
Institute of Architecture of Application Systems

	
	

	
	
	
	
	

	
	
@inproceedings {INPROC-2015-50,
 author = {Christoph Fehling and Johanna Barzen and Uwe
Breitenb{\"u}cher and Frank Leymann},
 title = {{A Process for Pattern Identification, Authoring, and
Application}},
 booktitle = {Proceedings of the 19th European Conference on Pattern
Languages of Programs (EuroPLoP)},
 publisher = {ACM},
 institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik,
Elektrotechnik und Informationstechnik, Germany},
 pages = {1--9},
 type = {Konferenz-Beitrag},
 month = {Januar},
 year = {2015},
 language = {Deutsch},
 url = {http://www2.informatik.uni-stuttgart.de/cgi-
bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-50&engl=0}
 }
	
	
© 2015 Johanna Barzen and Frank Leymann
	

	
	

Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{nachname}@iaas.uni-stuttgart.de

A Process for Pattern Identification,
Authoring, and Application

Christoph Fehling, Johanna Barzen, Uwe Breitenbücher, Frank Leymann

A Process for Pattern Identification,
Authoring, and Application

Christoph Fehling, Johanna Barzen, Uwe Breitenbücher, Frank Leymann

Institute of Architecture of Application Systems

University of Stuttgart
Stuttgart, Germany

{fehling, barzen, breitenbuecher, leymann}@iaas.uni-stuttgart.de

ABSTRACT
The process to identify, author, and apply patterns is mostly
performed manually by pattern experts. When performing pattern
research in large domains involving many persons, the current
state of the art of pattern research techniques, such as shepherding
and writers’ workshops, should be extended to a larger
organizational process coordinating the work of all involved
participants. This paper presents the process we followed to
identify, author, and apply patterns in various domains involving
multiple industry partners. Due to the diversity of these domains,
we claim that the process is general enough to be applicable in
other domains as well. This paper documents this process for use,
discussion, further refinement, and evaluation in a larger pattern
research community.

Categories and Subject Descriptors
D.2.1, D.2.2, D.3.3

Keywords
pattern authoring, pattern languages, pattern research method

1. INTRODUCTION
Patterns are a well-established concept to document proven
solutions to reoccurring problems in well-structured documents.
Each pattern captures an abstract solution to such a reoccurring
problem in the considered domain. Patterns are interrelated
through references in order to guide users during their application.
Through these interrelations the patterns of a certain domain form
a so-called pattern language that specifies an order of
consideration during the application of the contained patterns.
In the remainder of this introduction, the domains are covered in
which we identified patterns. From these works, the process
covered in this article has been generalized to be applicable by
other pattern authors and pattern users. The process, thus,
supports pattern authors during the identification and abstraction
of patterns.

Pattern authors and pattern users alike can follow the covered
aspects regarding pattern application.
In the past years, we identified, researched, authored, and applied
patterns in various domains [5] [17] [18] [21]. As a means to
structure this research, we developed an overall process to guide
(i) the collection of information from which patterns may be
deducted, (ii) the extraction of patterns themselves, as well as
their (iii) later application in concrete use cases. The domains we
considered during our pattern research are as follows:
Cloud Computing Patterns [4] [5] [6]: in collaboration with
several industry partners, we reviewed existing applications that
had been developed for cloud environments and those that should
be migrated to it. The resulting cloud computing pattern language
contains patterns to characterize the cloud environment by
describing different deployment options, service models, and
offerings provided by clouds. In the diversified market of cloud
computing, this helped our industry partners to characterize cloud
providers and their offerings on an abstract conceptual level.
Especially, this made providers comparable with each other as
well as existing IT infrastructures of these companies. As these
patterns for cloud offerings describe how offerings behave, they
help to solve the architectural problem when to select a certain
cloud provider and offering. Additional patterns describe how to
design, build, and manage cloud applications on top of those
offerings and, especially, how to cope with the provider-specific
properties expressed as pattern implemented by the provider.
These patterns have been extracted from existing applications as
well as provider documentation and have been refined multiple
times to create new cloud applications and to restructure existing
ones.
Cloud Data Patterns [22] [23]: Providing best practices to deal
with challenges that may arise when migrating the data layer of
an application to cloud environments is the purpose of these
patterns. Utilizing cloud technology leads to challenges such as
incompatibilities that may refer to inconsistencies between the
functionality of an existing traditional database layer and the
functionality and characteristics of an equivalent database layer in
the cloud. In addition the challenges include data privacy issues
such as avoidance of accidentally disclosing of critical data by
e.g., moving them to the public cloud. In order to address these
challenges a set of Cloud Data Patterns dealing with functional,
non-functional, and privacy-related aspects have been identified.
Through the use of decision support systems, users of these
patterns are guided during the pattern selection depending on the
application at hand and the cloud provider to be used etc. Based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.

EuroPLoP '14, July 09 - 13, 2014, Irsee, Germany Copyright is held by the
owner/author(s). Publication rights licensed to ACM. ACM 978-1-4503-3416-
7/14/07…$15.00 http://dx.doi.org/10.1145/2721956.2721976

on user selections, patterns to be implemented during the
migration, for example, to obfuscate data, can be recommended
[24].
Application Management Patterns [6] [7]: as part of our work
on the IT management standard TOSCA [19], we researched how
management processes are handling IT applications during
runtime can be developed using a pattern-based management
approach. TOSCA assumes applications to be componentized and
modeled regarding their hosting infrastructure stack, i.e.,
deployment dependencies of application components on
middleware, usage dependencies when application components
interact with each other, etc. Management patterns presented in
[6] [7] are refined semi-automatically to runtime infrastructure-
specific management processes through orchestrating so-called
Management Planlets [3]. Each of these reusable planlets captures
the refinement of management activities used by the management
patterns for one specific IT component. The refinement of
management patterns for a certain infrastructure may then be
guided using the application models created by developers and the
management patterns they wish to use.
Green Business Process Patterns [16] [17] [18]: these patterns
describe how business processes of organizations may be adjusted
to be more environmental friendly. These patterns not only
consider new patterns in this domain but also green versions of
the above mentioned patterns and those from other domains,
which have not been written with their environmental impact in
mind. The green versions of these patterns contained in this
pattern language focus on this neglected aspect. They show how
the original pattern can be applied to achieve this new ecological
goal or how the abstract solution captured in the original version
of the pattern may even hinder reducing the environmental
impact.
Costume Patterns [2] [21]: as part of our involvement in digital
humanities – the use of IT concepts and technologies in the
humanities research domain – we investigated the use of costumes
in films. This work aimed at the extraction of patterns for proven
solutions to communicate character traits of film roles through
costumes, so called vestimentary communication. After an initial
extraction of patterns for western characters, significant work is
currently ongoing to document costumes from films in a data
format that can be queried and processed by IT tools. This may
then be used to prove the existence of reoccurring combination of
pieces of clothing, coloring, or status (worn, dirty, etc.) in order to
communicate character traits.
For each of these research domains, in which we conducted
pattern research, the research methodology has been documented
in the respective sources. In this paper, the practices employed in
these domains shall be homogenized to obtain a general pattern
identification, pattern authoring, and pattern application process.
We argue that the diversity of the domains in which this
methodology has been applied ensures the generality of the
presented approach to a significant extend – after which it may
then be applied to other domains by researchers of the pattern
community. Still differences of other domains than those
considered by us may make slight alterations of the process
reasonable.
The remainder of this article is structured as follows. After the
related work in Section 2, Section 3 is structured according to the
phases of the process: pattern identification (Section 3.1); pattern
authoring (Section 3.2); and pattern application (Section 3.3). The
paper is concluded by a summary and outlook in Section 4.

2. RELATED WORK
As a starting point to our pattern research in each of the above
mentioned domains, we considered other works on pattern
writing, pattern review, and pattern organization.
Wellhauser and Fießer [25] describe how to craft pattern
documents in a way that they are accessible to readers. In a
conversation-based presentation, the authors mainly target first
time pattern writers by describing how to structure the pattern
document, what the semantics of contained sections should be etc.
This helps the pattern author to consider the way how a pattern
reader will access the pattern document and how he or she can
quickly identify whether or not the pattern is applicable in the
concrete use case at hand.
Meszaros [14] gives similar advice to pattern authors in the form
of best practices on how to write patterns. Practices are
themselves captured as a pattern language, thus, forming “a
pattern language for pattern writing”. These patterns guide pattern
authors to obtain a good pattern document structure, to find good
and well-understandable names for patterns and references, to
make the pattern itself comprehensible, and to structure the
pattern language containing all the created patterns. Pattern
authors should, therefore, follow these patterns while they write
and organize patterns in order to form their own pattern language.
Harrison [11] describes patterns for the iterative review cycle
used for pattern documents by the pattern research community.
This shepherding involves a shepherd – an experienced pattern
researcher - and a sheep – the pattern author. These two parties
iteratively review and improve the pattern document prior to its
presentation at a pattern research conference. As a matter of fact,
this paper will have undergone the same process at the time it is
published. The “language of shepherding” described by Harrison
captures best practices during this review phase again in a pattern
format. It covers patterns how the shepherd and the sheep should
interact, what properties of the pattern documents they should
focus on in each iteration of shepherding etc. Therefore, these
patterns describe what should be done after the initial drafting of a
pattern document.
Lucrédio et al. [13] capture patterns to guide students during
PLoP conferences. They describe the situations that may occur,
the problems a participant new to the pattern research community
may encounter, and how to handle them. They also help attendees
to prepare for the conferences regarding their own work that is
being discussed in writers’ workshops as well as the other work
that an attendee himself or herself has to give feedback on. These
patterns are, therefore, ideal to prepare for PLoP conferences,
which are in fact very different to other research conferences
following a less interactive and more presentation-style mode of
operation.
While these sources helped us significantly during the authoring
of patterns and the organization of pattern languages, their review
during shepherding, as well as their discussion and presentation at
conferences, we argue that the following factors should also be
considered when researching patterns in a domain:
(i) Domain Coverage: the domain in which patterns shall be
identified and abstracted should be considered completely. Thus,
the most significant and most often occurring problems of the
domain shall be addressed by the patterns.

Figure 1: The Pattern Identification, Authoring, and

Application Process © Christoph Fehling
(ii) Domain Language Unification: patterns of a domain tend to
refer to similar elements in their abstract solution, i.e., a “server”
in the domain of IT architecture patterns or a “hat” in the domain
of costume patterns. The semantics of such textual and graphical
elements should be clarified in order to homogenize their use in
pattern documents by different pattern authors. These elements
are, however, not patterns themselves as they do not solve
reoccurring problems. Instead, they are commonly referred to as
pattern primitives [26]. These primitives should be unified for
patterns of a domain to provide a better reading experience for
users.
(iii) Pattern Search and Recommendation: the structure of the
pattern language and additional information annotated to patterns
should be considered in order to create human-usable
recommendation tools to find patterns quickly for the problems at
hand.
(iv) Pattern Refinement: especially, for our industry partners
using IT architecture patterns a manual refinement of patterns
upon each application to a problem was inefficient. Often, these
companies had undergone significant work to homogenize their
IT infrastructure stack. Thus, the application of abstract patterns
to this standardized environment had to be constrained further to
ensure that the obtained architectural solutions remain
manageable.
(v) Author Group Coordination: the guidelines presented in the
related work section are mainly aimed at pattern authoring:
(i) workshops discussing patterns – the writers’ workshops, and
(ii) mentoring of authors – the shepherding of one pattern author
by a more experienced author. While this helps to organize
interactive pattern writing and review, we argue that additional
means are necessary to organize and structure a pattern language,
enable recommendation of patterns, etc. in order to support a
larger pattern research community.

In the following sections, the iterative pattern identification,
authoring, and application process will be discussed. For its three
phases, we will cover the pattern domains in detail where the
activities comprising each phase have been used extensively.
However, this does not mean that the phase has not been used in
the other domains mentioned in the introduction.

Pattern Authorin

g

Pa

tte
rn Application

Pattern Authorin

g

Pa

tte
rn Apppplication

Pa

tte
rn Identi cation

Domain

Coverage

Format Design

Review

Figure 2: Detailed sub-activities of the

information collection phase © Christoph Fehling

3. PATTERN IDENTIFICATION,
AUTHORING, AND APPLICATION
The iterative process shown in Figure 1 consists of the three
phases (i) pattern identification, (ii) pattern authoring, and (iii)
pattern application. Each phase comprises multiple sub-activities
that define the steps to be performed.
The overall process as well as each phase is performed in
iterations to continuously drive the improvement, discussion, and
adjustments of created results. The phases pattern identification
and pattern authoring are responsible for creating patterns and are
repeated as long as new patterns are found in the considered
domain. All of the phases form an internal iterative cycle,
meaning that the sub-activities comprising the phase are executed
multiple times in order to refine their output continuously. The
pattern application phase considers the refinement of patterns
authored in the first two phases to a concrete use case or to a
certain application environment, for example, for the specific IT
infrastructure stack used by a company.

3.1 Pattern Identification
The pattern identification phase structures and collects the
relevant information of a domain in which patterns shall be found.
It is depicted in detail in Figure 2. The main goal of this phase is
to structure the domain in which patterns shall be identified.
Furthermore, the terminology and graphical elements used in
pattern descriptions shall be defined in order to be used in each
pattern and documented solution in a homogeneous fashion.
These steps are especially necessary, if larger teams of pattern
researchers shall be coordinated.

3.1.1 Domain Definition
Problem: if a larger team of pattern researchers work
collaboratively on the identification of patterns in a domain, they
need to have a common knowledge about this domain.
Solution: the domain is described by written text and with
references to well-accepted definitions and related documents.
Fundamental and defining information sources are identified and
communicated to the group. If needed, definitions of domain
concepts are collaboratively created for use within the group.

Result: the persons collaborating in pattern research have
established a common knowledge about the domain and its
specific definitions and terminology. During the following
iterations, these definitions and terminology are continuously
revised. This effort ensures that patterns are written with a similar
mindset.
Examples: in the domain of cloud computing the NIST
definition [27] has been identified and communicated as a
common denominator for all participating persons. Furthermore,
terms such as “server” or “application component” have been
defined in order to be used homogeneously by pattern authors. In
scope of patterns for costumes in films, the genre of films to be
investigated has been defined.

3.1.2 Coverage Consideration
Problem: a domain can be very large, i.e., many information
sources should be considered for pattern identification. Covering
all of these sources may be unfeasible depending on the size of
the pattern research group.
Solution: the pattern research group identifies relevant topics in
the domain or formulates constraints to manage the amount of
information that has to be considered. The previously defined
domain characteristics often lead to characteristic problems that
have to be handled in each solution of the domain, which may be
used to introduce some structuring. Furthermore, all information
sources of the domain may be constrained to consider only a
subset of the information sources. Especially, if the pattern
research group is too small to review all of them.
Result: characteristic problems of the domain are identified for
which existing solutions may be searched. The information
sources to be considered are well-defined in order to coordinate
the effort of the pattern research group. After this activity, it is
clear what topics and information sources the pattern
identification shall be based on.
Examples: cloud applications have been identified to follow
certain architectural principles to profit from this domain [6]:
isolation of state – data should only be handled by small parts of
the application; distribution – the application has to be enabled to
use distributed cloud resources; elasticity – resources used by the
application need to be added and removed; automated
management – the application should react autonomously to
changes in workload or resource failures. Information sources
could be investigated for solutions fulfilling these architectural
principles. Furthermore, we described a set of relevant topics,
such as availability, resiliency, data management billing etc. that
are affected by the use of cloud computing in applications [5] to
coordinate the pattern research of multiple authors. Constraints
were introduced as a list of concrete cloud providers and
applications of a company that should be considered for review
during this activity. In the domain of costume patterns, a concrete
list of films was defined during this activity that had to be
watched in detail in order to document the costumes contained
therein.

3.1.3 Information Format Design
Problem: if multiple persons collaborate on the review of
information sources and summarize their individual findings, they
likely use different forms of representations. This can hinder the
later review of collected information.
Solution: The format in which information is collected should be
homogenized in order to process the findings more easily.

Members of the pattern research group agree on one format to
express individual findings. Furthermore, the used data format,
i.e., document structures, is defined in order to homogenize the
work of all collaborating persons.
Result: in each domain, certain modeling languages and concepts
are prevalent. For example, in the domain of IT Architecture, the
Unified Modeling Language (UML) [32] can be used to describe
components of software architectures. Finally, each domain uses
specific language elements, referred to as pattern primitives [26].
By agreeing on the format to be used, collected findings from
information sources look similar to ease perception [28]. Such
similar descriptions can also enable the automated processing of
documented findings or the querying of documented solutions.
Examples: in the domain of IT architecture, the concepts of a
“server”, “node”, “component”, and others have been used in
solution descriptions. In order to homogenize them during the
information collection and later pattern description, their
graphical representations has been homogenized in [29] and
provided as an authoring toolkit [4], which is also available
online1. This authoring toolkit also includes Word and Excel
template to homogenize the collection of information sources and
later pattern writing. In the domain of costumes, the elements of a
costume, i.e., the pieces of clothes it comprises are modeled
explicitly as ontologies [2] to homogenize their use during the
documentation of costumes. Furthermore, terms to describe these
costumes, such as colors or status (“clean”, “dirty”, “bloody”
etc.), had to be defined as well. Through this model of the terms
to be used during the costume documentation, information could
be queried afterwards, for example, to research the use of the
color “red” in documented costumes.

3.1.4 Information Collection
Problem: pattern identification can be driven by domain experts
who capture their experience. However, the knowledge of a
domain may also be persisted in other forms than human memory.
It is visible in every created artifact, such as an IT application, a
building, or a costume in a film. Therefore, patterns could be
identified from the existing solutions rather than in human
memory.
Solution: existing solutions of the considered domain are
captured by multiple persons in the defined information format.
The aspects defined during the coverage consideration phase can
be assigned to different persons in order to document existing
solutions as a collaborative effort.
Result: based on these captured existing solutions, the research
group may identify patterns even if the solutions have not been
created by members of the group itself. In this activity, the
pattern research group puts the previously defined format and
terms into use. Information sources are reviewed and solutions are
summarized.
Examples: cloud provider documentation and information about
existing cloud applications has been collected and summarized in
table-centric documents to collect information about how
individual providers and existing applications enable the
architectural principles of cloud applications. Costumes in films
have been collected in a custom web-based tool by viewing films
scene-by-scene.

1 http://www.cloudcomputingpatterns.org/authoringtoolkit.zip

3.1.5 Information Review
Problem: during the coverage consideration activity, the domain
has been structured by characteristic problems for which existing
solutions should be found in information sources. If many
information sources have been documented, this structuring may
be insufficient in order to make the identification of patterns
feasible: too many existing solutions would have to be considered
at once.
Solution: the domain structuring is refined to create manageable
sets of existing solutions considered for pattern identification.
Based on the information format, queries may be realized on the
set of documented existing solutions to find similar ones.
Result: smaller sets of existing solutions may be considered to
identify similarities easier. However, this grouping may also lead
to unidentified similarities among existing solutions that were
classified differently.
Examples: in cloud applications the concept of availability could
be divided regarding existing well-established strategies: avoiding
faults altogether and reacting quickly to faults. Existing solutions
could then be grouped with respect to the strategy followed in
order to identify patterns. In scope of costume patterns,
documented costumes could be further classified by character trait
of the role, i.e., good or bad. Furthermore, the custom tool in
which costumes have been documented could be queried to find
costumes that are similar in color, style etc. to identify relations of
these elements and the character traits, for example.

Pa

tte
rn Application

Pa

tte
rn Identi cationPa

tte
rn Apppplication

Pa

tte
rn Identi cation

DesignRevision

Pattern Authorin

g

Figure 3: Detailed sub-activities of the

pattern authoring phase © Christoph Fehling

3.2 Pattern Authoring
The information collection phase creates the information basis in
which similarities of existing solutions can be identified. Based
on these similarities, patterns are written during the pattern
authoring phase detailed in Figure 3.

3.2.1 Pattern Language Design
Problem: while many patterns follow a similar document format
comprised of sections such as “intent”, “forces”, “driving
question”, and “context” [1] [9] [10] [26], there is no generic
format that fits all domains. Nevertheless, the patterns written by
the author group shall be structured and organized similarly.

Solution: based on the well-established pattern formats, the
concrete format used in the considered domain may be different
and is, thus, adjusted to the domain’s specific needs. Also, the
references that may be used among pattern documents is defined
to express combinations, alternatives, compositions etc.
Result: the work of multiple pattern authors is homogenized by
defining and communicating two aspects to the group: (i) the
pattern sections and their concrete semantics, i.e., what
information should be included in which sections, how long each
section should be to ensure readability etc. (ii) the semantics of
pattern interrelations, i.e., is only a “related to” link used between
patterns or are there additional types, such as “alternative”,
“composition” etc. This format and the interrelations may have
to be refined during further iterations of this phase as patterns are
created.
Examples: the cloud computing patterns, cloud data patterns,
green business process patterns, and costume patterns use a very
similar format. Each domain, however, uses some adjustments.
For example, the cloud computing patterns use a leading intent
statement at the beginning of each pattern that is, especially,
reused in an overview poster2. A similar section of the green
business process patterns summarizes the ecologic aspects of the
patterns. During the iterations of the process, the pattern format
may be adjusted. Differences can be seen in the first publication
of a subset of the cloud computing patterns [5] and their final
version [6].

3.2.2 Primitive Definition
Problem: pattern descriptions may use additional and possibly
different primitives as those that have been formulated during the
information format design activity of the pattern identification
phase. If these primitives are used differently by pattern authors,
the readability of pattern documents is reduced.
Solution: the defined primitives are revised and extended.
Result: terms and graphical elements used in pattern documents
are homogenized for different pattern authors. This may,
especially, subsume the creation of different versions of the
existing primitives, for example, smaller graphical elements to be
used in pattern icons.
Examples: graphical representations of concepts like “servers”,
“components”, or “communication links” have been standardized
within scope of the cloud computing patterns [6]. Since each
pattern of this pattern language has an icon, graphical
representations also have been resized to be included in these
icons in a homogeneous manner. This especially ensured the same
size of graphical elements in all occurrences to be easier
identified [28]. In the costume domain, the modeled colors and
other terms used to describe existing costumes were also used in
costume pattern descriptions.

3.2.3 Composition Language Definition
Problem: many pattern languages use a sketch to describe the
abstract solution as a graphic. While the primitive refinement step
homogenized the graphical elements used in these sketches, the
composition of these elements to form sketches may be handled
differently by pattern authors.
Solution: the pattern research group agrees on guidelines to

2 http://extras.springer.com/2014/978-3-7091-1567-

1/pattern_overview_A3.pdf

create sketches or maybe even on a formal specification of a
composition language. Especially, this agreement can
describe the composition of existing patterns to form a new
solution sketch, for example, through the use of their pattern
icons.
Result: the composition of graphical elements into a sketch is
standardized and possibly formalized. Sketches, therefore, obtain
a common look and feel as graphical elements are used in a
similar manner. If the composition is formalized, the modeled
sketches may even be verified for correctness.
Examples: in the domain of costumes, the language to describe
that garments are “worn above” or are “attached to” each other to
form a costume has been formalized [30]. In the IT architecture
domain, pattern authors could decide to use a certain modeling
language, such as UML [32] or ACME3, to describe pattern
solutions. The cloud computing patterns use human readable
guidelines on how to combine the graphical elements and pattern
icons in sketches.

3.2.4 Pattern Writing
Problem: it can be extremely difficult for the domain expert to
author a pattern at the correct level of abstraction. If the existing
solutions are abstracted too much in order to obtain a general
solution to the often reoccurring problem, pattern users will have
problems applying the pattern as not enough information is
contained in the pattern document. If the pattern document does
not abstract enough from existing solutions, is may be more
difficult to apply the captured knowledge to new occurrences of
the problem.
Solution: after its initial creation, the pattern document is
discussed and revised by other pattern authors and pattern users.
This group of persons reviewing the pattern document may even
be unfamiliar with the considered domain to ensure that the
pattern may be used as a learning resource. During further
iterations of this activity already existing patterns should be
revisited with respect to the existing solutions that have been
documented since the first definition of the pattern.
Result: the aim of the prior two activities was to homogenize the
created pattern documents in order to ensure an easier
accessibility for readers. During the pattern writing activity,
pattern authors use the identified similarities in documented
solutions to write patterns using the defined pattern format. The
patterns and guidelines for pattern writing, which were mentioned
in the related work section are considered during this activity in
order to improve and verify patterns in a larger community.
Therefore, shepherding and writer’s workshops are held in order
to improve the pattern document.
Examples: the information about costumes could be used to find
garments worn by all documented sheriffs in western films. These
pieces of cloth could then form the basis for a sheriff pattern [31].
Similarly, the documented information about IT architecture was
reviewed to find information how a concrete cloud provider or
documented application addresses availability and resiliency [6].
Patterns from both domains have been reviewed during
shepherding and writers workshops.

3 http://www.cs.cmu.edu/~acme/

3.2.5 Pattern Language Revision
Problem: after multiple patterns have been extracted from a
certain domain, they are already interconnected through
references. These interrelations are commonly used to express
that patterns are “often used together”, form “alternatives”,
“compose” other patterns, etc. Through these references, a user of
the resulting pattern language should be guided during the search
for applicable patterns to his or her concrete use case (see pattern
search and recommendation activity of the following pattern
application phase). However, due to the iterative nature of pattern
identification, patterns written early tend to have fewer references
to other patterns as patterns written later. This is due to the fact
that patterns written later have simply a lot more patterns to
reference.
Solution: during this activity, the overall structure of a pattern
language should be investigated using the same collaborative
activities as are used during pattern writing. Especially,
bidirectionality of references should be considered: if one pattern
is, for example, often used with another pattern, is the same true
for the inverse direction? If so, the reference should be added in
the document of the referenced pattern as well.
Examples: we did several workshops with employees of
collaborating companies that were users of the cloud computing
patterns, i.e., employees who were not involved in the pattern
writing. This helped us to identify how accessible the pattern
language was and where its overall structure could be improved to
help readers.

Pa

tte
rn Identi cation

Pattern Authorin

g
Pa

tte
rn Identi cation

Pattern Authorin

g

Pa

tte
rn Application

Refinement of the

Figure 4: Detailed sub-activities of the

pattern application phase © Christoph Fehling

3.3 Pattern Application
The pattern application phase shown in Figure 4 can be performed
independently of the other two phases once there are patterns to
be applied. It is comprised of the activities shown in Figure 1. Just
like the other phases it can be performed iteratively in itself to
create multiple solutions.

3.3.1 Pattern Search and Recommendation
Problem: the number of patterns identified during the previous
phases or by other pattern researchers is very large. Given this set
of patterns, a user has to find pattern suitable for his or her

problem at hand.
Solution: the pattern user review summarized information about
patterns, such as icons, questions answered by the patterns, or
intents in order to identify possibly applicable patterns. Then, the
concrete pattern documents are read and references between
pattern documents are followed to obtain the actually applicable
pattern.
Result: the pattern users access summarized information and then
refines his or her search by considering the whole pattern
document. In many cases, this activity can be supported using
recommendation tools that enable querying the pattern language
and navigating through the interrelations among patterns.
Examples: for cloud data patterns [22], recommendation tools
have been created [24] in the form of questionnaires that can be
completed by users wishing to migrate their applications – and
especially the data handled by them – to a cloud environment.
Based on the answers given by users and annotations of possible
answers to patterns, the users can be presented with a list of
applicable patterns sorted regarding the likelihood of their
applicability in the given use case. The cloud computing patterns
are made accessible online4 in form of a wiki to ease navigation
between them.

3.3.2 Pattern-based Solution Design
Problem: patterns capture abstract solutions to be applicable in a
general fashion. Therefore, a pattern user has to transfer these
abstract solutions to his or her specific problem domain. Thus, the
pattern needs to be implemented for the given use case.
Solution: the generality of the pattern achieved through the
abstraction from concrete solutions is again refined to describe the
tailored solution. During this activity, the pattern user may rely on
the documented solutions from which a pattern has been
abstracted.
Result: documented existing solutions or specifically created
reference implementations are provided to the pattern user. He or
she, thus, accesses the documented solutions that have been
captured during the information collection phase to develop new
solutions.
Examples: the cloud computing patterns contain references back
to the known uses from which they have been abstracted. An
Apache Maven5 repository is used to host references
implementations for these patterns [20]. A cloud computing
patterns user may, thus, access code artifacts from this repository
that may form the basis for pattern implementations using
different cloud providers.

3.3.3 Refinement of the Solution Design
Problem: manual implementations tend to be different each time
a pattern is refined to a concrete solution. Especially for large
companies, it may be beneficial to control the pattern
implementation to a larger extend by guiding and constraining the
implementation and technology decisions made during the
refinement of the pattern. One challenge faced by these
companies regarding the management of IT infrastructures is to
reduce the level of heterogeneity of infrastructure stacks powering
their business applications. This heterogeneity is a major cost
driver for IT management [12]. Unconstrained manual pattern

4 http://www.cloudcomputingpatterns.org
5 http://maven.apache.org

implementations would lead to such heterogeneity.
Solution: patterns used by large companies are constrained with
respect to the environment in which they shall be applied. For
example, restrictions could state that only one or two types of IT
infrastructure stacks and programming languages may be used for
all implementations of a pattern.
Result: a company could decide to support one open source
software stack and one proprietary software stack, each for
different type of projects and their requirements. While this leaves
the implementation of the pattern to the pattern user, he or she
may significantly be supported by automated infrastructure
management, deployment functionality, and code templates all of
which was provided by the IT management departments. But even
if the environment for which a pattern shall be implemented is not
as constrained as those company-internal ones, the use of code
template-based reference implementations is also helpful for other
programmers.
Examples: pattern refinements of our industry partners may not
be described here due to corporate regulations. The above
mentioned Maven repository is used by us to manage reference
implementations of the cloud computing patterns for different
providers.

3.3.4 Instantiation of the Solution Design
Problem: if patterns are used based on reference implementations
and constrained pattern refinements, the decisions to be made by
pattern users are similar for each use case. The same is true for
the following configuration of the homogenized environment in
which a pattern shall be deployed.
Solution: techniques and tools for the management,
configuration, and deployment of software applications are used
to configure and deploy pattern refinements, thus, alleviating
redundant manual tasks for pattern users.
Result: supporting tools may provide configuration of obtained
hard- and software forming the runtime environment for the
application. The configuration of the code templates themselves is
also possible in this scope. Tooling for the guided configuration
of these IT artifacts has, for example, been presented in [15] [20].
Examples: for the cloud computing patterns, Maven has been
extended to handle the configuration of pattern implementations
and the deployment of an implementation at a cloud provider.
This especially, subsumed the configuration of reference
implementation for different user credentials used to access cloud
providers.
While these last two activities are clearly related to the refinement
of pattern for the IT domain, similar support of pattern refinement
could be realized in other domains. In the domain of costumes,
this activity would subsume the ordering of clothes and existing
costumes from rental agencies or similar institutions and then
fitting them to the measurements of the concrete actor playing a
role.

4. SUMMARY AND OUTLOOK
The presented pattern identification, authoring, and application
process has been used in several pattern research domains. Cloud
computing patterns describe how to design, build, and manage
cloud applications. Cloud data patterns focus on providing best
practices for challenges that may arise when migrating the data
base layer of an application to the cloud. Application management

patterns cover how to handle applications during runtime using
automated process models that are generated from planlets in a
semi-automated fashion. Green business processes cover the
environmental impact of a company’s process models and runtime
infrastructure by describing new patterns and green variants of
already existing patterns. Finally, costume patterns describe
reoccurring best practices to design costumes in movies in order
to communicate certain character traits of roles. We argue that the
diversity of these domains already ensures the generality of the
presented pattern identification, authoring, and application
process to some degree. With this paper we would like to
document it for use in a larger pattern-research community where
it is likely to be refined further. Our current ongoing work
subsumes the creation of tools to support the different phases of
this process. In the domain of costume patterns, work is ongoing
on a repository for capturing costumes extracted from certain
movies. Based on the data models and terminologies of this
domain – the primitives used in the costume pattern language –
we aim at finding reoccurring combinations of pieces of clothes in
order to identify patterns. With a special focus on cloud
computing patterns, we currently develop wiki-based tools to
capture and manage patterns [8]. Especially, this wiki captures the
semantics of interrelations between patterns and makes them
accessible using special queries. This shall enable users of the
wiki to find related or alternative patterns for a currently
considered pattern more easily. Thus, the pattern language is
managed as a fully navigable graph in the wiki. Finally, existing
tools guiding the decision support aiming at the initial selection
for applicable patterns from the cloud data patterns domain [24]
should be integrated with this wiki in order to find suitable entry
points to pattern languages using a wizard-based analysis of
users’ requirements.

5. ACKNOWLEDGMENTS
The work published in this article was partially funded by the
Co.M.B. project of the Deutsche Forschungsgemeinschaft (DFG)
under the promotional references SP 448/27-1, LE 2275/5-1 as
well as the SitOPT project (Research Grant 610872, DFG) under
the promotional reference LE 2275/9-1.

6. REFERENCES
[1] Alexander, C. 1978. A Pattern Language: Towns, Buildings,

Construction. Oxford University Press.
[2] Barzen, J. 2013. Taxonomien kostümrelevanter Parameter:

Annäherung an eine Ontologisierung der Domäne des
Filmkostüms (in German). Technical Report No. 2013/04.
University of Stuttgart.

[3] Breitenbücher, U., Binz, T., Kopp, O., and Leymann, F.
2013. Pattern-based Runtime Management of Composite
Cloud Applications. Proceedings of the International
Conference on Cloud Computing and Service Science
(CLOSER).

[4] Fehling, C., Ewald, T., Leymann, F., Pauly, M., Rütschlin,
J., and Schumm, D. 2012. Capturing Cloud Computing
Knowledge and Experience in Patterns. Proceedings of the
IEEE International Conference on Cloud Computing
(CLOUD)..

[5] Fehling, C., Leymann, F., Retter, R., Schumm, D., and
Schupeck, W. 2011. An Architectural Pattern Language of

Cloud-based Applications. Proceedings of the Conference on
Pattern Languages of Programs (PLoP).

[6] Fehling, C., Leymann, F., Retter, R., Schupeck, W., and
Arbitter, P. 2014. Cloud Computing Patterns: Fundamentals
to Design, Build, and Manage Cloud Applications, Springer.

[7] Fehling, C., Leymann, F., Ruehl, S. T., Rudek, M., and
Verclas, S. 2013. Service Migration Patterns - Decision
Support and Best Practices for the Migration of Existing
Service-based Applications to Cloud Environments.
Proceedings of the IEEE International Conference on
Service Oriented Computing and Applications (SOCA).

[8] Fürst, N. 2013. Semantisches Wiki zur Erfassung von
Design-Patterns. Diploma Thesis No. 3527. University of
Stuttgart.

[9] Gamma, E., Helm, R., and Johnson, R. E. 1994. Design
Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley.

[10] Hanmer, R. 2013. Pattern-Oriented Software Architecture
for Dummies For Dummies. Wiley.

[11] Harrison, N. B. 1999. Language of Shepherding.
Proceedings of the Conference on Pattern Languages of
Programs (PLoP).

[12] IBM. 2007. Corporate strategy analysis of IDC data.
[13] Lucrédio, D., de Almeida, E. S., Alvaro, A., Garcia, V. C.,

and Piveta, E. K. 2004. Student’s PLoP Guide: A Pattern
Family to Guide Computer Science Students during PLoP
Conferences. Proceedings of the Latin American Conference
on Pattern Languages of Programs (SugarLoafPLoP).

[14] Meszaros, G. 1997. Pattern Language for Pattern Writing.
Pattern languages of program design 3. Addison-Wesley.

[15] Mietzner, R. 2010. A method and implementation to define
and provision variable composite applications, and its usage
in cloud computing. Ph.D. thesis. University of Stuttgart.

[16] Nowak, A. and Leymann, F. 2013. Green Business Process
Patterns - Part II. Proceedings of the IEEE International
Conference on Service Oriented Computing and Applications
(SOCA).

[17] Nowak, A. and Leymann, F. 2013. Green Enterprise
Patterns. Proceedings of the Conference on Pattern
Languages of Programs (PLoP).

[18] Nowak, A., Leymann, F., Schleicher, D., Schumm, D., and
Wagner, S. 2011. Green Business Process Patterns.
Proceedings of the Conference on Pattern Languages of
Programs (PLoP).

[19] OASIS. 2013. Topology and Orchestration Specification for
Cloud Applications.

[20] Schraitle, A. 2013. Provisioning of Customizable Pattern-
based Software Artifacts into Cloud Environments. Diploma
Thesis No. 3468. University of Stuttgart.

[21] Schumm, D., Barzen, J., Leymann, F., Ellrich, L. 2012. A
Pattern Language for Costumes in Films. Proceedings of the
European Conference on Pattern Languages of Programs
(EuroPLoP).

[22] Strauch, S., Andrikopoulos, V., Bachmann, T., and
Leymann, F. 2013. Migrating Application Data to the Cloud
Using Cloud Data Patterns. Proceedings of the International

Conference on Cloud Computing and Service Science
(CLOSER).

[23] Strauch, S., Andrikopoulos, V., Breitenbücher, U., Kopp, O.,
and Leymann, F. 2012. Non-Functional Data Layer Patterns
for Cloud Applications. Proceedings of the IEEE
International Conference on Cloud Computing Technology
and Science (CloudCom).

[24] Strauch, S., Andrikopoulos, V., Bachmann, T.,
Karastoyanova, D., Passow, S., and Vukojevic-Haupt, K.
2013. Decision Support for the Migration of the Application
Database Layer to the Cloud. Proceedings of the IEEE
International Conference on Cloud Computing Technology
and Science (CloudCom).

[25] Wellhausen, T., and Fießer, A. 2011. How to write a pattern?
Proceedings of the European Conference on Pattern
Languages (EuroPLoP).

[26] Zdun, U. 2007. Systematic pattern selection using pattern
language grammars and design space analysis. ACM
Software.

[27] Mell, P., and Grance, T. 2011. The NIST definition of cloud
computing. Available at:
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-
145.pdf.

[28] Petre, M. 1995. Why looking isn’t always seeing.
Communications of the ACM.

[29] Fehling, C., Leymann, F., Mietzner, R., and Schupeck, W.
2011. A collection of patterns for cloud types, cloud service
models, and cloud-based application architectures.
Technical report No. 2011/05. University of Stuttgart.

[30] Barzen, J., and Leymann, F. 2014. Kostümsprache als
Mustersprache: Vom analytischen Wert Formaler Sprachen
und Muster in den Filmwissenschaften (in German).
Jahrestagung der Digital Humanities im deutschsprachigen
Raum (DHd 2014).

[31] Barzen, J., Leymann, F., Schumm, D., and Wieland, M.
2012. Ein Ansatz zur Unterstützung des
Kostümmanagements im Film auf Basis einer Mustersprache
(in German). Modellierung 2012, GI.

[32] Object Management Group (OMG): Unified Modeling
Language (UML) Standard Version 2.4.1. Available at:
http://www.omg.org/spec/UML/2.4.1/

[33] Bowman, M., Debray, S. K., and Peterson, L. L. 1993.
Reasoning about naming systems. ACM Trans. Program.
Lang. Syst.

All links were last followed on 30 January 2015.

