
© ACM 2015
This is the author's version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version is available at
ACM: http://dx.doi.org/10.1145/2837185.2837225

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

@inproceedings{Sungur2015a,	
		author				=	{Sungur,	Celal	Timurhan	and	Breitenb\"ucher,	Uwe	and	
Leymann,	Frank	and	Wettinger,	Johannes},	
		title					=	{Executing	Informal	Processes},	
		booktitle	=	{The	17th	International	Conference	on	Information	
Integration	and	Web-based	Applications	{\&}	Services,	{IIWAS}	'15,	
Brussels,	Belgium,	December	11-13,	2015},	
		year						=	{2015},	
		publisher	=	{ACM}	
}	

:

C. Timurhan Sungur, Uwe Breitenbücher, Frank Leymann, and Johannes Wettinger.
2015. Executing Informal Processes. In Proceedings of iiWAS ’15, December 11-13,
2015, Brussels, Belgium. DOI: http://dx.doi.org/10.1145/2837185.2837225

Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{lastname}@iaas.uni-stuttgart.de

Executing Informal Processes

C. Timurhan Sungur, Uwe Breitenbücher, Frank Leymann, and Johannes Wettinger

Institute of Architecture of Application Systems

Executing Informal Processes

C. Timurhan Sungur, Uwe Breitenbücher, Frank Leymann, and Johannes Wettinger
Institute of Architecture of Application Systems

University of Stuttgart
70569 Stuttgart, Germany

lastname@iaas.uni-stuttgart.de

ABSTRACT
Processes involving knowledge workers, such as decision-
making processes, research processes, development processes,
maintenance processes, etc. play a critical role for many or-
ganizations because they represent a valuable amount of the
work an organization delivers. Therefore, supporting and au-
tomating such processes is vitally important for organizations.
In our previous work, we have proposed a resource-centric
approach called Informal Process Essentials (IPE) to support
and to provide a certain degree of automation. The approach
enables specifying required resources including autonomous
agents of an informal process for accomplishing process goals
through creating and initializing IPE models. Initializing an
IPE model results in the acquirement of resources that col-
laboratively work towards the goals specified by the model.
In this work, we provide an approach to automating the
enactment of such resource-centric informal processes in two
steps: (i) integrating resources of informal processes and
(ii) executing informal processes. The approach we introduce
enables the inclusion of different resource domains, e.g., IT
resources, human resources, etc., and resource deployment
environments, e.g., OpenTOSCA, Docker, etc. to model and
enact informal processes. During the execution, the resources
made available through the integration are acquired and en-
gaged for goals of modeled informal processes. To validate
the introduced concepts, we apply the approach to a detailed
case study that realizes these two steps based on existing
approaches and technologies, in particular, the OpenTOSCA
ecosystem, an knowledge base, and an APIfication approach.

Categories and Subject Descriptors
H.4.1 [Information Systems Applications]: Office Au-
tomation—Workflow management ; H.5.3 [Information In-
terfaces and Presentation]: Group and Organization In-
terfaces—Computer-supported cooperative work

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

iiWAS ’15, December 11-13, 2015, Brussels, Belgium
c© 2015 ACM. ISBN 978-1-4503-3491-4/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2837185.2837225

Keywords
Informal processes, agent-centered processes, human-centric
processes, process execution, TOSCA, APIfication

1. INTRODUCTION
Many organizations rely on business process models to cap-

ture recurring procedures for enacting them in an automated
fashion using corresponding business process execution en-
gines. This activity-centric modeling of business processes
enables automating reusable activity structures through busi-
ness process modeling languages such as the Business Pro-
cess Execution Language (BPEL)1 and the Business Process
Model and Notation (BPMN)2. During the enactment of
these activity-centric processes, the modeled activities are
executed as prescribed by the model. However, in various
processes, modeling explicit control flows of activities in ad-
vance is not possible [20, 6]. For instance, in a software
development process, required activities and their order of
execution cannot be predicted beforehand as they depend on
the requirements of the software to be developed. Thus, such
kind of processes are typically not well-defined, i.e., informal,
and human-centric. During execution, there is a set of critical
resources that drive a process to a successful execution. For
example, in a software development process, critical resources
are the development environment, knowledge dissemination
environments such as a Wiki software, and qualified humans
such as developers. All these resources are key for achieving
the specified process goals, i.e., developing the respective
software. Unlike structured processes, human actors do not
follow predefined activities during the enactment as they
conduct these activities based on their expertise and expe-
rience. Approaches such as adaptive case management [12]
or ad-hoc business process management [10] enable enacting
such processes by defining activities on the fly and reusing
created activity structures during future executions. How-
ever, in various cases, focusing on activities does not support
human actors because the problems that they face are trivial
or change dynamically and, consequently, required activities,
too. In contrast to the unpredictable activities in knowledge-
intensive processes, goals of informal processes are known
before their enactment [6]. Reaching these goals requires
not only certain human actors but also other resources that
support them, e.g., IT resources, material resources, and
knowledge resources. Based on these facts, we have proposed

1http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.
0-OS.pdf
2http://www.omg.org/spec/BPMN/2.0/PDF/

http://dx.doi.org/10.1145/2837185.2837225
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.omg.org/spec/BPMN/2.0/PDF/

a resource-centric modeling approach called Informal Pro-
cess Essentials (IPE) [20]. The approach supports human
actors by providing required resources for achieving infor-
mal process goals. By placing human actors with required
capabilities into informal processes, it supports reproducing
similar process results. Moreover, the presented approach is
not only a stand-alone but also complementary to existing
activity-oriented approaches such as adaptive case manage-
ment [12] and ad-hoc business process management [10] by
enabling specifying involved actors and resources required
for different activities. In our previous work [20], we intro-
duced a meta-model for specifying informal processes and an
overview of a solution architecture addressing these concepts.
However, we did not present an automated means to create
instances of resource-centric informal process models that
facilitate the achievement of prescribed process goals. The
meta-model enables describing informal processes to preserve
essential information such as their interrelated actor and
resource definitions, the disseminated knowledge, goals of
informal processes, and their context information. As the
preserved information is critical for structured, unstructured,
and semi-structured processes, i.e., processes containing both
fixed and variable activities, informal process models provide
support for processes with different granularities. Initializing
resource-centric informal process models require acquiring
and engaging interrelated resources towards goals of informal
processes. Configuring, coordinating, and engaging different
resources manually during initialization typically causes an
overhead, e.g., different IT services and developers need to be
installed and assigned at the beginning of a software develop-
ment process. Although existing automation standards such
as BPEL present necessary foundations to avoid such over-
heads through acquiring interrelated resources of informal
processes in an automated fashion, complementary concepts
to achieve an automated initialization are still missing.

