
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{haupt, leymann, vukojevic}@iaas.uni-stuttgart.de

A Framework for the Structural Analysis
of REST APIs

Florian Haupt, Frank Leymann, Anton Scherer, Karolina Vukojevic-Haupt

© 2017 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{HauptLSV17,
author = {Florian Haupt and Frank Leymann and Anton Scherer and Karolina

Vukojevic-Haupt},
title = {A Framework for the Structural Analysis of REST APIs},
booktitle = {Proceedings of the 1st IEEE International Conference on Software

Architecture, ICSA 2017, 3-7 April 2017, Gothenburg, Sweden},
year = {2017},
pages = {55--58},
doi = {10.1109/ICSA.2017.40},
publisher = {IEEE Computer Society}

}

:

Institute of Architecture of Application Systems

A Framework for the Structural Analysis

of REST APIs

Florian Haupt, Frank Leymann, Anton Scherer, Karolina Vukojevic-Haupt

Institute of Architecture of Application Systems

University of Stuttgart

Stuttgart, Germany

{firstname.lastname}@iaas.uni-stuttgart.de

Abstract— Today, REST APIs have established as a means for

realizing distributed systems and are supposed to gain even

more importance in the context of Cloud Computing, Internet

of Things, and Microservices. Nevertheless, many existing

REST APIs are known to be not well-designed, resulting in the

absence of desirable quality attributes that truly RESTful

systems entail. Although existing analysis show, that many

REST APIs are not fully REST compliant, it is still an open

issue how to improve this deficit and where to start. In this

work, we introduce a framework for the structural analysis of

REST APIs based on their description documents, as this

allows for a comprehensive, well-structured analysis approach

that also includes analyzing the corresponding API description

languages. A first validation builds on a set of 286 real world

API descriptions available as Swagger documents, and

comprises their transformation into a canonical metamodel for

REST APIs as well as a metrics-based analysis and discussion

of their structural characteristics with respect to compliance

with the REST architectural style.

Keywords- REST, interface description language, analysis

I. INTRODUCTION

The architectural style Representational State Transfer
(REST) has become a popular choice for the realization of
service-oriented architectures. Based on the core
technologies of the World Wide Web (WWW), mainly the
Hypertext Transfer Protocol (HTTP) together with URIs and
MIME types, it promises simplicity, standards-based
interoperability, and ubiquitous availability on all kind of
platforms [1]. Even more important are the implications of
the REST style on the quality attributes of a REST-compliant
software system. Distributed software systems that follow
the REST style are assumed to support inter alia software
longevity, independent evolution of its components,
scalability, and extensibility [2]. The main challenge in
achieving these desirable quality attributes is the REST-
compliant design and realization of services.

It has been shown that many APIs that claim to follow
the REST style are not REST compliant at all [3][4][5]. A
first step towards a REST compliant API is the correct usage
of the HTTP protocol, respecting its syntactical as well as
semantic specification [6]. However, being REST compliant

typically requires more effort than this [7]. One of REST’s
core constraints is called Hypertext as the Engine of
Application State (HATEOAS). It demands that clients of a
REST API are guided by the responses they receive from an
API. Each response contains metadata like hyperlinks or
forms that tell the client where it can go next and what
actions are possible in the current state of its conversation
with the API. Fulfilling this constraint has a major impact on
the structure of a REST API, as it typically results in a
graph-like structure of resources connected by hyperlinks.

In order to improve the state of the art in the design and
realization of REST APIs, it is crucial to be aware of this
state of the art. The goal of this work is to provide a
framework for the structural analysis of REST APIs. This
framework can serve as a first step in creating a current
inventory of real-world REST APIs describing their
structural characteristics. This inventory, comprising a set of
metrics as well as a graphical representation for each API,
can then be used to identify the main characteristics of
today’s REST APIs as well as their deficits with respect to
compliance with the REST architectural style. We envision
that knowing and analyzing these data in detail will allow
deriving fitting approaches for resolving the identified
deficits, helping to improve the state of the art with
purposeful solutions.

