M Institute of Architecture of Application Systems

A Method For Reusing TOCA-based Applications and
Management Plans

Sebastian Wagner, Uwe Breitenblicher, Frank Leymann

Institute of Architecture of Application Systems,
University of Stuttgart, Germany,
lastname@iaas.uni-stuttgart.de

BIBTRX:
@inproceedings {INPROC-2016-08,
author = {Sebastian Wagner and Uwe Breitenb{\"u}cher and Frank Leymann},
title = {A Method For Reusing TOSCA-based Applications and Management
Plans},
booktitle = {Proceedings of the 6th International Conference on Cloud
Computing and Service Science (CLOSER 2016)},
year = {2016},
pages = {181 -- 191},
publisher = {SciTePress}
}

These publication and contributions have been presented at
CLOSER 2016
http://closer.scitevents.org

© 2016 SciTePress. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the SciTePress.

000000000

¢ Universitat Stuttgart

" o:’o’
et Germany

Keywords:

Abstract:

A Method For Reusing
TOSCA-based Applications and Management Plans

Sebastian Wagner, Uwe Breitenbiicher and Frank Leymann

IAAS, University of Stuttgart, Universitaetsstr. 38, Stuttgart, Germany
firstname.lastname @ iaas.uni-stuttgart.de

Cloud Management, TOSCA, Workflow Reusability, Process Consolidation

The automated provisioning and management of Cloud applications is supported by various general-purpose
technologies that provide generic management functionalities such as scaling components or automatically
redeploying parts of a Cloud application. However, if complex applications have to be managed, these
technologies reach their limits and individual, application-specific processes must be created to automate
the execution of holistic management tasks that cannot be implemented in a generic manner. Unfortunately,
creating such processes from scratch is time-consuming, error-prone, and knowledge-intensive, thus, leading
to inefficient developments of new applications. In this paper, we present an approach that tackles these
issues by enabling the usage of choreographies to systematically combine available management workflows of
existing application building blocks. Moreover, we show how these choreographies can be merged into single,
executable workflows in order to enable their automated execution. To validate the approach, we apply the
concept to the choreography language BPEL4CHOR and the Cloud standard TOSCA. In addition, we extend the
Cloud application management ecosystem OpenTOSCA to support executing management choreographies.

1 INTRODUCTION

Due to the steadily increasing use of information tech-
nology in enterprises, accurate development, provi-
sioning, and management of applications becomes of
crucial importance to align business and IT. While de-
veloping application components and modelling appli-
cation architectures and designs is supported by sophis-
ticated tools, application management still presents
major challenges: Especially in Cloud Computing,
management automation is a key prerequisite since
manual management is (i) too slow to preserve Cloud
properties such as elasticity and (ii) too error-prone as
human operator errors account for the largest fraction
of failures in distributed systems [Brown and Patterson,
2001] [Oppenheimer et al., 2003]. Thus, management
automation is a key incentive in modern IT.

While various management technologies' exist
that are capable of automating generic management
tasks, such as automatically scaling application compo-
nents or installing single software components, the au-
tomation of complex, holistic, and application-specific

'E.g., configuration management technologies such
as Chef [Opscode, Inc., 2015] or Puppet [Puppet Labs,
Inc., 2015], or Cloud management platforms such as
Heroku [Coutermarsh, 2014]

management processes is an open issue. Automat-
ing complex management processes, €.g., migrat-
ing an application component from one Cloud to an-
other while avoiding downtime or acquiring new li-
cences for employed software components, typically
requires the orchestration of multiple heterogeneous
management technologies. Therefore, such manage-
ment processes are mostly implemented using work-
flows languages [Leymann and Roller, 2000], e. g.,
BPEL [Keller and Badonnel, 2004] or BPMN [Kopp
et al., 2012], since other approaches such as scripts are
not capable of providing the reliability and robustness
of the workflow technology [Herry et al., 2011].

Creating management processes, however, requires
integrating the different invocation mechanisms, data
formats, and transport protocols of each employed
technology, which needs enormous time and expertise
on the conceptual as well as on the technical imple-
mentation level [Breitenbiicher et al., 2013].

To avoid continually reinventing the wheel for
problems that have been already solved multiple times
for other applications, developing new applications
by reusing and combining proven (i) structural ap-
plication fragments as well as (ii) the corresponding
available management processes would pave the way
to increase the efficiency and quality of new devel-

opments. However, while automatically combining
and merging individual application structures is re-
solved [Binz et al., 2013a], integrating the associated
management processes is a highly non-trivial task that
still has to be done manually. Unfortunately, similarly
to manually authoring such processes, this leads to
error-prone, time-consuming, and costly efforts, which
is not appropriate for modern software development
and operation.

In this paper, we tackle these issues. We first
present a method that describes how to employ chore-
ographies to systematically reuse existing management
workflows. Choreography models enable coordinat-
ing the distributed execution of individual workflows
without the need to adapt their implementation. Thus,
they provide a suitable integration basis to combine
different management workflows without the need to
dive into or change their technical implementation.

Since choreographies are not intended to be exe-
cuted on a single workflow engine—which is a manda-
tory requirement in application management as typ-
ically sensitive data such as credentials or certifi-
cates have to be exchanged between the coordinated
workflows—we present a process consolidation ap-
proach that transforms a choreography including all co-
ordinated workflow models into one single executable
workflow model. The consolidation results also in a
faster execution due to reduced communication over
the wire. It also simplifies deployment as only a sin-
gle workflow has to be deployed instead of various
interacting workflows along with the choreography
specification itself. Thus, reusing management work-
flows following this approach leads to significant time
and cost savings when developing new applications
out of existing building blocks.

To validate the presented approach, we apply
the developed concepts to the choreography mod-
elling language BPEL4CHOR [Decker et al., 2007]
and the Cloud standard TOSCA [OASIS, 2013b, OA-
SIS, 2013a]. For this purpose, we developed a
standard-based, open-source Cloud application man-
agement prototype by extending the OpenTOSCA
ecosystem [Binz et al., 2013b, Kopp et al., 2013, Bre-
itenbiicher et al., 2014] in order to support managing
applications based on choreographies, that are transpar-
ently transformed into executable workflows behind
the scenes.

The remainder is structured as follows. Section 2
provides background and related work information
along with a motivating scenario. In Section 3, we
conceptually describe the method for reusing TOSCA-
based applications and their management plans by
introducing management choreographies. In Section 4
we formally discuss the step of the method, that trans-

forms a choreography into an executable management
plan. Section 5 validates the method proposed in Sec-
tion 3 and Section 6 concludes the work.

2 BACKGROUND & RELATED
WORK

This section discusses background and related work
about (i) the Cloud standard TOSCA, (ii) management
workflows, and (iii) the transformation and consolida-
tion of choreographies. In Section 2.3, we introduce a
motivating scenario that is used throughout the paper
to explain the approach.

2.1 TOSCA and Management Plans

In this section, we introduce the Topology and Orches-
tration Specification for Cloud Applications (TOSCA),
which is an emerging standard to describe Cloud ap-
plications and their management. We explain the fun-
damental concepts of TOSCA that are required to un-
derstand the contributions of this paper and simplify
constructs, where possible, for the sake of compre-
hension. For more details, we refer interested readers
to the TOSCA Specification [OASIS, 2013b] and the
TOSCA Primer [OASIS, 2013a]. TOSCA defines a
meta-model for describing (i) the structure of an ap-
plication, and (ii) their management processes. In
addition, the standard introduces an archive format
that enables packaging applications and all required
files, e. g., installables, as portable archive that can be
consumed by TOSCA runtimes to provision and man-
age new instances of the described application. The
structure of the application is described in the form of
an application topology, a directed graph that consists
of vertices representing the components of the applica-
tion and edges that describe the relationships between
these components, e. g., that a Webserver component
is installed on an operating system. Components and
relationships are typed and may specify properties
and management operations to be invoked. For ex-
ample, a component of type ApacheWebserver may
specify its IP-address as well as the HTTP-port and
provides an operation to deploy new applications. In
addition, required artifacts, e. g., installation scripts
or binaries implementing the application functionality,
may be associated with the corresponding components,
relationships, and operations. Thereby, TOSCA en-
ables describing the entire structure of an application
in the form of a self-contained model, which also con-
tains all information about employed types, properties,
files, and operations. These models can be used by a

(PHP) -
Provisioning Plan
T

1 (dependson)

1
=3 (PHPModule)

(hostedOn) (installedOn) Read Topology

Properties
Create
VM
Install
Webserver
Install PHP
Module
Deploy PHP

Application

(ApacheWebserver)

HTTP-Port: 8080
Credentials: [...]

¢ (hostedOn)

(Ubuntu12.04VM)

RAM: 4GB
Cores: 2

i (hostedOn)

(OpenStack)

Figure 1: TOSCA Example: Topology (left) and provision-
ing plan (right)

TOSCA runtime to fully automatically provision in-
stances of the application by interpreting the semantics
of the modeled structure [OASIS, 2013a,Breitenbiicher
etal., 2014].

Fig. 1 shows an example on the left rendered us-
ing VINO4TOSCA [Breitenbiicher et al., 2012]. The
shown topology describes a deployment consisting of
a PHP application that is hosted on an ApacheWeb-
server running on a virtual machine (VM) of type
Ubuntul2.04VM. This VM is operated by the Cloud
management system OpenStack. To run the PHP appli-
cation on an Apache Webserver, a PHPModule needs
to be installed. In the topology the component types
and relationship types, e. g., the desired hostedOn, of
the VM, are put in brackets. The component proper-
ties, e. g., the desired RAM of the VM, are depicted
below the component types. The actual application
implementation, i. e., the PHP files implementing the
functionality, is attached to the PHP component.

While the provisioning of simple applications can
be described implicitly by such topology models,
TOSCA also enables describing complex provisioning
and management processes in the form of explicitly
modeled management plans. Management plans are
executable workflows that specify the (i) activities to
be executed, (ii) the control flow between them, i.e.,
their execution order, as well as (iii) the data flow,
e. g., that one activity produces data to be consumed
by a subsequent activity [Leymann and Roller, 2000].
There exists standardized workflow languages and
corresponding engines, for example, BPEL [OASIS,
2007] or BPMN [OMG, 2011], that enable describing
workflows in a portable manner. Standard-compliant
workflow engines can be employed to automatically
execute these workflow models. The workflow tech-
nology is well-known for features such as reliability

and robustness [Leymann and Roller, 2000], thus, pro-
viding an ideal basis to automate management pro-
cesses [Keller and Badonnel, 2004]. In addition, there
are extensions of workflow standards which are ex-
plicitly tailored to the management of applications.
For example, BPMN4TOSCA [Kopp et al., 2012] is
an extension to easily describe management plans for
applications modeled in TOSCA. TOSCA supports
using arbitrary workflow languages for describing exe-
cutable management plans [OASIS, 2013b].

Fig. 1 shows a simplified management workflow
on the right that automatically provisions the appli-
cation (data flow modeling is omitted for simplicity).
The first activity reads properties of components and
relationships from the topology model, which enables
customizing the deployment without adapting the plan.
Other information, e. g., the endpoint of Open Stack,
are passed via the plan’s start message. Using these
information, the plan instantiates a new virtual ma-
chine by invoking the HTTP-API of Open Stack. Af-
terwards, the plan uses SSH to access the virtual ma-
chine and installs the Apache Webserver and the PHP
module using Chef [Opscode, Inc., 2015], a configura-
tion management technology. Finally, the application
files, which have been extracted from the topology,
are deployed on the Webserver and the application’s
endpoint is returned.

The TOSCA standard additionally defines an ex-
change format to package topology models, types,
management plans and all required files in the form of
a Cloud Service Archive (CSAR) [OASIS, 2013b, OA-
SIS, 2013a]. These archives are portable across
standards-compliant TOSCA runtimes and provide
the basis to automatically provision and manage in-
stances of the modeled application. Runtimes such
as OpenTOSCA [Binz et al., 2013b] also enable auto-
matically executing the associated management work-
flows, thereby, enabling the automation of the entire
lifecycle of Cloud applications described in TOSCA.
Thus, TOSCA provides an ideal basis for systemati-
cally reusing (i) proven application structures as well
as their (ii) management processes as both can be de-
scribed and linked using the standard.

2.2 Choreography Transformation

There exist manual approaches for transforming chore-
ographies to executable processes (plans). Hofreiter et
al. [Hofreiter and Huemer, 2008] suggest for instance
a top-down approach where business partners agree on
a global choreography by specifying the interaction
behavior the processes of the partners have to comply
with. The choreography and the corresponding pro-
cesses have to be modeled in UML and the authors pro-

(
PHP Provisioning Plan 1 L

]
| (dependson)
1

~ — 3| (PHPModule)

(hostedOn) (installedOn)

(SQLConnection)

(MysQLDB) MySQL Provisioning Plan

HTTP-Port: 8080

Credentials: [..]

i (hostedOn)
v

Read Topology

Read Topology
Properties

N\ Properties
(ApacheWebserver) (MySQLDBMS)
Create # Create
VM HTTP-Port 8080 HTTP-Port: 8080 VM
Credentials: [..] Credentials: [...]
: (hostedon) (hostedOn) Install
v v < MySQLDBMS
(Ubuntu12.04VM) (Ubuntu12.04VM)
Install PHP Create DB
Module RAM: 4GB RAM: 4GB Instance
Cores: 2 Cores: 2
Deploy PHP _ J _ _ J

Application

i (hostedOn)
v

Insert DB
Schema

 (hostedOn)
v

[(OpenStack)]

[(OpenStack)]

Cloud Application Archive for PHP Application on Open Stack

Cloud Application Archive for MySQL Database on Open Stack

Figure 2: Motivating scenario showing that management plans have to be combined to reuse existing topology models and

management processes.

pose a manual transformation to BPEL. Mendling et
al. [Mendling and Hafner, 2008] use the Web Service
Choreography Description Language (WS-CDL) [Ka-
vantzas et al., 2005] to model choreographies and
to generate BPEL process stubs out of it. However,
these process stubs have to be also completed manu-
ally. Another drawback of WS-CDL is that it is an
interaction choreography which is less expressive than
interconnection models as we will briefly discuss in
Section 3.3.

In Section 4 a process consolidation algorithm is
presented to generate an executable process from a
choreography. Existing process consolidation tech-
niques, e. g., from Kiister et al. [Kiister et al., 2008]
or Mendling and Simon [Mendling and Simon, 2006],
focus on merging semantically equivalent processes,
which is different from the proposed consolidation
algorithm that merges complementing processes of a
choreography into a single process.

In contrast to our approach Herry et al. [Herry et al.,
2013] aim to execute a former centralized management
workflow in a decentralized fashion. To accomplish
that they are describing an approach to decompose the
management workflow into a set of different interact-
ing agents coordinating its execution.

2.3 Motivating Scenario

This section describes a motivation scenario based
on the previous example to explain the difficulties
of implementing executable management plans and
the significant advantage that would be enabled by an
approach that facilitates systematically reusing and
combining existing workflows. As described before,

for provisioning the PHP-based example application
several management tasks have to be performed: Open
Stack’s HTTP-API has to be invoked for instantiat-
ing the VM while SSH and Chef are used to install
the Webserver. However, already this simple exam-
ple impressively shows the difficulties: Two low-level
management technologies including their invocation
mechanisms, data formats, and transport protocols
have to be (i) understood and (ii) orchestrated by a
workflow. This requires complex data format trans-
formations, building integration wrappers to invoke
the technologies, and results in many lines of complex
workflow code [Breitenbiicher et al., 2013]. Thus, im-
plementing such management plans from scratch is
a labor-intensive, error-prone, and complex task that
requires a lot of expertise in very different fields of
technologies - reaching from high-level orchestration
to low-level application management. Therefore, sys-
tematically reusing existing plans and combining them
and coordinating them would significantly improve
these deficiencies.

Fig. 2 shows an example how TOSCA may support
this vision. On the left, the provisioning plan and the
topology of the TOSCA example introduced in Sec-
tion 2.1 is shown. On the right, a topology is shown
that describes the deployment of a MySQL database
including the corresponding provisioning plan. This
plan automatically provisions a new VM, installs the
MySQL database management system, creates a new
database, and inserts a specified schema, which is
attached to the MySQL component. Thus, if a LAMP-
application” has to be developed, the two topologies

2An application consisting of Linux, Apache, MySQL,

Application
Developer

Application
Developer

Manager

Application

Nt Nt
Select and Merge Connect Merged Coordinate Management Chor;r;agr::;(:::s Into Deploy and Execute
TOSCA Topology Models Parts of the Application Plans by Choreographies Executable Workflows Resulting Workflows

1. Manual Modelling Phase 2. Automated Execution Phase

Figure 3: Steps of the method to systematically reuse TOSCA-based (i) application topologies and (ii) their corresponding

management plans.

could be merged and connected with a new relation-
ship of type SQLConnection. Obviously, to provision
the combined stack, also their provisioning plans have
to be combined. However, while merging TOSCA
topology models can be done easily using tools such
as Winery [Kopp et al., 2013], manually combining
workflow models is a crucial and error-prone task since
(i) the individual control flows and possible violations
have to be considered, (ii) low-level artifacts, e. g.,
XML schema definitions, have to be imported, and (iii)
typically hundreds of lines of workflow code have to be
integrated. Handling these issues manually is neither
efficient nor reliable. Therefore, a systematic approach
for combining TOSCA topologies and management
plans is required that enables combining plans without
the need to deal with their actual implementation.

3 A METHOD TO REUSE
TOSCA-BASED APPLICATIONS

This section presents a generic method to systemati-
cally reuse existing TOSCA-based topology models
and their management plans as building blocks for the
development of new applications. The method is sub-
divided in two phases and shown in Fig. 3: (i) a man-
ual modeling phase, which describes how application
developers and manager model new applications by
reusing existing topology models and plans, and (ii) an
automated execution phase, which enables automati-
cally deploying and managing the modeled application.
The five steps of the method are explained in detail in
the following.

3.1 Select and Merge TOSCA Topology
Models

In the first step, the application developer sketches the
desired deployment and selects appropriate TOSCA
topology models from a repository to be used for its
realization. The selected topologies are merged by

PHP components

copying them into a new topology model, which pro-
vides a recursive aggregation model as the result is
also a topology that can be combined with others again.
This is a manual step that may be supported by TOSCA
modeling tools such as the open-source implementa-
tion Winery [Kopp et al., 2013]. In previous works,
we showed how multiple application topologies can
be merged automatically while preserving their func-
tional semantics [Binz et al., 2013a] and how valid
implementations for custom component types can be
derived automatically from a repository of validated
cloud application topologies [Soldani et al., 2015].
These works support technically merging individual
topologies, but the general decisions which topologies
to be used are of manual nature as only developers
are aware of the desired overall functionality of the
application to be developed.

3.2 Connect Merged Parts of the
Application

The resulting topology model contains isolated topol-
ogy fragments that may have to be connected with
each other. For example, the motivating scenario re-
quires the insertion of a SQLConnection relationship
to syntactically connect the merged topology models.
Using well-defined relationship types enables speci-
fying the respective semantics. This is also a manual
step as these connections exclusively depend on the
desired functionality. Moreover, TOSCA enables spec-
ifying requirements and capabilities of components,
which can be used to automatically derive possible
connections [OASIS, 2013a]. Modeling tools may use
these specifications to support combining the individ-
ual fragments, but in many cases the final decisions
must be made manually by the application develop-
ers. For example, if multiple business components
and databases exist, in general, a modeling tool cannot
derive with certainty which component has to connect
to which database.

3.3 Coordinate Management Plans by
Choreographies

Similarly to connecting isolated topology fragments,
their management plans need to be combined for real-
izing holistic management processes that affect larger
parts of the merged application at once, for example,
to terminate the whole application. However, as dis-
cussed in Section 2.3, manually merging workflow
models is a highly non-trivial and technically error-
prone task. Therefore, we propose using intercon-
nection choreographies to coordinate the individual
workflows without changing their actual implemen-
tation. Interconnection choreographies define inter-
action specifications for collaborating processes by
interconnecting communication activities, i.e., send
and receive activities, of these processes via set of
message links>. This enables modeling different in-
teraction styles between the individual management
workflows, e. g., asynchronous and synchronous inter-
actions. Thus, in this step, (i) application managers
analyse required management processes, (ii) select
appropriate management workflows of the individ-
ual topology models, and (iii) coordinate them by
modeling choreographies. In addition, (iv) depend-
ing on required input and output parameters of the
individual workflows, the data flow between the work-
flow invocations has to be specified. For example,
the MySQL provisioning workflow of the motivating
scenario outputs the endpoint and credentials of the
database, which are required to invoke a management
plan of the PHP model that connects the PHP frontend
to this database*. This is a manual step as the desired
functionality, in general, cannot be derived automati-
cally for application-specific tasks. For example, the
individual provisioning plans of the motivating sce-
nario can be used to model the overall provisioning
of the entire application as well as to implement man-
agement plans that scale out parts of the application to
handle changing workloads.

Fig. 4 shows an example of a choreography that
coordinates three management workflows of the mo-
tivating scenario. The coordination plan invokes in
parallel the provisioning workflows of the PHP and
MySQL topology models, respectively, by specifying

3In contrast to interaction choreographies that model
message exchanges as abstract interactions not considering
the workflow implementation.

4Such management workflows can be realized in a
generic manner by binding them exclusively to operations
defined by the respective component type. TOSCA enables
exchanging the implementations of these operations on the
topology layer to implement application-specific manage-
ment logic.

message links to their receive activities. After their
execution, messages are sent back to the coordina-
tion plan, which continues with invoking the afore-
mentioned management workflow for transferring the
database information (endpoint, database name, and
credentials) to the PHP application by invoking the
corresponding management operation.

3.4 Transform Choreographies Into
Executable Workflows

After manually modeling the choreography, the result-
ing model has to be transformed into an executable
workflow. This has to be done as choreographies are
not suited to be executed on a single workflow ma-
chine: unnecessary communication effort between the
different workflows would slow down the execution
time [Wagner et al., 2013] and passing sensitive data
over the wire, e. g., the database credentials, is not ap-
propriate. Therefore, in this step, the choreography is
automatically translated into an executable workflow
model. This transformation is described in the next
section in detail and implemented by our prototype.

3.5 Deploy and Execute Resulting
Workflows

In the last step, the generated workflow model is de-
ployed on an appropriate workflow engine. After-
wards, the plan can be triggered by sending the start
message to the workflow’s endpoint. TOSCA runtimes
such as OpenTOSCA [Binz et al., 2013b] explicitly
support management by executing such workflows.

4 PROCESS CONSOLIDATION

To transform the management choreography into an
executable workflow we provide an algorithm in Sec-
tion 4.2 that implements the process consolidation ap-
proach described in [Wagner et al., 2012] and [Wagner
et al., 2014]. In Section 4.3 the algorithm is applied
on the provisioning choreography shown in Fig. 4.

4.1 Choreography Meta-Model

The algorithm bases on the interconnection choreog-
raphy meta-model that is defined in the following.
The choreography meta-model uses the process meta-
model introduced by [Leymann and Roller, 2000] as
foundation. For simplicity reasons constructs such
as compensation spheres or loops are omitted in this
meta-model.

PHP Provisioning Plan PHP Set DB Endpoint Plan

Coordination Plan MySQL Provisioning Plan

Read Topology
Properties

ﬁ Create
VM
Install
Webserver
Install PHP
Module
Deploy PHP
Application

Read Topology
Properties
ﬁ Create
VM
Install
MySQLDBMS
Create DB
Instance

Insert DB
Schema

R S .e

Figure 4: Provisioning choreography coordinating three management workflows of the PHP and MySQL TOSCA models.

Definition 1 (Process). A process p = (A,E,L,Cond)
is a directed acyclic graph where A is the set of ac-
tivities. E C A X A is the set of directed control links
between two activities. If two activities are not directly
or indirectly related over control links they are per-
formed concurrently. L denotes the set of labels used
to identify process elements and Cond denotes the set
of conditions used within p that can be evaluated to
true or false.

Definition 2 (Activity). An activity a € A is defined by
the tuple a = (name,type, jc) where name € L, jc €
Cond, type € T and T = {send,receive, task,
noop, opaque, sphere}.

The set Aseng C A represents all activities of type
send. These activities send messages to another pro-
cess via a message link ml € M L. The messages can
be received by receive activities A,., C A. A send
supports either the asynchronous or synchronous one-
to-one interaction’ pattern [Barros et al., 2005]. The
asynchronous send activity sends a message to the
receive within the other process in a “fire and for-
get” manner, i. e., after the message was sent the send
completes and its successor activities are performed.
A synchronous send activity, in turn, waits until it
receives a response from the called partner process
before its successors can be executed, 1. €., it “blocks”
until the response is received. Response messages to
synchronous calls must be answered by another send
activity following the receive in the control flow. A
task activity a € A, C A performs certain manage-
ment logic, such as executing human tasks, calling
scripts etc. An opaque activity acts as placeholder for
concrete business functions and noop activities do not
perform any business functions.

5In one-to-one interactions a send activity sends a mes-
sage to exactly one receive activity, while in one-to-many
interactions a send activity communicates with multiple re-
ceives, e. g., via loops.

The set of incoming control links of an activity
a are denoted as E(a) = {(a;,a,c)|(ai,a,c) € E}.
The set of outgoing control links of a is denoted as
E“(a) = {(a,a;,c)|(a,ai,c) € E}. The join condi-
tion of an activity can be obtained with the function
joinCond : A — Cond.

Definition 3 (Fault-Handling Sphere). A fault han-
dling sphere s € S C A is an activity that groups a
set of activities and defines a common fault handling
behavior on them. A sphere is defined by the tuple
s = (A,E,FH) where A denotes the set of grouped
activities and E the links between them. If an ac-
tivity within a sphere throws a fault, all other ac-
tivities within this sphere are terminated. The set
FH C (LU{Ll}) x A X E represents the set of fault
handlers attached to a sphere. A fault handler fh =
(faultName,A,E) reacts on a fault with a defined
name faultName € L that may be thrown by the activ-
ities within the sphere. A sphere may have one fault
handler attached where faultName = 1. It reacts
on all faults being not caught by the other fault han-
dlers. The fault handling logic consists of the fault
handling activities and the links between them. The
name of a fault handler can be obtained with the func-
tion faultName : FH — L.

The child activities of a process, a sphere or a fault
handler can be obtained with the function children :
PUSUFH — A. Accordingly, the function links :
PUSUFH — E returns the control links between the
activities. Note, for simplicity reasons we assume that
control links are defined within the same modeling
construct as their source and target activities. This
implies that no control link must cross the boundary
of a modeling construct.

Definition 4 (Choreography). A choreography C € C
is defined by the tuple C = (P,M L), i.e., it con-
sists of a set of interacting processes P and the mes-
sage links M L between them. A message link ml

connects a sending and a receiving activity: M L C
Agend X Aey. Yml € M L : P; # P, APy, P> € P where
P; = process(Asena), P> = process(A,e,). A message
link is activated when the sending activity aseng € Asend
is started. A receiving activity a,e, € Ay cannot com-
plete until its incoming message link was activated.

The process defined within a choreography can be
obtained with the function processes : C — P. The
functions send : M L — Ageng and receive : M L —
A, return the send and receive activity of a given
message link.

4.2 Choreography-based Process
Consolidation

The process consolidation operation gets a choreog-
raphy as input and returns a single process F,. The
operation ensures that P, contains all activities Az
defined within the processes of C and that the execu-
tion order between these activities is preserved, i.e., ,
P, is able to generate the same set of activity traces of
Ayusr during runtime as C [Wagner et al., 2012, Wagner
et al., 2014]. As the consolidation steps were only
described conceptually in previous works, we provide
a formal description of the consolidation steps in Algo-
rithm 1. Note, since the implementation of data flow
is language-dependent the algorithm focuses only on
the control flow aspects of the consolidation.

First the process P, is created and all activities of C
along with the control links between them are moved
to P, (lines 10 and 11). The activities A; and A; orig-
inating from different processes in C (process(A;) #
process(A;)) have to be isolated from each other in P,.
This ensures that the originally modeled behavior is
preserved, that faults in A; are not propagated to activ-
ities from A;, which would lead to their termination.
The isolation is guaranteed by adding spheres for each
process P to be merged. The spheres act as container
for the activity graph of P. Each of these spheres has a
fault handler attached to it catching all faults that may
be thrown from the activities within the sphere.

Then the control flow materialization is performed
which derives the control flow between activities orig-
inating from different processes from the interaction
patterns defined in C. Therefore, Algorithm 1 visits
each message link (line 13), determines the interaction
pattern implied by it and calls the corresponding ma-
terialization operation. If the visited message link ml/
originates from a sending activity that is also target
of one or more other message links ML, this implies
a synchronous interaction ML,,,. In this case the re-
sponse for the request made over ml is sent via one
of the message links in ML,,. Due to space reasons
only the materialization for asynchronous interactions

Algorithm 1 Process Consolidation

1: procedure CONSOLIDATE(C)

2: B, < new Process

3: for all P € processes(C) do

4 s <— new sphere

5: children(s) <— children(P)

6: fh < new faultHandler

7: children(fh) < {new noop}

8: faultName(fh) « L

9: faultHandlers(s) < faultHandlers(P) U {fh}

10: children(P,) < children(P,) U {s}
11: links(P,)<—I|nks()Ullnks()
12: end for

13: for all m/ € messageLinks(C) do

14: send < send(ml)

15: rev « receive(ml)

16: ML,, < {messageLinks(C)|
receive(ml) = send}

17: if ML,, # 0 then

18: MATERIALIZES YN (send, receive, ML)
19: else

20: MATERIALIZEASYN(send, receive)

21: end if

22: end for

23: CLEANUP(P,)
24: end procedure

is described in the following. A more detailed descrip-
tion of the materialization for synchronous interac-
tions (called in line 18) can be found in [Wagner et al.,
2012].

Algorithm 2 Asynchronous Control Flow Materializa-
tion

—

procedure MATERIALIZEASYN(send, receive)

2: syng <— new opadque
3: Syn,. < new opaque
4: children(P,) < children(P,) — send — receive
5: esn = new link(syng,Syn,true)
6: E7(syns) < E 7 (send)
7: E<(syng) <= E* (send)Ueyy,
8: joinCond(syns) < joinCond(send)
9: E_> (8ynye) <= E7 (receive) U egyp
10: E¥ (syny) + E< (receive)
11: joinCond(syn,.) < joinCond(receive) AND ey,
12: end procedure

The materialization for asynchronous interactions
is implemented by Algorithm 2. The algorithm re-
places the communication activities send and receive
with the synchronization activities syns and syn,.. Ac-
tivity syng serves as synchronization point for the con-
trol links of the former send, thus, it inherits the control

LAMP Provisioning Plan (P,)

LAMP Provisioning Plan (P,)

synl,

Read Topology
Properties

ﬁ Create
VM

Install
Webserver

Install PHP
Module

Deploy PHP
Application
syns,
) <|.>_

Invoke SetDB
Operation

2
{ o
{ o
)
S
E

Read Topology Read Topology
Properties Properties

v v
o] (%
v v

el,, e3,

sin

Create
VM

Read Topology
Properties
Create
VM
Install
MySQLDBMS
Create DB
Instance
Insert DB
Schema

synd,

2 2

'ﬁ' Install PHP ﬁ Create DB
Module Instance

¥

Q Insert DB
Schema

Deploy PHP
Application

(J
(]
(% o) (% nsi
()
[]

S |

Figure 5: Consolidation of provisioning choreography into single LAMP provisioning plan.

links and join condition of the send activity. Activity
syn,. gets the control links and join condition of the
receive assigned (lines 6 to 8). This preserves the
control flow order between the predecessor and suc-
cessor activities of the former receive. To emulate the
control flow constraint implied by an asynchronous
interaction, i.e., that successor activities of the for-
mer receive are not started before the message was
sent over the message link, a new control link ey, is
created between syn; and syn,.. The synchronization
activities are of type opaque as their implementation
is language-dependent. For instance when BPMN
choreographies are consolidated, the type of syn; is a
branching parallel gateway and the type of syn,. is a
merging parallel gateway.

After the control flow materialization was per-
formed the process consolidation can complete. How-
ever, we introduce an additional optional “clean up”
(optimization) step in line 23 for decreasing the com-
plexity and for improving the readability of P,. This
may be for instance achieved by removing redundant
activities and control links that were created during the
consolidation. This step is language dependent and not
further discussed here but an example is given below.

4.3 Consolidation Example

The single process LAMP Provisioning Plan on the left
of Fig. 5 results from the application of Algorithm 1
on the provisioning choreography. As all plans inter-
act asynchronously via message links ml1 to ml6 the
asynchronous control flow materialization is applied.
Thus, the sending and receiving activities related to
each message link are replaced with synchronization
activity pairs (synlg,synly),. .., (synbs,syn6,.). The
corresponding control links elyy,, ..., €6y, ensure that
the control flow order implied by the message links is

preserved. The new control links €2y, and e, along
with join conditions (not depicted in Fig. 4) guarantee
for instance that Invoke SetDB Operation is not exe-
cuted before the other management tasks completed.

As stated before, depending on the workflow lan-
guage, Algorithm 1 may create redundant control flow
constructs that can be removed from P,,. The LAMP
provisioning plan on the left of Fig. 5 contains some
redundancies, for instance redundant branching paral-
lel gateways (with just one outgoing link) and merg-
ing parallel gateways (with just one incoming link).
The concrete optimization (clean up) mechanism for
BPMN models is out of scope of this work and is just
shown in an exemplary manner. The results of the op-
timization is the LAMP provisioning plan on the right
of Fig. 5. The plan preserves the control flow order
between the activities that was specified in the manage-
ment choreography presented in Fig. 4. For the sake
of clarity, the spheres isolating activities originating
from different plans are not shown in Fig. 5.

5 VALIDATION

In this section, we validate the practical feasibility of
the presented method by a prototypical implementa-
tion. We applied the method and merge algorithms to
the choreography modeling language BPEL4CHOR
and extended the OpenTOSCA Cloud management
ecosystem to support choreographies. This ecosystem
consists of (i) the graphical TOSCA modelling tool
Winery [Kopp et al., 2013], the (ii) OpenTOSCA con-
tainer [Binz et al., 2013b], and (iii) the self-service por-
tal Vinothek [Breitenbiicher et al., 2014]. An overview
of the entire prototype is shown in Fig. 6: Applica-
tion developers use Winery to merge existing topology
models, while application managers use the choreogra-

Application
Manager

Application
- Developer
TOSCA
Repository

Choreography Winery End
Modelling Tool Modelling Tool Users

Rt

Vinothek
Portal
HEY

v i

‘ OpenTOSCA
Container

Choreographies

$

Topology Model >

Choreography ‘ TOSCA CSAR

Consolidation

O®
©<@<><®
O<®

Management 7
Workflows

Figure 6: Architecture of the open-source Cloud manage-
ment prototype.

phy modelling tool ChorDesigner [Weil and Karastoy-
anova, 2014] to coordinate the associated management
workflows.

Based on the merge algorithm described in Sec-
tion 4 a process consolidation tool was developed for
generating a single executable BPEL processes out of a
choreography®. Therefore the algorithm was extended
to accommodate the language idiosyncrasies of BPEL.
This includes the emulation of the choreography’s data
flow in the merged process and the elimination of lan-
guage violations that may arise during control flow
materialization, e. g., control links crossing boundaries
of loops. Beside asynchronous and synchronous one-
to-one interactions the tool does also support the con-
solidation of one-to-many interactions [Barros et al.,
2005] [Wagner et al., 2014].

The merged topology model as well as the gen-
erated management plans can be packaged as CSAR
using Winery. The resulting CSAR can be installed
on the OpenTOSCA container, which internally de-
ploys the workflows and, thereby, makes them exe-
cutable. To ease the invocation of provisioning and
management workflows, we employ our TOSCA self-
service portal Vinothek, which wraps the invocation
of workflows by a simple user interface for end users.
All tools are available as open-source implementa-
tions, thus, the developed prototype provides an end-
to-end Cloud application management system support-
ing choreographies for modelling coordinated manage-
ment processes.

The prototype is available as Open-source:
https://github.com/wagnerse/chormerge

6 CONCLUSION AND FUTURE
WORK

To ease the development of new complex TOSCA-
based applications, we described a semi-automatic
method for building such applications by reusing ex-
isting application topologies and management plans.
Beside describing how existing applications can be
selected and wired, management choreographies were
introduced for enabling the coordinated execution of
existing management plans. To achieve the efficient
execution of the management choreography on a sin-
gle workflow engine, an automatic process consoli-
dation algorithm for transforming the choreography
into a single executable management plan was sug-
gested. The method was validated by a prototype con-
sisting of different tools supporting the execution of
the different steps of the method. For validating the
approach BPEL4Chor was used as choreography lan-
guage as the OpenTOSCA ecosystem currently only
supports BPEL management plans and choreographies.
Since BPEL4AChor has the same modeling capabilities
as BPMN collaborations [Kopp et al., 2011], the pre-
sented method can be also applied on BPMN processes
and collaborations, if BPMN support will be added
to the ecosystem. In future work, we plan to create
orchestrations from low-level management scripts to
enable the systematic reusability of artifacts on differ-
ent levels of provisioning and management granularity.

ACKNOWLEDGEMENTS

This work was partially funded by the BMWi project
NEMAR (03ET40188) and the DFG project SitOPT
(610872).

REFERENCES

Barros, A., Dumas, M., and ter Hofstede, A. (2005). Service
Interaction Patterns. In BPM. Springer.

Binz, T., Breitenbiicher, U., Kopp, O., Leymann, F., and
Weil3, A. (2013a). Improve Resource-Sharing through
Functionality-Preserving Merge of Cloud Application
Topologies. In CLOSER. SciTePress.

Binz, T. et al. (2013b). OpenTOSCA - a runtime for TOSCA-
based cloud applications. In /CSOC. Springer.

Breitenbiicher, U., Binz, T., Kopp, O., Leymann, F., and
Wettinger, J. (2013). Integrated cloud application pro-
visioning: Interconnecting service-centric and script-
centric management technologies. In CooplS.

Breitenbiicher, U. et al. (2012). Vino4TOSCA: A visual
notation for application topologies based on TOSCA.
In CooplS.

https://github.com/wagnerse/chormerge

Breitenbiicher, U. et al. (2014). Combining Declarative and
Imperative Cloud Application Provisioning based on
TOSCA. In IC2E.

Breitenbiicher, U. et al. (2014). Vinothek — a self-service
portal for TOSCA. In ZEUS. CEUR.

Brown, A. B. and Patterson, D. A. (2001). To err is human.
In EASY, page 5.

Coutermarsh, M. (2014). Heroku Cookbook. Packt Publish-
ing Ltd.

Decker, G., Kopp, O., Leymann, F., and Weske, M. (2007).
BPEL4Chor: Extending BPEL for modeling chore-
ographies. In JCWS. IEEE.

Herry, H., Anderson, P., and Rovatsos, M. (2013). Chore-
ographing configuration changes. In Proceedings of
the 9th International Conference on Network and Ser-
vice Management, CNSM 2013, Zurich, Switzerland,
October 14-18, 2013, pages 156-160.

Herry, H., Anderson, P., and Wickler, G. (2011). Automated
planning for configuration changes. In LISA.

Hofreiter, B. and Huemer, C. (2008). A model-driven top-
down approach to inter-organizational systems: From
global choreography models to executable BPEL. In
CEC.

Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon,
Y., and Barreto, C. (2005). Web Services Choreography
Description Language Version 1.0.

Keller, A. and Badonnel, R. (2004). Automating the pro-
visioning of application services with the BPEL4WS
workflow language. In DSOM.

Kopp, O., Binz, T., Breitenbiicher, U., and Leymann, F.
(2012). BPMN4TOSCA: A domain-specific language
to model management plans for composite applications.
In BPMN.

Kopp, O. et al. (2013). Winery — modeling tool for TOSCA-
based cloud applications. In /CSOC. Springer.

Kopp, O., Leymann, F., and Wagner, S. (2011). Model-
ing choreogaphies: BPMN 2.0 versus BPEL-based
approaches. In Proceedings of the 4" International
Workshop on Enterprise Modelling and Information
Systems Architectures - EMISA 2011, Lecture Notes
in Informatics (LNI). Gesellschaft fiir Informatik e.V.
(GD.

Kiister, J., Gerth, C., Forster, A., and Engels, G. (2008). A
tool for process merging in business-driven develop-
ment. In Proceedings of the Forum at the CAiSE.

Leymann, F. and Roller, D. (2000). Production workflow:
concepts and techniques. Prentice Hall PTR.

Mendling, J. and Hafner, M. (2008). From WS-CDL chore-
ography to BPEL process orchestration. J. Enterprise
Inf. Management, 21(5):525-542.

Mendling, J. and Simon, C. (2006). Business process design
by view integration. In BPM Workshops. Springer.

OASIS (2007). Web Services Business Process Execution
Language (WS-BPEL) Version 2.0. OASIS.

OASIS (2013a). TOSCA Primer v1.0. http://docs.oasis-
open.org/tosca/tosca-primer/v1.0/tosca-primer-
v1.0.html.

OASIS (2013b). TOSCA vl1.0. http://docs.oasis-
open.org/tosca/TOSCA/v1.0/0s/TOSCA-v1.0-
os.html.

OMG (2011). Business Process Model and Notation
(BPMN), Version 2.0.

Oppenheimer, D., Ganapathi, A., and Patterson, D. A. (2003).
Why do internet services fail, and what can be done
about it? In USITS.

Opscode, Inc. (2015). Chef official site: http://www.
opscode.com/chef.

Puppet Labs, Inc. (2015). Puppet official site: http://
puppet labs.com/puppet /what-1is-puppet.

Soldani, J., Binz, T., Breitenbiicher, U., Leymann, F., and
Brogi, A. (2015). Tosca-mart: A method for adapt-
ing and reusing cloud applications. Technical report,
University of Pisa.

Wagner, S., Kopp, O., and Leymann, F. (2012). Towards
Verification of Process Merge Patterns with Allen’s
Interval Algebra. In ZEUS. CEUR.

Wagner, S., Kopp, O., and Leymann, F. (2014).
Choreography-based Consolidation of Multi-Instance
BPEL Processes. In CLOSER. SciTePress.

Wagner, S., Roller, D., Kopp, O., Unger, T., and Leymann,
F. (2013). Performance optimizations for interacting
business processes. In /IC2E. IEEE.

Weil}, A. and Karastoyanova, D. (2014). Enabling coupled
multi-scale, multi-field experiments through choreogra-
phies of data-driven scientific simulations. Computing,
pages 1-29.

http://www.opscode.com/chef
http://www.opscode.com/chef
http://puppetlabs.com/puppet/what-is-puppet
http://puppetlabs.com/puppet/what-is-puppet