In this paper, we tackle this issue of automating informal
process initialization. We present the following contributions
of our research: (i) a method for integrating resources of
informal processes (Sect. 4.2), (ii) a method for initializing
informal process models (Sect. 4.3), (iii) and a detailed proof-
of-concept case study (Sect. 5). The first method enables
integrating resources participating in informal processes into
modeling and execution environments of resource-centric
informal processes. The second method empowers the au-
tomated execution of informal process models involving re-
sources integrated by the first method. Consequently, this
work presents an approach to automating the enactment of
resource-centric informal processes. In our case study, we
describe how we realize the concepts introduced using the
concept of APIfication [26], the OpenTOSCA ecosystem [2,
13, 4], and a comprehensive DevOps knowledge base [25].

2. MOTIVATING SCENARIO
As motivating scenario and running example of this work,

we describe the informal process of developing a software
application for collecting usage statistics of manufactured
cars. During collection of usage statistics, the application ex-
ploits Internet of Things (IoT) technologies such as wireless
and RFID sensors. Moreover, the project contains various
sub-goals such as collecting requirements, setting the commu-
nication protocol between cars and the developed software,
and assuring the quality of the developed code. Developing
such an application requires the collaboration of various peo-

ple with different expertise and skills, e.g., the cooperation of
embedded software engineers who design and install sensors
on cars and actual application developers. Embedded soft-
ware developers contribute temporarily as external experts
to the project. As a result, it’s vitally important to store
the information provided by them for the future usage. The
project team, therefore, employs a Wiki called MediaWiki3,
on which project members can store the relevant information
about the development. As usual in software development
projects, developers build the project on a specific technol-
ogy stack, e.g., by using Java, the Java Virtual Machine
(JVM), and the build tool Maven. Although each developer
can exploit her favorite integrated development environment
(IDE), e.g., Eclipse, IntelliJ, NetBeans, Emacs, etc., as a
common foundation, they need to rely on this technology
setting. The development team executes an automated pro-
cess to build the software. The management of the project
is accomplished using a project management software called
Redmine4. Moreover, participating human resources are
members of a business-oriented social network called XING5.

The resources required in this process include material,
i.e., physical, resources, IT resources, and, more importantly,
human actors who achieve process goals with the help of
other resources. For example, developing the application
requires an operating system that runs a JVM. As new goals
emerge during process execution, the team may acquire new
capabilities dynamically that are provided by other resources.
For example, the project management can decide to support
a specific IoT middleware for governing different events from
car sensors. In that case, technical experts add a new software
representing such a middleware.

In this scenario, the participating human actors work to-
wards one main goal and certain sub-goals. Each resource has
different semantic relationships with other resources based on
the different types of interactions between the resources. For
example, the project lead has administrative access permis-
sions for the Redmine service, whereas a regular developer
has more restricted access permissions. The IPE approach
enables creating models involving the definitions of key actors
such as managers and developers and definitions of support-
ing resources such as Redmine and MediaWiki. However, due
to the lack of a method for initiating informal processes au-
tomatically, additional manual effort is needed. For instance,
to initialize the software development process, the Redmine
service needs to be installed, a qualified manager needs to
be found, and Redmine needs to be configured for the man-
ager. In this work, we provide an approach to automating
the enactment of such informally specified, resource-centric
processes.

3. FUNDAMENTALS
Many organizations document and implement value-adding

activities and their structure in the form of business processes.
Moreover, business process engines can enact the business
process models automatically, after configuring the necessary
IT infrastructure. Modeling, configuring, executing, and
improving business processes are conducted as a cycle called
Business Process Management Life Cycle [24, 9]. In this work,
we distinguish between two roles in this life cycle: (i) business

3http://www.mediawiki.org/
4http://www.redmine.org/
5http://www.xing.com/

http://www.mediawiki.org/
http://www.redmine.org/
http://www.xing.com/

 Integrating
Resources of

Informal
Processes (P1)

Informal
Process

Modeling (P2)

Model
Deployment
and Runtime

(P4)

Informal
Process Model

Compilation
(P3)

IPE
Model

Resources

DIPEA

Figure 1: Steps of the InProXec method for executing informal processes

experts that model and evaluate business processes and their
execution performances, respectively, and (ii) the role of
technical experts that configure the IT infrastructure for
execution. Describing processes based on their activities is
suitable for processes that are structured in terms of having
rigid activities. However, organizations do not only involve
such structured processes but also unstructured processes,
whose exact enactment cannot or should not be prescribed in
advance [6]. Different characteristics of these processes are
used to name them in different scientific works. To clarify
the term of informal processes, we define it as follows:

Informal processes are unstructured processes, whose exe-
cution steps cannot be modeled or are not feasible to model
before their enactments. Execution steps cannot be modeled
as they change during each enactment and it is not feasi-
ble as the benefit of automating the process enactment is
lower than the cost of the automation. Instead, autonomous
agents enact informal processes based on ad-hoc decisions,
experience, and knowledge with the help of other involved
resources. Thus, no formal definitions exist stating which
steps in which order must be taken by which actors, but,
rather, only informal guides and definitions of initial goals
of the respective process exist.

3.1 Informal Process Essentials
In this section, we detail different concepts introduced by

the Informal Process Essentials approach in our previous
work [21, 20]. The approach enables the resource-centric
modeling of informal processes. The concept of resources
in the IPE meta-model include all kinds of resources which
are valuable for achieving goals of an informal process, e.g.,
a developer, MediaWiki, Redmine, etc. Additionally, we
distinguish between two kinds of resources regarding the
time that resources are needed in informal processes: initial
and on-demand resources. Initial resources are required at
the beginning of an informal process. These resources are
foreseeable during the modeling of an informal process and
are believed to be enough for reaching the goals at hand.
Additionally, there are also on-demand resources [23] that
are acquired dynamically based on the emerging goals during
the process enactment. A special type of resources in the IPE
meta-model are actors that drive the process execution au-
tonomously. The experienced human actors that already par-
ticipated in certain informal processes typically take the role
of business experts during modeling, as they know insights
of the processes that they participated. Another specific
kind of resources is knowledge resources that contain critical
information about the process being enacted. A MediaWiki
service and the documentation about a specific project are

examples of knowledge resources. Human resources work on
knowledge resources iteratively and they store their explicit
knowledge needed for executing similar informal processes.
Therefore, knowledge resources are critical for guiding human
actors. Actors are typically humans; however, this role can
be as well taken by certain software services that are able to
drive process execution autonomously.