The rest of the paper is structured as follows. In section II
we give an overview about existing works on the analysis of
REST APIs and position our work. Our analysis is based on
a metamodel for REST APIs that we have developed in
previous work. This metamodel as well as the transformation
of the Swagger description languages into this metamodel
are introduced in section III. The core contribution of this
paper, the framework for the structural analysis of REST
APIs, is presented in section IV. Section V concludes the
paper with a discussion of the main results and a short
outlook to future work.

II. RELATED WORK

Several works already target the analysis of REST APIs.
A first analysis of REST APIs has been conducted in [4].
The authors investigated a set of 222 Web APIs taken from
ProgrammableWeb.com, a popular Web API directory. The

https://www.programmableweb.com/

analysis has been conducted manually and focuses on
technical aspects of the selected APIs.

The work presented in [8] analyzes a set of 12 REST
APIs with respect to a set of five patterns and eight anti-
patterns. For each of these (anti-) patterns the authors define
a corresponding heuristics and detection algorithm, both
based on the observation and investigation of request and
response messages exchanged with an API.

The work of [8] is continued and extended in [9]. Here,
the authors focus on the analysis of the URI structure of
REST APIs using a set of five linguistic patterns and anti-
patterns that are applied to a set of 15 REST APIs. The
general analysis approach is the same as in [8]. Each (anti-)
pattern has a corresponding heuristics and detection
algorithm, which are then applied to a set of previously
gathered request messages.

In [10] a set of three REST APIs from three well-known
cloud providers is analyzed with respect to a set of 73 best
practices compiled from literature. The analysis is based on
available API documentation and has been conducted
manually, followed by a detailed analysis of the results.

In [11] a dataset of 78GB of HTTP traffic from an Italian
mobile internet provider is analyzed with respect to REST
principles and guidelines. The authors define a set of five
best practices for REST APIs and a corresponding set of 18
heuristics for the compliance with these best practices. These
heuristics are then implemented and applied to a
representative sample of the whole dataset. In addition, the
same heuristics are used to calculate the maturity level of the
investigated REST APIs with respect to the maturity model
by Richardson [12].

What has not been covered so far, to the best of our
knowledge, is the analysis of REST APIs based on machine-
readable API descriptions. REST API description languages
like Swagger [13] and RAML [14] gain more and more
importance, which amongst other things recently resulted in
the Open API Initiative [15] as a standardization approach
for API descriptions. We use this potential to allow a new
perspective on REST APIs, supported by different analysis
approaches. In this paper, we present a framework
supporting an automated REST API analysis that is based on
machine-readable API descriptions. This analysis focuses on
the structure of REST APIs and can already be applied at
design time, as it only requires a description (a model) of an
API but no implementation.

III. A CANONICAL METAMODEL FOR REST APIS

There exist many languages for the description of REST
APIs from both academia as well as industry. For our
analysis we are concentrating on description languages that
are commonly used in real world, assuming that API
descriptions based on these languages will then be available
for a wide range of real-world APIs.

Before analyzing them, we will transform REST API
descriptions available in different languages into a canonical
metamodel. This approach has several benefits. First, most
description languages do not explicitly describe the structure
of an REST API, whereas our canonical metamodel does.
Second, using the canonical metamodel as a common base

for analysis enhances the portability of our analysis
framework.

In order to get a better understanding about the structure
of REST APIs and to help designers and developers to create
better REST APIs, we have developed a set of metamodels
for REST APIs and successfully integrated them in a model-
driven approach for the design and realization of REST APIs
[16][17][18]. The core model is the atomic resource model,
which describes a REST API in terms of its basic elements
like resources, methods, or representations. Another
important model is the URI model. The HATEOAS
constraint of REST demands that clients navigate through an
API independent of any specific URIs by following
hyperlinks. The separation of the resource model from the
URI model reflects this very important aspect of REST and
intends to support API designers as well as API clients in
following the HATEOAS principle. A simplified version of
the metamodel for the atomic resource model as well as for
the URI model is shown in Fig. 1. Regarding the analysis of
the structure of an REST API i.e. the analysis of the
resources and their connections, the resource model contains
all necessary information and we will therefore ignore the
URI model in the following.

Resource

+name

Method

Relationship

+supports

+enables

+target

Navigation Creation

relPath

+attachedToRestAPI

+consistsOf

atomic resource model URI model
Fig. 1 Simplified metamodel for atomic resource model & URI model

The Swagger API description language has established as
the de-facto standard for modeling and describing REST
APIs. Therefore, we decided to transform and analyze
Swagger documents as a first validation of the feasibility of
our framework. The transformation of a Swagger model
comprises two phases. First, all resources are identified and
transformed including their entire detailed configuration like
the supported methods, representations or query parameters.
Second, the relationships between the resources are
identified. Unfortunately, Swagger does not provide any
means to describe links between resources explicitly.
Instead, the structure of a REST API is usually given by the
paths the API provides. Here it is generally accepted that
these paths represent hierarchical relationships. We build on
this assumption for determining the relationships between
resources. Consequently, the resulting resource graph is
always a tree, as Swagger is inherently limited to such
structures.

IV. STRUCTURAL REST API ANALYSIS FRAMEWORK

The general approach of the REST API analysis
framework is depicted in Fig. 2. Starting from available

REST API description documents, we transform them into
our canonical metamodel and store them in a model
repository. This way, the following analysis steps are easily
reusable for other REST API description languages, they
only need to be transformed into the canonical metamodel.

The models stored in the repository can be automatically
processed by the analysis component, which in turn builds
on a repository of algorithms that are able to calculate the
metrics we are interested in, making this part easily
extendable with new metrics as desired. The results of this
analysis (i.e. a set of metric values for each REST API) are
written to CSV files, allowing further analysis and
processing by common office tools.

Swagger

X X

REST API Models

Analysis

Metrics

… …

X

Fig. 2 Analysis approach

The REST API models stored in the repository can in
addition be visualized using a graphical editor we developed
as part of a toolchain around our REST API metamodel. We
assume that the graphical representation of the resources and
their relationships enables domain as well as REST experts
to easily understand and assess the structure of an API.

As a first validation of our analysis approach, we
performed a test run based on a set of 286 Swagger API
description documents retrieved from https://apis.guru, a web
page (and API) that describes itself as “Wikipedia for WEB
APIs”. The set includes only APIs that are publicly available
(free or paid) and includes renowned providers like
Microsoft Azure, Google, BBC, GitHub, Instagram,
NYTimes, Spotify, and Wikimedia.

 An overview about the aggregated values of all metrics
that were calculated during the analysis is given in TABLE I.
The first group of four metrics concentrates on the resources
of an API. For the number of resources, i.e. the size of an
API, the deviation between the mean value and the median
indicates that the distribution is rather uneven and includes
breakout values. This can in detail be seen in Fig. 3, which

shows the distribution of the API size throughout the set of
all APIs. The majority of APIs (53.5%) has a size of 10 or
less resources (33% APIs have a size between 1 and 5
resources and 20.5% APIs have a size between 6 and 10
resources). Another 37.5% of all APIs has a size ranging
between 11 and 40 resources and the remaining 9% have a
size between 41 and the maximum of 264 resources (the
distribution between 111 and 270 resources has been
combined into one value in Fig. 3).

The set of APIs considered in the analysis comprises two
noteworthy subsets, a set of 39 API models from Microsoft
Azure, and a set of 105 API models from Google. As these
two sets represent a significant amount of the complete API
set, Fig. 3 also shows the distribution of the API size
separately for the set of Azure APIs, the set of Google APIs,
and the set of all remaining APIs. These three distributions
vary in parts. The share of APIs with a size up to five
resources is 23% and 36% for the Azure and Google APIs
respectively, and nearly 45% for all remaining APIs. In
contrast, the share of APIs with a size from six up to ten
resources is much smaller for the remaining APIs than for
Azure and Google.

TABLE I. AGGREGATED METRICS OVERVIEW

 MIN MAX MEAN MEDIAN

#Resources 1 264 20,3 9

#ReadOnlyResources 0 227 10,4 4

#POST 0 93 6,5 3

#DELETE 0 40 2,6 1

#roots 1 227 8,1 4

#Links 0 248 12,2 4

maxDepth 0 7 1,8 1

The next metric, the number of read-only resources
(#ReadOnlyResources in TABLE I.) counts all resources
that support only the GET method but no other methods. For
POST and DELETE, we count all resources that support
these methods (and maybe others, as usually every resources
is supposed to support GET requests).

The distribution of the share of read-only resources in an
API is shown in Fig. 4, again for the whole API set (bars) as
well as separately for the three subsets (curves). Looking at
the whole set, it is noticeable that around 24.5% of all APIs
have a share of read-only resources between 90% and 100%,
i.e. these APIs focus on information retrieval rather than on
content creation and manipulation. Looking at the three
subsets, their distributions are rather different. The majority
of Azure APIs (61.5%) has a read-only share between 30%
and 60%, whereas the distribution for the Google APIs is
more even. For the set of all remaining APIs, 50.5% have a
read-only share of 90% or more. These differences probably

Fig. 3 Distribution of API size (number of resources)

0%

10%

20%

30%

40%

#A
P

Is

#resources (API size)

complete Set Azure APIs Google APIs other APIs

https://apis.guru/

result from the fact, that the Azure and Google APIs provide
similar functionality in their APIs (both provide common
cloud services) which includes not only information retrieval
but also content creation and manipulation. The set of all
remaining APIs however covers a much broader spectrum of
services, which evidently includes a significant set of
information services.

0%

10%

20%

30%

40%

50%

A
P

Is

ro = share of read-only resources

complete Set Azure APIs

Google APIs other APIs

Fig. 4 Share of read-only resources in APIs

The next group of three metrics in TABLE I. adds data
about links between resources to the analysis. A generally
accepted best practice in REST API design, driven by the
HATEOAs constraint, is that an API should have only one
(or at least few) root resource [19]. However, the numbers in
TABLE I. show that today’s REST APIs usually have quite
some root resources. The maximum depth of an API is given
by the longest path of resources that are connected by links.
This metric shows rather small values if we compare it to the
number of resources, which indicates that APIs are in general
“more wide than deep”. Speaking from a client’s view, this
means that when navigating through an API there are
comparatively little possibilities to navigate “deeper into the
API” but at each of these steps, there are in average many
alternatives to navigate further.

V. DISCUSSION AND OUTLOOK

The work we presented in this paper combines two
approaches that are both new to the area of REST API
analysis. First, we use API description documents as starting
point for the analysis, and second, we focus on analyzing the
structure of REST APIs. In addition, we rely on a canonical
metamodel for REST APIs, an approach that has several
benefits. Our canonical metamodel explicitly describes the
structure of a REST API, whereas most description
languages do not. Furthermore, using the canonical
metamodel as a common base for analysis enhances the
portability of our analysis framework.

A first validation of the framework provided metrics for a
high-level overview and characterization of a large set of
real-world REST APIs. We discovered that the APIs under
investigation are on average small with a median of nine
resources per API, but that the distribution of the API size is
rather uneven and that some APIs have more than 250
resources. Another result is that read-only resources are very

common and that there is even a subset of APIs that are
completely read-only.

As a next step, we plan to focus on the analysis step and
the resulting metrics. The main research questions are the
identification of suitable metrics reflecting quality attributes
of REST APIs (e.g. complexity or REST compliance) as well
as their validation.

ACKNOWLEDGMENT

This work has been partially funded by the German
Research Foundation (DFG) within the Cluster of Excellence
in Simulation Technology (EXC310/2) at the University of
Stuttgart.

REFERENCES

[1] J. Webber, S. