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Abstract. Aiming to provide the means for efficient collaboration between
development and operations personnel, the DevOps paradigm is backed by an
increasingly growing collection of tools and reusable artifacts for application
management. Continuous delivery pipelines are established based on these
building blocks by implementing fully automated, end-to-end application de-
livery processes, which significantly shorten release cycles to reduce risks and
costs as well as gaining a critical competitive advantage. Diverse application
environments need to be managed along the pipeline such as development,
build, test, and production environments. In this work we address the need
for systematically specifying and maintaining diverse application environ-
ment topologies enriched with environment-specific requirements in order to
implement continuous delivery pipelines. Beside the representation of such
requirements, we focus on their systematic and collaborative resolution with
respect to the individual needs of the involved application environments.
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1 Introduction

Continuous delivery [3] as an emerging paradigm aims to significantly shorten software
release cycles by bridging existing gaps between developers, operations personnel
(system administrators), and other parties involved in the delivery process. DevOps [4]
is often considered in this context as an approach to improve the collaboration between
development (‘dev’) and operations (‘ops’). As a result of improved collaboration,
new software releases can be made available much faster. Especially users, customers,
and other stakeholders in the fields of Cloud services, Web & mobile applications, and
the Internet of Things expect quick responses to changing demands and occurring
issues. Consequently, shortening the time to make new releases available becomes a
critical competitive advantage. In addition, tight feedback loops involving users and
customers based on continuous delivery ensure building the ‘right’ software, which
eventually improves customer satisfaction, shortens time to market, and reduces
costs. Typically, cultural and organizational gaps between developers, operations
personnel, and further groups appear, so these separated groups follow different goals
such as ‘push changes to production quickly’ on the development side versus ‘keep
production stable’ on the operations side. This often results in incompatible or even
opposing processes and mindsets. By implementing continuous delivery, these goals



and processes are aligned. Independent of the chosen approach to establish continuous
delivery by tackling cultural and organizational issues, a high degree of technical
automation is required. This is typically achieved by implementing an automated
continuous delivery pipeline (also known as deployment pipeline) [3], covering all
required steps such as retrieving code from a repository, building packaged binaries,
running tests, and deployment to production. Such an automated and integrated
delivery pipeline improves software quality, e.g., by avoiding the deployment of
changes that did not pass all tests. Moreover, the high degree of automation typically
leads to significant cost reduction because the automated delivery process replaces
most of the manual, time-consuming, and error-prone steps. Establishing a continuous
delivery pipeline means implementing an individually tailored automation system,
which considers the entire delivery process. Furthermore, a separate pipeline has
to be established for each independently deployable unit, e.g., an application or
microservice [8]. As a result, a potentially large and growing number of individual
pipelines has to be maintained. Along each pipeline suitable application environments
(development, test, production, etc.) must be established as their key building blocks.
Toward this goal, our research focuses on dynamically and systematically establishing
corresponding application environments as the building blocks of continuous delivery
pipelines to improve DevOps collaboration.

The constantly growing DevOps community supports this notion by providing a
huge variety of individual approaches such as tools and reusable artifacts to imple-
ment holistic delivery automation. Prominent examples are the Chef configuration
management framework1, the Jenkins2 continuous integration server, and Docker3

as an efficient container virtualization approach. The open-source communities af-
filiated with these tools publicly share reusable artifacts to package, deploy, and
operate middleware and application components. For instance, Chef’s Ruby-based
domain-specific language [2] can be used to create and maintain cookbooks — basi-
cally scripts to automate the deployment and wiring of different components of an
application stack. These approaches are typically combined with Cloud computing [7]
to enable on-demand provisioning of resources such as virtual servers and storage in
a self-service manner. This is not limited to the infrastructure level, but may also
include database-as-a-service and other middleware-centric offerings.

The goal of our work is to systematically handle and resolve such requirements
to establish suitable application environments (development, test, production, etc.)
as the key building blocks of continuous delivery pipelines. For this purpose, we
provide the means to collaboratively maintain such application environments, allowing
developers and operations personnel to share and utilize a common meta-model.
As part of this effort we reuse concepts from the fields of requirements engineering
and software configuration management. The major contributions of this paper
can therefore be summarized by the representation of (i) environment requirements
imposed by applications across different dimensions and of (ii) application environment
topologies to interlink corresponding requirements, and (iii) the systematic resolution
of these requirements.

1 Chef: http://www.chef.io
2 Jenkins: http://jenkins-ci.org
3 Docker: http://www.docker.com
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Fig. 1. Web shop application with its environment-specific requirements

The remainder of this paper is structured as follows: Section 2 presents a moti-
vating scenario that is used throughout the rest of this work. Section 3 introduces
the fundamental concepts of our proposal, together with their formalization as
environment-specific requirements. Section 4 discusses how these requirements can
be resolved into concrete application environments. Finally, Section 5 concludes the
paper and outlines future work.

2 Motivating Scenario

In this section we introduce a Web shop application, which is used as motivating sce-
nario and running example for this work. Figure 1 outlines the three-tier architecture
of the Web application, consisting of a front-end, back-end, and product database.
The front-end is implemented in HTML and JavaScript to provide the Web shop’s
user interface. It communicates with the PHP-based back-end using HTTP messages
containing JSON data. The back-end itself provides a RESTful API to enable the
HTTP-based communication with arbitrary clients such as the Web shop front-end
or a mobile shopping application. Product information (inventory, etc.) are stored in
the product database, which is based on a MySQL database server.

As shown in Fig. 1, diverse requirements regarding middleware, infrastructure, and
tooling are attached to the application stack with respect to the different application
environments. Some of them are required for all kinds of environments such as a
Web server and a PHP runtime. Build tools and version control mechanisms such as
Git4 and Grunt5 are only required for development & build environments. On the
other hand, some requirements may only be relevant for operating the application in

4 Git: http://git-scm.com
5 Grunt: http://gruntjs.com



production such as using a specific operating system. Beside the distinction between
environments, these requirements can be classified as application-specific or common
requirements: the former ones are essential to develop and operate instances of a
specific application, whereas the latter ones are application-agnostic and may be
derived from organization- or domain-specific policies. As an example, such a policy
could say that all data must be stored in Europe, so the whole application stack
must be hosted in Europe when instantiated. In the following sections we discuss
how such requirements can be represented, systematically handled, and resolved to
collaboratively establish continuous delivery pipelines.

3 Fundamentals

In this section we focus on introducing a set of fundamental concepts that allow us
to address the challenges identified in the previous sections. More specifically, we
propose for this purpose the concept of application environment requirements (AERs)
and discuss their relation to other existing kinds of requirements (Section 3.1). We
then show how application environment topologies (AETs) can be used to describe
application environments by interlinking AERs (Section 3.2). Finally, we outline how
to collaboratively establish continuous delivery pipelines based on AERs and AETs
(Section 3.3).

3.1 Application Environment Requirements

The Web shop application we introduced in Section 2 outlines several requirements
attached to different parts of the application stack. These are all non-functional
requirements — such as infrastructure and middleware requirements — that need to
be satisfied to establish different kinds of environments for a particular application.
For this purpose, we propose application environment requirements (AERs) as the
subset of non-functional requirements imposed by an application on its underlying
environment for different stages of the application lifecycle. We do not consider
functional requirements of the application related to the application’s user interface
and other application features. However, we do consider the relation of AERs to other
non-functional requirements. Referring to the Web shop application, for example, the
requirement that the application is hosted in Europe may have been derived from a
specific compliance requirement, saying that all data must stay in Europe to conform
to the EU Data Protection Directive [6]. As already outlined by the Web shop
example (Section 2) environment-specific AERs need to be considered and satisfied
when building a corresponding environment such as a development environment or
production environment. Some AERs are relevant for multiple environments such
as the PHP runtime required by the back-end of the Web application: this does not
only affect production and test environments, but also development environments,
e.g., to allow developers to analyze the impact of their code changes immediately
and locally on their developer environment.

Definition 1 (AER Predicate). An AER predicate is a representation of an AER
in predicate logic. Assuming that M = {im, ev} is the set of modes (im = ‘immedi-
ately required’, ev = ‘eventually required’) for AERs, E is the domain of all entities that



can be potentially required (middleware, infrastructure, etc.), P is the domain of all
possible properties the entities may own, and V is the domain of all potential property
values, there are two valid forms of AER predicates: Pm,<name>

<label> : E → {true, false}
and Pm,<name>

<label> : E × P × V → {true, false}, m ∈M.

The following AER predicates can be identified based on this definition to properly
express AERs for applications such as the Web shop application described previously:

– P im,include
<label> : E → {true, false} implies that a solution for a particular entity
e ∈ E must immediately exist in the application stack (e.g., the runtime in which
a component is executed); otherwise the predicate evaluates to false.

– P ev,include
<label> : E → {true, false} implies that a solution for a particular entity
e ∈ E must eventually exist in the application stack (e.g., the underlying operating
system); otherwise the predicate evaluates to false.

Further AER predicates can be defined in this fashion such as P
im|ev,exclude
<label> : E →

{true, false} as the inversion of P
im|ev,include
<label> . The ‘|’ symbol is used to indicate

variants of the defined predicates, e.g., im|ev to immediately or eventually exclude

solutions. Moreover, P
im|ev,equals|eqGr
<label> : E × P × V → {true, false} implies that

P
im|ev,include
<label> (e) = true for a particular entity e ∈ E and the given solution owns

a property p ∈ P and its value equals to (or is greater than) v ∈ V; otherwise
the predicate evaluates to false. As an example referring to the Web shop ap-
plication, we may define the following AER predicate to express the requirement
that the back-end must be immediately hosted on a PHP runtime, version 5.5 or

better: P im,eqGr
PHP (‘PHP’, ‘version’, ‘5.5’). Such predicates can be bundled as logical

expressions using logical operators such as:

P im,eqGr
PHP (‘PHP’, ‘version’, ‘5.5’) ∧ P ev,include

Ubuntu (‘Ubuntu OS’) ∧ ...

3.2 Application Environment Topologies

For the purpose of representing both the application and the environment for which
AERs are defined we use the concept of an application environment topology (AET).
AETs can be expressed as typed graphs following [1], where all nodes and edges are of
the form < name : type > and < type >, respectively. Nodes represent components
of the application stack, including *aaS solutions such as infrastructure-as-a-service
(IaaS) and database-as-a-service (DBaaS), while edges represent the different types
of relations between them, e.g., HostedOn, DependsOn, etc. Examples for nodes
are ApacheHTTPServer:WebServer (named node) and WebServer (unnamed node).
As discussed in [1], many existing works such as the TOSCA specification6, the
Cloud Blueprinting approach [9], and the CloudML language7, as well as solutions

6 TOSCA: http://www.oasis-open.org/committees/tosca
7 CloudML: http://cloudml.org



like Amazon CloudFormation8, the OpenNebula initiative9, or OpenStack Heat10,
essentially build on this typed topology graph model in various forms.

In order to connect an AER with the actual application that they express
requirements for, AERs are allowed to be attached to different parts of an AET.
AERs for example can be attached to nodes, denoting the requirements expressed
by the component on the environment, or to subgraphs in the AET, denoting
requirements that need to be satisfied for all nodes in the subgraph, e.g., for the
front-end of the application. An attachment map is used for this purpose:

Definition 2 (AER Attachment Map). An AER attachment map is a map-
ping function fmap associated with a particular AET to assign AER predicates to
specific parts of the topology. Assuming that N is the set of nodes in the topology
T , X is the domain of logical expressions consisting of AER predicates, and E =
{development, test, production, ...} representing the environments to which AERs
are bound, then the mapping function is formally defined as fmap : N ∪{T}×E → X .

The mapping function fmap is used to attach application-specific AERs to nodes in
the AET and to the topology as a whole, without the need of modifying the topology
definition. In case not all AERs are reflected by solutions in a topology, we refer to
such a topology with an associated AER attachment map as an unresolved topology:

Definition 3 (Unresolved AET). An unresolved AET (unresolved topology) is
an application environment topology containing at least one AER that is not satisfied
by an attached solution.

Unresolved requirements can be satisfied in different ways, depending on which kind
of application environment (development, production, etc.) should be described by a
resulting resolved topology:

Definition 4 (Resolved AET). A resolved AET (resolved topology) is an appli-
cation environment topology containing at least one solution for each AER attached
to the topology.

As an example, a PHP runtime environment may be satisfied by a corresponding
Docker container11 with minimum overhead for a development environment. However,
for a production environment, an elastic platform-as-a-service solution such as Google
App Engine12 could be more appropriate. In the following, we outline how AERs
and AETs are utilized to establish continuous delivery pipelines.

3.3 Continuous Delivery Pipelines (CDPs)

The eventual purpose of AERs and AETs is to systematically and collaboratively
establish continuous delivery. Technically, continuous delivery pipelines have to be
built and maintained for this reason. In this context, we refer to a continuous

8 Amazon CloudFormation: http://aws.amazon.com/cloudformation
9 OpenNebula: http://opennebula.org

10 OpenStack Heat: https://wiki.openstack.org/wiki/Heat
11 PHP Docker container: https://registry.hub.docker.com/_/php
12 Google App Engine: https://cloud.google.com/appengine
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Fig. 2. Example for continuous delivery pipeline (CDP) for the Web shop application

delivery pipeline (CDP) as a delivery automation system, individually tailored and
maintained per independently deployable unit such as an application or a microservice.
Thus, a CDP implements an application-specific delivery plan. Consequently, a
potentially large and growing number of individual CDPs have to be established
and maintained, especially when following the emerging microservice architecture
style [8]. In addition, this has to be done in a collaborative manner to enable aligned
and automated delivery processes, considering diverse parties that are involved such
as developers and operations personnel. By resolving AERs appropriately, diverse
application environments (development environment, production environment, etc.)
are established as key building blocks of a CDP. Figure 2 shows an example for a CDP,
considering the requirements of the Web shop application described in Section 2.
Each phase of the CDP has a dedicated resolved AET attached: a development
environment typically aims to be lightweight, e.g., by running the entire application
stack in a single container. Moreover, development tools are required to run on the
developer machine. These are not necessary in a production environment. On the
other hand, a production environment would be preferably based on scalable and
elastic Cloud offerings to keep the application responsive even in case a lot of load
appears. In the following, we present the usage of a knowledge base and a supporting
process to find suitable solutions in order to resolve AERs. In this manner, resolved
topologies are created in order to instantiate specific application environments, which
can then be tied together to establish a continuous delivery pipeline.

4 Requirements Resolution

In order to create an instance of a particular application environment (e.g., a
development environment for the Web shop application outlined in Section 2), all
AERs attached to an unresolved AET need to be satisfied. In Section 4.1 we outline
the usage of a knowledge base (KB) for the purpose of resolving AERs. Based on the
existence of such a KB, Section 4.2 discusses how diverse application environments
(development, production, etc.) can be built by deriving resolved topologies.
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4.1 Application Environment Knowledge Base (KB)

In order to enable the resolution of unresolved topologies with attached AERs we
propose the use of a knowledge base (KB) that enables informed decision making
when satisfying AERs to create resolved topologies that can be used to instantiate
application environments. The KB [10] contains linked solutions such as reusable
artifacts, tools, and services to manage development, infrastructure, and middleware
aspects of an application environment. Technically, the KB is distributed and com-
posed, so it is not a monolithic system. This enables the KB to be collaboratively
maintained, e.g., considering experts from different domains such as developers and
system administrators.

Figure 3 outlines a small selection of middleware solutions stored in the KB.
These are captured in a taxonomy that consists of abstract entities (for categorization
purposes) and the actual solutions. Similarly, infrastructure solutions (e.g., virtual
server images), development solutions (e.g., version control and build tools), and other
supplementary solutions (e.g., monitoring tools) are captured in further taxonomies
stored in the KB. Links that potentially cross taxonomy boundaries are established
between solutions to express dependencies such as a middleware component that
relies on a particular operating system to run13.

4.2 Building Diverse Application Environments

The ultimate goal of our work is to allow the automated building of diverse application
environments as key building blocks of a continuous delivery pipeline for a particular
application such as the Web shop introduced in Section 2. Therefore, we need to
provide the means to derive a suitable, resolved topology that satisfies all associated
AERs. The following process can be used for this purpose:

13 More information on the KB is available at: http://github.com/jojow/aer-paper



1. Define constraints to express environment preferences for the target environment,
e.g., minimum resource usage for development environments vs. resilient & elastic
for production environments.

2. Use the unresolved topology with its AER attachment map in conjunction
with application-agnostic, common AERs to reason about the given AERs and
constraints by querying the KB for appropriate solutions.

3. Evaluate environment preferences to filter (and potentially rank) the resulting
resolved topologies.

4. Pick a suitable or, if a ranking is available, the most suitable resolved topology.

The concept of expressing additional preference requirements (environment-
specific constraints in our case) is well-known, e.g., from goal-oriented approaches
established in the field of requirements engineering [5]; beside the mandatory re-
quirements (AERs in our case) that must be fulfilled by any proposed solution,
(potentially prioritized) preference requirements (‘nice-to-have’) such as solution de-
tails and complex temporal properties are expressed and considered. This is enabled
by not only searching the optimal solution based on the mandatory requirements, but
also considering alternative solutions when satisfying AERs in unresolved topologies.

Building on previous work [1], the original, unresolved AET is represented as an
application-specific α-topology ; using the α-topology, a reusable γ-topology is derived
from the knowledge base, considering all potential topology alternatives. Both α- and
γ-topologies are typed graphs with inheritance (essentially, class diagrams using only
association and inheritance relations, expressed as graphs), from the combination
of which a set of viable topologies can be derived. Viable topologies in the context
of [1] refer only to the fact that the topology graph is typed over the elements of the
graph resulting from the union of the α- and γ-topologies, also called the µ-topology.
A potentially large set of viable topologies can be created by the morphism from the
type graph of the µ-topology to the typed graphs of application topologies. For this
purpose, a filter function σ is used to prune down the number of potentially viable
topologies T . In principle, a set of constraints C is defined based on environment
preferences for each viable topology T :

σ(T, c) =

{
T if condition(c)=true,
∅ otherwise.

, where T ∈ T , c ∈ C.

Filter functions can be chained to allow for multiple such constraints to be applied.
Following [1], we also use utility functions to rank the filtered, viable topologies (e.g.,
minimum number of nodes) in order to find the most suitable topology that satisfies
all AERs and the corresponding environment preferences. Any kind of function can
be used as a utility function, as long as it allows for the mapping from the space of
viable topologies to that of real numbers. For example, a utility function could return
the number of nodes in the topology graph, aiming for minimizing the number of
components required for the deployment of the application. Multiple dimensions can
be combined, e.g., number of nodes with costs of operating the application under a
given load, as discussed in [1]. We finally performed an evaluation using a case study
based on the Web shop application14.

14 More information on the evaluation is available at: http://github.com/jojow/aer-paper



5 Conclusions

Continuous delivery and DevOps have emerged with the goal to bring together
developers and operations personnel by enabling their efficient collaboration. This
is technically supported by establishing automated continuous delivery pipelines to
significantly shorten release cycles without quality degradation. Diverse application
environments (development, test, production, etc.) form the key building blocks of
a continuous delivery pipeline. In the previous sections we proposed the concept
of application environment requirements as a particular kind of non-functional
requirements and formalized their representation using predicate logic, which allowed
us to define mappings between application topologies and application environment
requirements. For the resolution of these requirements into concrete environments
we proposed the usage of a knowledge base in combination with a resolution process
with distinct tasks. With respect to the latter, in this work we focused on deriving
suitable application environments driven by diverse environment preferences. We plan
however to extend the resolution and selection process in future work by considering
costs and QoS aspects, using [1] as the basis. Moreover, we aim to use AERs and the
knowledge base to support the migration of existing applications, e.g., to consider
the available options for partially or fully migrating an application to the Cloud.
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