Actors make use of other resources to accomplish intention
and sub-intention of the respective informal processes. Each
intention can require certain capabilities that are provided
by available organizational resources. A resource organizer
is responsible for collecting resource definitions and present-
ing them to business experts for modeling. Moreover, each
resource can be associated with other resources by relation-
ships. Through relationships, business experts can model
more coherent resource structures. Relationships are optional
entities in each model, as they are typically used for detailing
the resource structures. In this work, we address the resource
models without relationships and leave the ones containing
relationships as future work due to the broad context of this
work.

4. INPROXEC - A METHOD TO EXECUTE
INFORMAL PROCESSES

In this section, we present our InProXec method that
follows the steps illustrated in Fig. 1. The method enables
initializing informal process models in an automated fashion.
In the following subsection, we present an overview of our
method. Thereafter, we detail the different phases of the
method.

4.1 The InProXec Method
The InProXec method consists of four different phases as

shown in Fig. 1. The first phase of our method contributes
to the creation of functional modeling and execution environ-
ments of resource-centric informal processes. This phase is
followed by a modeling phase, in which business experts cre-
ate informal process models. Hereafter, the third phase aims
for producing executable informal process models. These
models are then initialized in the fourth phase.

Integrating Resources of Informal Processes (P1).
Many services provide information about informal process
resources and means of acquiring them automatically, e.g.,
XING provides the information about human resources and
an automated application can be used to provision a new
MediaWiki service. To model informal processes using the
information available about resources during modeling and
to acquire modeled resources during execution, technical
experts integrate such information and automation services

Resource Engagers

D
om

ain

M
an

agers Ex
ec

ut
io

n
En

vi
ro

n
m

en
t

In
te

gr
at

or
s

Organizational
Resources C

on
tr

o
l

Se
rv

ic
es

R
et

ri
ev

al

Se
rv

ic
es

stores

engages

(I1) Analyze
Resources of

Interest

(I2) Analyze
Available

Retrieval and
Control Services

(I4) Realize
Domain

Managers

(I6) Register
Managers and

Execution
Integrators

(I3) Design
Resource

Operations

(I5) Realize
Execution

Environment
Integrators

Resource
Definitions

Relationship
Definitions

Domain
Registry

provides

Contained by (D)IPE(A)

Contained by DIPEA

Figure 2: Integrating Resources of Informal Processes (P1)

in this phase. During the integration, they develop services
(i) for retrieving information about required resources, (ii)
for acquiring them, and (iii) for releasing them upon the
process completion. These services are used to manage, i.e.,
view, acquire, and release, available organizational resources
in an automated fashion. As a result, integrated resources
are available in modeling environment and can be acquired /
released during execution.

Informal Process Modeling (P2). In the second phase,
business experts model informal processes using different IPE
modeling elements, e.g., using the resources definitions made
available in the first phase. Business experts create informal
process models using interrelated resources aiming for a
main intention containing sub-intentions. Consequently, IPE
models specify informal processes and provide a means of
execution in the following phases.

Informal Process Compilation (P3). IPE models only
describe the goals to be achieved, the required resources, etc.,
but they do not provide executable functionality, e.g., a
service that can be used to instantiate a new MediaWiki.
Therefore, in the third phase, the transformation from IPE
models into initializable self-contained Deployable Informal
Process Essentials Archives (DIPEA) takes place. We em-
ploy an IPE Model Compiler, which associates additional
executables with resource definitions described by an IPE
model. As a result, created DIPEAs enable enacting desired
informal process.

Informal Process Model Deployment and Runtime
(P4). In the final phase, the initialization of DIPEAs takes
place. Therefore, we employ an IPE Runtime that is capable
of parsing DIPEAs and running the executables contained
in these archives. During this phase, the runtime acquires
contained resources with desired interrelationships and ini-
tializes them. After acquiring resources, autonomous actors
work towards intentions of informal processes collaboratively
using other involved resources. For example, the runtime
calls a service to initialize a MediaWiki and another service
to assign an actor to a process via XING. Upon completion,
the runtime releases all resources. For completeness, we
include also the phase of modeling informal processes (P2).
However, this phase is out of scope of this work and will be
covered in future work.

4.2 Integrating Resources of
Informal Processes (P1)

This section details the phase 1 by presenting a systematic
approach to integrating resources into modeling and exe-
cution environments of informal processes. Different steps
and components are involved in this phase as depicted in
Fig. 2. To recap, this phase aims for establishing a model-
ing and execution environment of informal processes that is
capable of creating and executing informal process models
with required resources. As we aim in this phase for integrat-
ing resources involved in informal processes, we start with
identifying resources that participate in informal processes
(I1), as depicted in Fig. 2. During our scientific discussions,
we have identified four resource domains that need to be
investigated during this step: (i) IT resources including a
wide range of applications and services to support actors in
various ways such as a Redmine service and an automated
build process of the respective software in the motivating
scenario, (ii) material resources such as specific spare parts
or tools to fix a machine, a simulation device, raw materi-
als, etc., (iii) knowledge resources that contain the explicit
knowledge of human actors, e.g., MediaWiki, Google Docs,
a Model Repository, a Word document, etc., and (iv) human
resources, human resources that are abstractly defined using
roles, skills, and etc. The role of each domain becomes more
critical depending on the nature of the informal process con-
sidered. For instance, in manufacturing, material resources
gain more importance than the other resource domains, as
it’s more common to observe processes that are conducted
manually with the help of material resources.

After identifying resources of interest, technical experts
assess ways of integrating these resources into respective
modeling and execution environments of informal processes.
Therefore, they analyze available IT services that are related
to the resources of interest (I2), e.g., they investigate rel-
evant services for human resources such as XING. To this
end, we distinguish between retrieval and control services.
Retrieval services are capable of delivering information about
different resources. Thus, using these services, it is possible
to view available resources and their properties, which are
used by business experts during modeling. For example, a
social networking service enables viewing its members and
their properties, i.e., human actors, of a social network. An-

other example is a business process repository that provides
various IT resources such as the build plan of the software
application from the motivating scenario. Moreover, each
retrieval service can provide runnables, i.e., executables or
resource engagers, to instantiate resources of informal pro-
cesses. Examples of these runnables are scripts or business
process models such as BPEL processes. These runnables
typically communicate with different resource management
services such as an operating system and a cloud service
provider to acquire desired resources. Here, we opted for the
word “engager”, instead of, for example, “acquirer”, as cer-
tain resources require an additional step of engaging towards
informal process intentions. For instance, a resource engager
of a human role can be in the form of a BPEL process that
communicates with a human resource using a social network
API during the acquirement, i.e., the engagement. Such a
resource engager informs human actors and includes process
intentions in the message so that actors can decide on joining
the process and engage towards the intentions. As means of
accessing different retrieval services can vary significantly, a
direct integration of each retrieval service results in changes
to an informal process modeling and execution environment.
Moreover, such changes are not feasible in many cases and,
as a result, a more loose-coupled way of the integration is
required. So, technical experts implement domain managers
to hide this heterogeneity and make use of retrieval services.
Each domain manager abstracts from peculiarities of differ-
ent retrieval services and provides a unified interface with
equivalent operational behaviors. For instance, a domain
manager of the social network mentioned would abstract
the respective social network API by implementing certain
operations with certain semantics such as listing available
members of an organization. Moreover, it would provide the
BPEL process mentioned for engaging the human resources.
Thus, such a domain manager will act as a mediator and
avoid any changes on an existing informal process modeling
and execution environment. In certain cases, resources of
a domain manager can be inaccessible, meaning that it is
not possible or feasible to generate resource engagers for
these resources. In such cases, technical experts can still
develop domain managers only to represent the existence
of resources. However, it is not possible to engage these
resources in an automated fashion. Resource engagers are
runnables and require runtime environments to be executed.
The services that are capable of executing resource engagers
are called control services. For example, a control service
that is capable of running resource engagers in the form of
BPEL processes is a BPEL engine. Different control services
provide different APIs. Thus, integrating each control ser-
vice into informal process execution environments requires
changes in the respective execution environments themselves.
To avoid such changes for different control services, technical
experts hide control services behind execution environment
integrators. Execution environment integrators are wrappers
that provide access to different control services in a uni-
fied fashion. These integrators engage resources by running
their executables during P4. We present a standard-based
integration approach to realize these domain managers and
execution environment integrators in our case study (Sect. 5)
to validate the practical feasibility of this concept.

Although resources share common operations such as en-
gaging resources for an informal process, there are also other
important and relevant operations provided such as adding

users to a MediaWiki and Redmine service. Before realizing
domain managers and execution environment integrators,
technical experts need to elaborate on required resource op-
erations (I3). Thus, technical experts first analyze operations
provided by different resources and their respective resource
engagers. To this end, we distinguish between two kinds of
operations (i) life cycle operations, e.g., acquire, release, get
status, etc., and (ii) custom operations, e.g., send a message
to a human resource. Life cycle operations enable initializing
and releasing resources during the phase 4. Each resource en-
gager must provide these operations to instantiate resources
they represent. On the other hand, custom operations can
be used for different objectives and vary for each resource
selected. For example, “creating new user” operation of Red-
mine, i.e., giving a user certain access rights for using the
corresponding resources, can be observed in many IT re-
sources. In case all resources provided by a domain manager
expose a certain operation, technical experts design domain
managers and their respective execution integrators to sup-
port this operation. Moreover, there are also operations that
belong to only a subset of resources provided by domain
manager. For these operations, technical experts update
respective resource engagers so that they provide necessary
information about these extra operations.

After designing resource operations, they start realizing
designed domain managers (I4). Hereafter, technical experts
realize execution environment integrators to make the IPE
Runtime support running different types of resource engagers
(I5). After realizing each domain manager and execution envi-
ronment integrator, technical experts register them to desired
modeling and execution environments of informal processes
(I6). Consequently, an aggregator component called Resource
Organizer can collect available resources of different domains
and present them to business experts for modeling. The
registration data provides necessary information to access
domain managers and execution environment integrators.
After enacting different steps introduced in Fig. 2, business
experts can use integrated resources during modeling, e.g.,
organizational roles provided by the domain manager of the
XING service. Moreover, during execution, the IPE Run-
time exploits the execution environment integrators created
to instantiate IPE models, e.g., the execution environment
integrator enacting a business process for engaging human
actors via XING.

4.3 Compiling and Initializing
Informal Process Models (P3 and P4)

As a preliminary phase of enacting informal processes,
business experts model existing informal processes in their
organizations (P2). Modeling of informal processes is followed
by executing informal processes. Although we consider the
compilation phase (P3) and the deployment and runtime
(P4) separately in our overview, they both constitute to the
automated execution of informal processes and, thus, are
considered to be logically grouped here. Typically, initializing
informal process models starts after the initial context defined
in an IPE model is present in the respective organization,
e.g., the need for developing a new service in the motivating
scenario. Either an automated service, e.g., an activity in
a structured process, recognizes the presence of an initial
context definition and triggers the enactment automatically
or the respective organization triggers it manually. The
triggering is followed by compiling an IPE model. IPE

Initial Context
Is Present

(E1) Compile
IPE Model

(E2) Engage
IPE

Resources

(E4) Update
Deployed

Model

(E5) Complete
Process

Execution

(E6) Back-up
Knowledge
Resources

(E7) Save
the Final
Model

IPE
Model

(E3) Achieve
Process
Goals

New
Requirements

Execution
Completed

IPE
Model

Instance

DIPEA

Figure 3: Executing Informal Processes

models do not comprise required runnables for the resources
to be acquired, but, rather, they provide only descriptive
information about them. The compilation step (E1) converts
the IPE model with its descriptive nature into a Deployable
Informal Process Essentials Archive (DIPEA), which contains
all required runnables, e.g., scripts, business processes, etc,
for initializing an informal process model. During this step,
an IPE Model Compiler interacts with domain managers of
accessible IPE model resources to collect resource engagers.
For instance, compiling an IPE model containing a human
actor results in an archive that contains a BPEL process
for engaging that actor via XING. After the compilation,
the execution proceeds with acquiring resources of the IPE
model (E2). During the acquirement, the IPE Runtime
parses the DIPEA and runs each resource engager contained
using its associated execution environment integrator. For
instance, a DIPEA containing a human role and its respective
resource engager in the form of a BPEL process is executed
using its execution environment integrator of a BPEL engine,
respectively. Failing the initialization of any of the initial
resources leads to a faulty state.

The successful initialization results in an IPE Model In-
stance, as depicted in Fig. 3. A model instance contains
additional meta-data about executed processes such as the
information about the start time, a history of the resource
model, the time of changes made, etc. Moreover, each re-
source definition is converted into resource instances. Re-
source instances contain the necessary information to access
or track a resource or its activities, respectively. For in-
stance, a resource instance of a MediaWiki resource residing
in a cloud infrastructure contains its respective IP address
and required credentials to execute desired operations, e.g.,
add a new user. Similarly, a resource instance representing
a human actor described by a role resolves into an actual
individual identified by its ID in the XING service. After
completing the initialization, engaged actors work towards
informal process intentions using other acquired resources
(E3). Human actors can update the initialized informal
process model to adapt the process execution to emerging
requirements (E4). Adaptations can mean changing exist-
ing resource models, intentions, and the associated context
information. For instance, business experts can acquire the
service to manage IoT devices in the motivating scenario
during E3 automatically by executing its resource engager,
e.g., a BPEL process.

After achieving informal process goals, completing the
process execution starts (E5), e.g., the completion of the
software development process. During this step, the IPE

Runtime releases each resource using their execution envi-
ronment integrator. For example, the resources that have
been provisioned in a cloud environment are de-provisioned.
During releasing knowledge resources, special care must be
taken. As these resources must evolve iteratively, they must
be stored and reused after each execution (E6). Each back-up
operation is a resource-specific operation meaning that they
are defined separately in respective resource engagers. For
example, storing the knowledge contained in a MediaWiki
is different than the knowledge contained in a simple Word
document. After finalizing backups, the IPE Runtime stores
the final state of an informal process instance (E7). These
different versions provide an overview of different possible
intentions and resource structures resulted during different
executions of the same process. Business experts can select
one of the versions for future executions based on differ-
ent parameters such as the execution time, the cost, or the
frequency of the model execution.

EngagedInaccurate

Backed-upAcquirable

Descriptive
Create / Update

IPE Model

Create / Update
IPE
Model

Release

Knowledge
Resource

 Remove
 Resource

Complete
Process
Execution

SuccessError

 Initialize DIPEA

 Compile
 IPE Model

Figure 4: Life Cycle of a Resource During Informal
Process Execution

During the execution, each resource goes through a certain
life cycle, as depicted in Fig. 4. Each resource appears firstly
in a descriptive form in IPE models. From these descriptive
resource models, IPE Model Compilers create acquirable re-

sources using their respective domain managers. These are
still abstract resources that need to be resolved during the
acquirement. For example, resource engagers do not contain
the information about an actual employee, but, rather, just
roles. Similarly, software licenses or other computational
resources are not yet acquired for acquirable IT resources.
After the initialization step, the execution environment re-
solves actual resources. If the acquirement of a resource has
failed, the state changes into inaccurate, meaning that the
created deployment descriptor of the resource is not accurate,
as denoted in Fig. 4. For example, the resolution of human
roles can fail during deployment, as no human was present
with the desired role. After models are acquired, they are in
the state engaged, as they work towards the goals of an infor-
mal process. Changing requirements can result in updates in
resources of informal processes, which will follow the same
state diagram explained previously. Accomplishing goals
results in completing the respective process and releasing the
acquired resources. In case the resource to be released is a
knowledge resource, it’s backed up for the next execution.

5. CASE STUDY USING
OPENTOSCA AND APIFICATION

To asses the feasibility of the approach presented, we
develop a case study centered around our motivating sce-
nario using the DevOps knowledge base [25], the Open-
TOSCA ecosystem (Sect. 5.1), and the APIfication approach
(Sect. 5.2). By including OpenTOSCA in our case study, we
can create pre-packaged resources for clouds infrastructures,
e.g., MediaWiki. Moreover, through the use of APIfication
approach we enable reusing any existing DevOps artifact
such as a script for installing Redmine on a server contained
in the knowledge base. Various deliverables of the case study
are provided as Supporting Online Material (SOM)6. In the
following, we firstly describe fundamentals of our case study:
the OpenTOSCA ecosystem and the APIfication approach.
Thereafter, we present InProXec framework and its applica-
tion.

5.1 OpenTOSCA
Many informal processes are executed using IT resources,

e.g., software services such as knowledge management ser-
vices, simulation services, software development solutions,
etc. Such IT resources can be automatically provisioned
on-demand using cloud computing technologies [23] and can
be automatically provisioned on-demand via self-service por-
tals using cloud computing technologies [15]. The spread of
cloud provider offerings has urged the need of a standard-
ization for the interoperability of cloud applications. This
need has resulted in the creation of the Topology and Or-
chestration Specification for Cloud Applications (TOSCA)
standard [3]. TOSCA describes cloud services in two parts:
(i) An application topology model of a service contains differ-
ent components of an application and their interrelationships.
(ii) The management logic of services contains the informa-
tion about how to execute management operations of the
respective application topology. The management logic is
described in the form of business processes. After preparing
these two parts, the application topology and the manage-
ment logic of cloud applications are stored in a self-contained
archive called Cloud Service Archive (CSAR). CSARs are

6http://www.co-act.biz/downloads/

later deployed on TOSCA runtime environments such as
OpenTOSCA [2]. TOSCA containers use the topology model
and the available management processes to instantiate the
described application and to manage them, e.g., to scale
application components. The result of the deployment is the
provisioned application in the desired cloud infrastructure.
The OpenTOSCA ecosystem provides a set of tools for model-
ing, deploying, and executing services created using TOSCA.
It comprises three major components, (i) Winery [13], (ii)
OpenTOSCA Container [2], and (iii) Vinothek [4]. Winery
is a web-based modeling tool to create TOSCA models that
are deployed on a TOSCA-complaint container, e.g., the
OpenTOSCA Container. Vinothek is a self-service portal
that can be used by humans to trigger the instantiation of
services. In this work, we reuse this toolchain in our case
study to acquire IT resources in cloud infrastructures.

5.2 APIfication
A major building block and enabler for our approach is

to generate APIs for arbitrary executables, i.e., the APIfi-
cation of executables such as deployment scripts, compiled
programs, configuration definitions, etc. [26]. We employ
this concept to wrap resource engangers of different imple-
mentations as uniform APIs that can be easily accessed by
the human actors and we call this step as the APIfication
of resouce engagers. Such a generated API implementation
wraps an executable and exposes its functionality, e.g., as
RESTful or SOAP-based Web service in a self-contained
manner. These self-contained API implementations are pack-
aged using a portable mechanism such as a Docker container
or a Vagrant VM build plan. Consequently, generated API
implementations can run in various environments such as a
developer’s laptop, a test cloud, or a production cluster. The
type of the generated interface (REST, SOAP, JSON-RPC,
etc.) is selected depending on the constraints of the envi-
ronment such as existing expertise, developer’s preferences,
or the overarching orchestration technique. For instance, if
BPEL workflows would be used for orchestration, a SOAP-
based Web service interface would be the preferred choice.
We utilize any2api [26] as an APIfication framework to gen-
erate API implementations for arbitrary executables. The
framework is completely modular and extensible. Invoker
modules (e.g., a Python invoker) provide and encapsulate the
invocation logic for a certain kind of executable, e.g., Python
scripts. Generator modules (e.g., a REST API generator)
implement the functionality to generate and package an API
implementation based on a given API specification (API
spec7). Such an API spec defines the interface of an exe-
cutable (invocation command, mapping of parameters and
results to files, environment variables, STDIN, STDOUT, etc.)
in a generic manner that is not bound to any particular kind
of API. Consequently, the packaged API implementation can
be treated as a black box, so users of the API do not have to
know anything about the technical internals of the API im-
plementation and the wrapped executable. Instead, a proper
API is provided to the user to ease the interaction with the
packaged executable. To improve efficiency and to reduce
resource consumption at runtime, multiple executables of
different kinds can be packaged together with the required
invokers in a single API implementation [26]. In this paper,
we use this approach to create resource engagers with unified
APIs.

7API spec documentation: http://any2api.org/apispec

http://www.co-act.biz/downloads/

5.3 InProXec Framework
We are implementing a framework to realize the InProXec

method presented. The framework enables integrating re-
sources of informal processes using a client integration library
into modeling and execution environments of informal pro-
cesses (P1). This client library eases the adoption of existing
resource retrieval services and enables managing resources
provided by different services in a unified fashion. Moreover,
we introduce necessary components for compiling and initial-
izing informal process models (P3 and P4). In the following,
we present our core system to realize the phases 1, 3, and 4
of the InProXec method.

We start our case study with implementing the following
components: (i) the Resource Organizer, (ii) the IPE Model
Compiler, (iii) and the IPE Runtime as they are the enablers
of modeling and execution. We develop each component as
a service and we expose most of their functionalities aligned
with WS-* standards8. As a result, components are mod-
ular, standard complaint, and composable. The resource
organizer service is responsible for collecting resource defi-
nitions from the domain managers integrated in the phase
1 and providing them, e.g., for modeling. The organizer
polls the definitions from subscribed domain managers every
30 seconds, aggregates collected ones in a data store, and
provides them upon request. As both domain managers and
the resources provided are identified uniquely, the Resource
Organizer service can store each resource definition without
any collisions. As an exchange format among different com-
ponents, we opted for the Web Ontology Language (OWL)
to enable semantic discoveries on informal process entities.
The most recent version of this ontology can be obtained in
the provided SOM. To ease developing domain managers of
different retrieval services, we use a client integration library.
The client library subscribes domain managers using the
metadata each domain manager provides. Domain managers
of accessible resources, i.e., resources that can be acquired
automatically, provide also a resource engager, e.g., a script,
business process, etc., for the resource initialization. The
client integration library enables collecting resource engagers
of accessible resources over a REST API. It automatically
enriches resource definitions of each domain manager with
URIs specifying means of accessing corresponding resource
engagers As a result, the IPE Model Compiler can collect
them during the compilation. For instance, the client library
enriches the resource definition of MediaWiki with additional
deployment information about the location of its resource
engager, i.e., its CSAR. Thereafter, the IPE Model Compiler,
which is responsible for creating DIPEAs, collects all resource
engagers of the resources contained using the REST API of
the integration client. For example, during the compilation
of an IPE model containing a MediaWiki resource, the IPE
Model Compiler service fetches the MediaWiki CSAR using
the URI found in its resource definition.

The IPE Runtime service acquires resources contained in
a DIPEA using execution environment integrators. Simi-
larly, technical experts can use the integration library that
we develop to integrate execution environment integrators.
After the registration, the access details of execution envi-
ronment integrators are stored in a central repository with
their metadata. The IPE Runtime interacts with execution
environment integrators using the REST API of the inte-

8http://www.w3.org/2002/ws/

gration client provided to run resources engagers packed in
DIPEAs. The runtime service initializes a business process,
e.g., a BPEL process, for instantiating IPE models. Thus,
we reuse various concepts that were developed for structured
processes such as managing parallel process instances.

5.4 Integrating Resources Of
Informal Processes (P1)

In this section, we apply the steps of integrating resources
of informal processes introduced in the first phase of our
method to the motivating scenario. The first step in this
phase aims for identifying resources involved in informal pro-
cesses (I1). In the motivating scenario, it’s easy to spot the
existence of different resources from IT and human resource
domains. The following focuses on the domain of IT re-
sources, as the case study is built on top of the OpenTOSCA
system, the DevOps knowledge base, and the APIfication
approach. Moreover, integrating human resources requires
custom-tailored resource engagers, which will be covered in
future work. After identifying required resources of informal
processes, e.g., MediaWiki and Redmine, technical experts
analyze retrieval and control services of these resources (I3).
As Winery provides a MediaWiki service, it is one of the
retrieval services. Moreover, Winery can provide also other
pre-packaged cloud services of an organization. Additionally,
the rest of the DevOps artifacts such as a script for creating
a Redmine service is stored in the DevOps knowledge base.
The OpenTOSCA container provides a runtime environment
for resource engagers generated by Winery, i.e, CSARs. As
the knowledge base delivers resource engagers with hetero-
geneous APIs, we create standardized Docker compatible
resource engagers through the APIfication approach, i.e., the
APIfication of resource engagers. Thus, the identified control
services are (i) the OpenTOSCA container for CSARs and
(ii) Docker for the knowledge base artifacts. Identifying con-
trol and retrieval services is followed by a designing resource
operations (I3). During this step, apart from life cycle oper-
ations such as acquiring resources, we have determined that
MediaWiki and Redmine have user management operations
in common. However, as these resources are provided by
different domain managers, i.e., domain managers of Winery
and the knowledge base, respectively, we decided to model
these operations at the level of resource engagers. Thereafter,
we develop execution environment integrators of the Open-
TOSCA container and Docker using the client integration
library to enable acquiring resource engagers in the form of
CSARs and the Docker compatible artifacts created through
the APIfication approach (I5). Developing the managers and
the integrators is followed by registering each execution envi-
ronment integrator and domain manager by calling register
operation of the provided client integration library (I6).

5.5 Compiling and Initializing
Informal Process Models (P3 and P4)

This section presents the application of the phases 3 and
4 of the method (Sect. 4.3) to the motivating scenario. After
configuring informal process modeling and execution envi-
ronments, business experts can create IPE models using the
integrated resources in P1, e.g., MediaWiki and Redmine.
Moreover, the IPE Runtime service can initialize these mod-
els. To realize different steps of phase 3 and 4, we develop an
execution process, e.g., a BPEL process, that enacts the steps
illustrated in Fig. 3. The IPE Runtime service initializes

http://www.w3.org/2002/ws/

an IPE model by initiating this execution process. Firstly,
the process uses the IPE Model Compiler service for gener-
ating corresponding DIPEA from the IPE model received
(E1). For instance, an IPE model containing Redmine and
MediaWiki is converted into a DIPEA with a MediaWiki
CSAR and a Docker compatible Redmine script. Hereafter,
the execution process acquires resources defined in the IPE
model by parsing the generated DIPEA with the help of the
IPE Runtime service (E2). The IPE Runtime service uses
corresponding execution environment integrators for running
resource engagers. For example, a resource engager in the
form of a CSAR for MediaWiki is run by the execution envi-
ronment integrator of the OpenTOSCA container. Acquired
resources work towards intentions of the respective informal
process (E3). Hereafter, business experts update the list
of resources using an instance management window, e.g.,
an IoT middleware (E4). After achieving intentions of an
informal process (E5), the process execution proceeds with
the release of provisioned resources. Knowledge resources,
e.g., MediaWiki, provide an additional operation that results
in backing up of respective knowledge resource. The process
is completed by calling the IPE Runtime service. The IPE
Runtime stores knowledge resources in the form of a resource
engager and reuses it during the next execution. Thus, each
back up operation returns an updated resource engager for
that specific resource, e.g., backup operation of the Media-
Wiki returns an updated MediaWiki CSAR containing the
current data of the MediaWiki. Finally, the final state of
IPE instance model is saved (I7).

By applying the InProXec method on our case study, we
prove the applicability of our method. The method enables
acquiring and engaging resources and actors in informal pro-
cesses in an automated fashion. As a result, the method
eliminates the manual work required for establishing the
environment to complete informal processes, e.g., creating
a MediaWiki service, assigning different actors, etc. More-
over, the concept of knowledge resources preserve the ex-
plicit knowledge created and support actors during future
enactments, e.g., the knowledge contained in the MediaWiki
service. Reusing existing and working components strength-
ens our case study and ease the adoption of the approach by
different organizations. To ease creating domain managers
and execution environment integrators, we include a client in-
tegration library for in the provided SOM. As a consequence,
we enable an easier adoption of our approach. We are contin-
uously refining the modeled resources and processes to make
this case study an on-going one, considering various addi-
tional aspects such as relationships and additional resources.
By providing a WSDL API for the framework, we provide
an easy integration to existing structured process modeling
languages such as BPEL. Moreover, activity-oriented ap-
proaches such as adaptive case management [12] or ad-hoc
process management [10] can trigger an IPE model upon
initialization.

6. RELATED WORK
Different approaches have been proposed to model and

automate business processes. Activity-centric approaches [10,
16, 12, 5, 14] enable designing processes based on their struc-
tured activity sequences. There are approaches to (i) model-
ing processes beforehand and adapting them on the fly [5, 14]
(ii) and creating process activities on the fly to capture the ac-
tivity structure for reusing during next executions [10, 16, 12].

Using BPEL4People9 and WS-HumanTasks10, human activ-
ities can be integrated into automated business processes.
Moreover, Barukh and Benatallah [1] introduce a hybrid-
process management platform for integrating structured,
semi-structured, and unstructured activities in a process
management platform. As informal processes are unstruc-
tured processes, the reusablility of activity-centric process
models decreases. Actors of informal processes enact them
based on their knowledge and experience complaint with
certain constrains defined by respective organization [6]. The
Subject-Oriented Business Process Management (S-BPM)
approach [11, 18] aims for modeling business processes based
on “subject”, “predicate”, and “object” triplets. Models cre-
ated using this approach are at a higher level of abstraction
and require further refinements for executing them in an
automated fashion. They represent interactions among dif-
ferent actors and responsibilities of these actors. Van der
Aalst et al. [22] follow a declarative approach and focus on
constrains of processes. Actors can execute the desired activ-
ities as long as they stay in the previously defined constrains
of the respective process. Moreover, goals of each informal
process are known initially [6]. Thus, a goal-oriented ap-
proach can be used to model informal processes. Nurcan [17]
proposes such a goal-oriented approach to define higher level
processes, i.e., processes that define higher-level activities in
an organization.

Informal processes are collaborative meaning that partici-
pants of an informal process collaborate with each other to ac-
complish its respective goals. Designing these collaborations
play a critical role during enacting the respective informal
processes. To design collaborations, one can use collabora-
tion patterns such shared object or publish / subscribe [7].
Using these patterns, one can define the architecture of
a collaboration with modeling approaches such as human
Architecture Description Language [8]. However, these col-
laborations are typically at a higher level of abstraction and
needs to be refined before deploying them. Therefore, in our
previous work [19], we present a transformation from col-
laboration architectures into informal processes. Using this
transformation an abstract architectural model describing a
collaboration can be converted to an informal process, which
can be deployed by the method detailed in this paper.

7. CONCLUSION AND OUTLOOK
Automating informal processes require engaging qualified

actors towards goals of the process in an automated fashion.
Automatically acquired actors can autonomously accomplish
these goals with the help of other involved resources. In
this work, we present a method for automating the initial-
ization of resource-centric informal processes. To this end,
we present two steps: (i) integrating resources of informal
processes and (ii) executing informal processes. The inte-
gration method empowers integrating resources of informal
processes into informal process modeling and execution envi-
ronments. Thereafter, different components such as a model
compiler and a runtime component initialize informal pro-
cess models with integrated resources of informal processes.
The approach is validated using a case study, which uses

9http://docs.oasis-open.org/bpel4people/bpel4people-1.1.
pdf

10http://docs.oasis-open.org/bpel4people/ws-humantask-1.
1-spec-cs-01.pdf

http://docs.oasis-open.org/bpel4people/bpel4people-1.1.pdf
http://docs.oasis-open.org/bpel4people/bpel4people-1.1.pdf
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cs-01.pdf
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cs-01.pdf

existing components such as the knowledge repository, the
OpenTOSCA ecosystem, and the APIfication approach.

This work limits its scope to resource models without
relationships due to its existing broad scope. Therefore,
in future work, we will investigate deploying interrelated
resource models. Moreover, we are investigating a modeling
approach for informal processes, which is supported by a
graphical notation.

8. ACKNOWLEDGMENTS
This work has been partially supported by Graduate School

of Excellence advanced Manufacturing Engineering (GSaME)11

and SitOPT (Research Grant 610872, DFG).

9. REFERENCES
[1] M. Barukh and B. Benatallah. ProcessBase: A Hybrid

Process Management Platform. In Service-Oriented
Computing. Springer Berlin Heidelberg, 2014.

[2] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp,
F. Leymann, A. Nowak, and S. Wagner. OpenTOSCA -
A Runtime for TOSCA-based Cloud Applications. In
ICSOC’13, 2013.

[3] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann.
TOSCA: Portable Automated Deployment and
Management of Cloud Applications. In Advanced Web
Services. Springer New York, 2014.

[4] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann.
Vinothek - A Self-Service Portal for TOSCA. In
Proceedings of the 6th Central-European Workshop on
Services and their Composition, ZEUS 2014, 2014.

[5] P. Dadam and M. Reichert. The ADEPT Project: A
Decade of Research and Development for Robust and
Flexible Process Support - Challenges and
Achievements. CSRD, 23:81–97, 2009.

[6] C. Di Ciccio, A. Marrella, and A. Russo.
Knowledge-intensive processes: Characteristics,
requirements and analysis of contemporary Approaches.
JoDS, 2014.

[7] C. Dorn and R. Taylor. Analyzing runtime adaptability
of collaboration patterns. In Collaboration Technologies
and Systems (CTS), 2012 International Conference on,
2012.

[8] C. Dorn and R. Taylor. Architecture-driven modeling
of adaptive collaboration structures in large-scale social
web applications. In Web Information Systems
Engineering – WISE 2012. Springer Berlin Heidelberg,
2012.

[9] M. Dumas, W. M. Van der Aalst, and A. H.
Ter Hofstede. Process-Aware Information Systems:
Bridging People and Software Through Process
Technology. Wiley, 2005.

[10] S. Dustdar. Caramba–A Process-Aware Collaboration
System Supporting Ad-hoc and Collaborative Processes
in Virtual Teams. Distributed and Parallel Databases,
2004.

[11] A. Fleischmann. What is s-bpm? In H. Buchwald,
A. Fleischmann, D. Seese, and C. Stary, editors,
S-BPM ONE – Setting the Stage for Subject-Oriented
Business Process Management, volume 85 of CCIS,
pages 85–106. Springer Berlin Heidelberg, 2010.

11http://www.gsame.uni-stuttgart.de/

[12] C. Herrmann and M. Kurz. Adaptive Case
Management: Supporting Knowledge Intensive
Processes with IT Systems. In S-BPM ONE 2011.
Springer Berlin Heidelberg, 2011.

[13] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann.
Winery – Modeling Tool for TOSCA-based Cloud
Applications. In ICSOC’13, 2013.

[14] A. Marrella, A. Russo, and M. Mecella. Planlets:
Automatically recovering dynamic processes in yawl. In
On the Move to Meaningful Internet Systems: OTM
2012. Springer Berlin Heidelberg, 2012.

[15] P. Mell and T. Grance. The NIST definition of cloud
computing (draft). NIST special publication, 800:7,
2011.

[16] P. Moody, D. Gruen, M. Muller, J. Tang, and
T. Moran. Business activity patterns: A new model for
collaborative business applications. IBM Systems
Journal, 45:683–694, 2006.

[17] S. Nurcan, A. Etien, R. Kaabi, I. Zoukar, and
C. Rolland. A strategy driven business process
modelling approach. BPMJ, 11:628–649, 2005.

[18] R. Singer and E. Zinser. Business Process Management
– S-BPM a New Paradigm for Competitive Advantage?
In H. Buchwald, A. Fleischmann, D. Seese, and
C. Stary, editors, S-BPM ONE – Setting the Stage for
Subject-Oriented Business Process Management,
volume 85 of CCIS, pages 48–70. Springer Berlin
Heidelberg, 2010.

[19] C. Sungur, C. Dorn, S. Dustdar, and F. Leymann.
Transforming Collaboration Structures into Deployable
Informal Processes. In Engineering the Web in the Big
Data Era. Springer International Publishing, 2015.

[20] C. T. Sungur, T. Binz, U. Breitenbücher, and
F. Leymann. Informal Process Essentials. In Enterprise
Distributed Object Computing Conference (EDOC),
2014 IEEE 18th International. IEEE Computer Society,
2014.

[21] C. T. Sungur, O. Kopp, and F. Leymann. Supporting
Informal Processes. In Proceedings of the 6th
Central-European Workshop on Services and their
Composition, ZEUS 2014, 2014.

[22] W. van der Aalst, M. Pesic, and H. Schonenberg.
Declarative workflows: Balancing between flexibility
and support. CSDR, 23:99–113, 2009.

[23] K. Vukojevic-Haupt, D. Karastoyanova, and
F. Leymann. On-demand provisioning of infrastructure,
middleware and services for simulation workflows. In
SOCA 2013, pages 91–98. IEEE Press, 2013.

[24] M. Weske. Business Process Management: Concepts,
Languages, Architectures. Springer New York, Inc.,
Secaucus, NJ, USA, 2007.

[25] J. Wettinger, V. Andrikopoulos, and F. Leymann.
Automated Capturing and Systematic Usage of
DevOps Knowledge for Cloud Applications. In
Proceedings of the International Conference on Cloud
Engineering (IC2E). IEEE Computer Society, 2015.

[26] J. Wettinger, U. Breitenbücher, and F. Leymann.
Any2API - Automated APIfication. In Proceedings of
the 5th International Conference on Cloud Computing
and Services Science. SciTePress, 2015.

http://www.gsame.uni-stuttgart.de/

