires a high degree of freedom during the process
design time and adaptability during the process runtime.

For such a case study scenario we partially specified the
Payment Process depicted in Fig. 4. The abstract activity
conductPayment represents the refinement point to be refined
during runtime depending on the users’ payment preferences.
Figure 5 depicts the execution and adaptation of the payment
process. In this scenario, the user’s preferred payment method
is the MasterCard credit card. Thus, when the execution engine
schedules the execution of the conductPayment activity, the
preferences are first analyzed, and subsequently the Master-
Card payment fragment is retrieved from the repository. The
engine then schedules the execution of the fetched fragment
and executes it within the running process instance. Modifi-
cations in the process model are propagated to the modeling
tool, which also indicates in real time the execution state of
each process activity (see Fig. 5). A video demonstrating the
dynamic selection and injection of the fragment during the
execution of the process is also available5.

VII. RELATED WORK

Existing work on enabling adaptability of large scale
collaborations is targeted in the CHOReOS EU Project6, by
focusing on the substitution of services towards satisfying
evolving functional or non-functional requirements. [10] tar-
gets the adaptability during runtime based on a policy-aware
finding and binding of services and service types through
modeling constructs.

Other current investigations rely on the concept of prede-
fined regions representing placeholders in workflow models
that can be refined after the instantiation of the model. The
refinement is denoted by late modeling of process fragments,
in cases where the activities or process fragments are newly
specified inside a placeholder during run time, and late selec-
tion of process fragments in cases where a set of activities
or process fragments has been pre-modeled but the actual
selection happens during run time based on predefined rules
or user decisions [11]. There are several approaches realizing
these generic patterns. In [12], the notion of worklets, which

5Process Runtime Refinement: http://www.iaas.uni-stuttgart.de/BPELReAd/
PaymentFragmentInjection.html

6CHOREoS EU Project: http://www.choreos.eu/

http://www.iaas.uni-stuttgart.de/BPELReAd/PaymentFragmentInjection.html
http://www.iaas.uni-stuttgart.de/BPELReAd/PaymentFragmentInjection.html
http://www.choreos.eu/

Activity Executed
Activity Executing
Activity Skipped

Figure 5. Payment Process Dynamic Adaptation — Execution

are completely specified YAWL processes that refine a worklet
enabled parent YAWL task at run time, is used for workflows
in order to provide workflow run time flexibility. The selection
of the most appropriate worklet for a worklet enabled task is
based on rules considering context information. In [13], the
concept of Pockets of Flexibility (PoF) is introduced. PoF con-
tain a set of activities, with the control flow between activities
to be defined during run time, either (semi-)automatically or
manually depending on previously executed activities. Ardis-
sono et al. use a planning based approach for retrieving
sub-processes implementing a so-called abstract activity [14],
while in [15] in the field of pervasive flows planning based
techniques are used to generate a sub-process. The concept
of Adaptable Pervasive Flows (APF) [6], [7] also uses the
concept of abstract activities which are refined depending on
the context of the entities represented by a workflow.

While these approaches are similar to our work in terms of
the underlying concepts to provide flexibility during modeling
and execution of workflows, they are not based on a well-
known and industry-supported standard such as BPEL, but rely
on proprietary workflow technologies. Furthermore, they do
not offer an open source based end-to-end tool-suite realizing
the complete life process life cycle, i.e. including a process
modeling tool allowing the specification of abstract activities
which can then be deployed and provisioned in an open source
BPEL engine that has been extended with process fragment
injection capabilities. Murguzur et al. [16] propose to insert
process fragments into a base model during run time using
an staged approach for fragment resolution depending on
context information. This approach also builds on a standard-
based, open-source tool set consisting of BPMN 2.0 and the
Activiti engine. However, the presented extension to the BPMN
engine remains on a high level in terms of its architecture and
implementation.

Adaptation of workflows is not limited to changes in prede-
fined regions. Song et al. [17] propose an approach that allows
the migration of instance state from a source process schema to
a changed target process schema while ensuring the correctness
of the adaptation. In [18], service-based process instances are
adapted as a reaction to context-changes by transforming the
adaptation to a planning problem and building state transition
systems. The state transition system fulfilling a set of goals
is then translated back into an executable process and the
execution is resumed. Aspect-Oriented Programming (AOP)
is used in [19] to enable the run time adaptation of processes.
Changes are described as aspects and dynamically woven into
BPEL process instances by a corresponding execution engine.
A similar, but more generic AOP-like approach is described
in [20]. WS-Policy is used to specify aspects representing
additional functionality to be added into a process, while the
communication between engine and the aspects is managed by
a publish/subscribe system. A major difference to our approach
is that in these approaches the logic to be included is identified
and specified (manually) by the user during either the process
modeling or execution phases, and do not rely on explicitly
defined abstract activity constructs. Additionally, these works
are missing an integrated, end-to-end tool chain spanning
from a modeling environment to the execution engine where
instance level changes are directly visualized in the modeling
tool for the respective user.

VIII. CONCLUSION AND FUTURE WORK

Our previous work on Collaborative, Dynamic, and Com-
plex (CDC) systems provides the means for a unified view
on complex service based applications spanning multiple or-
ganizations [1], [2], expressed as service choreographies and
orchestrations. The introduction of abstract placeholders on the
level of choreographies allows for flexibility in system mod-
eling level, offering also the possibility for reusability across

choreography models. In this work we focus on applying this
concept to the level of service orchestrations, using BPEL, a
well established and supported process definition language for
this purpose. The presented approach provides a modeling and
execution environment capable of supporting the deployment
and execution of reusable and adaptive processes expressed
as service orchestrations. For this purpose, we first derive a
set of requirements for such an approach. We then propose
the usage of abstract constructs in executable process models
in order to specify process fragment placeholders, which can
then be refined during the modeling, provisioning, or execution
phases of the process life cycle. Subsequently, we discuss our
proposal for an appropriate architecture and its implementation
based on extending existing technologies used widely in both
research and industry domains. The evaluation of the approach
is performed by means of a case study in a European Union-
funded project.

Future investigations are focused on providing full support
of the CDC systems life cycle by means of a set of custom
abstract construct realizations that can then be used by CDC
modelers, potentially supported as a plugin repository. For
example, such constructs allow focusing on QoS aspects for the
provisioning and allocation of processes. Moreover, we plan
to extend the case study evaluation by approaching further
domains, e.g. simulation workflow in eScience.

ACKNOWLEDGMENTS

This research is partially founded by the EU FP7 600792
project ALLOW Ensembles and the German Research Foun-
dation (DFG) within the Cluster of Excellence in Simulation
Technology (EXC310).

REFERENCES

[1] V. Andrikopoulos, S. Gómez Sáez, D. Karastoyanova, and A. Weiß,
“Towards Collaborative, Dynamic & Complex Systems,” in Proceedings
SOCA’13. IEEE Computer Society, 2013, pp. 241–245.

[2] ——, “Collaborative, Dynamic & Complex Systems: Modeling, Provi-
sion & Execution,” in Proceedings of CLOSER’14. SciTePress, 2014,
pp. 276–286.

[3] A. Weiß, S. Gómez Sáez, M. Hahn, and D. Karastoyanova, “Approach
and Refinement Strategies for Flexible Choreography Enactment,” in
Proceedings of CoopIS’14, H. P. et al. R. Meersman, Ed. Springer
Berlin Heidelberg, October 2014, Conference Paper, pp. 93–111.

[4] G. Decker, O. Kopp, F. Leymann, and M. Weske, “BPEL4Chor: Extend-
ing BPEL for modeling choreographies,” in Proceedings of ICWS’07.
IEEE, 2007, pp. 296–303.

[5] V. Andrikopoulos, A. Bucchiarone, S. Gómez Sáez, D. Karastoyanova,
and C. A. Mezzina, “Towards Modeling and Execution of Collective
Adaptive Systems,” in Proceedings of WESOA’13. Springer, 2013,
Workshop-Beitrag, pp. 1–12.

[6] A. Bucchiarone, A. L. Lafuente, A. Marconi, and M. Pistore, “A
formalisation of adaptable pervasive flows,” in WS-FM’09. Springer,
2009, pp. 61–75.

[7] K. Herrmann, K. Rothermel, G. Kortuem, and N. Dulay, “Adaptable
Pervasive Flows - An Emerging Technology for Pervasive Adaptation,”
in Proceedings of SASOW’08. IEEE, 2008, pp. 108–113.

[8] M. Sonntag and D. Karastoyanova, “Model-as-you-go: an approach for
an advanced infrastructure for scientific workflows,” Journal of Grid
Computing, vol. 11, no. 3, pp. 553–583, 2013.

[9] O. Kopp, S. Henke, D. Karastoyanova, R. Khalaf, F. Leymann, M. Son-
ntag, T. Steinmetz, T. Unger, and B. Wetzstein, “An event model for
ws-bpel 2.0,” 2011.

[10] D. Karastoyanova, F. Leymann, J. Nitzsche, B. Wetzstein, and D. Wutke,
“Parameterized bpel processes: concepts and implementation,” in Pro-
ceedings of the 4th international conference on Business Process
Management. Springer-Verlag, 2006, pp. 471–476.

[11] B. Weber, M. Reichert, and S. Rinderle-Ma, “Change Patterns and
Change Support Features - Enhancing Flexibility in Process-aware
Information Systems,” Data Knowl. Eng., vol. 66, no. 3, pp. 438–466,
2008.

[12] M. Adams, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der
Aalst, “Worklets: A Service-Oriented Implementation of Dynamic Flex-
ibility in Workflows,” in OTM Conferences (1). Springer.

[13] S. Sadiq, W. Sadiq, and M. Orlowska, “Pockets of Flexibility in
Workflow Specification,” in Conceptual Modeling — ER’01. Springer,
2001, pp. 513–526.

[14] L. Ardissono, R. Furnari, A. Goy, G. Petrone, and M. Segnan, “A
framework for the management of context-aware workflow systems,”
in WEBIST (1), 2007, pp. 80–87.

[15] A. Bucchiarone, A. Marconi, M. Pistore, and H. Raik, “Dynamic
Adaptation of Fragment-Based and Context-Aware Business Processes,”
in Proceedings of ICWS’12. IEEE, 2012.

[16] A. Murguzur, X. De Carlos, S. Trujillo, and G. Sagardui, “Context-
Aware Staged Configuration of Process Variants@Runtime,” in Ad-
vanced Information Systems Engineering. Springer International
Publishing, 2014, vol. 8484, pp. 241–255.

[17] W. Song, X. Ma, W. Dou, and J. Lu, “Toward a model-based approach
to dynamic adaptation of composite services,” in Web Services, 2008.
ICWS ’08. IEEE International Conference on, Sept 2008, pp. 561–568.

[18] A. Bucchiarone, M. Pistore, H. Raik, and R. Kazhamiakin, “Adaptation
of service-based business processes by context-aware replanning,” in
Service-Oriented Computing and Applications (SOCA), 2011 IEEE
International Conference on, Dec 2011, pp. 1–8.

[19] C. Courbis and A. Finkelstein, “Weaving aspects into Web service
orchestrations,” in Web Services, 2005. ICWS 2005. Proceedings. 2005
IEEE International Conference on, July 2005, pp. 219–226.

[20] D. Karastoyanova and F. Leymann, “BPEL’n’Aspects: Adapting Service
Orchestration Logic,” in Proceedings of 7th International Conference
on Web Services (ICWS 2009). IEEE Computer Society, 2009, pp. 222
– 229.

All links were last followed on July 12, 2015.

	Introduction
	Motivation
	Requirements Identification
	BPELReAd
	Life-Cycle
	Abstract Constructs & Operations
	Extensions to BPEL

	Architecture & Implementation
	Modeling Environment
	Runtime Environment

	Evaluation
	Related Work
	Conclusion and Future Work
	References

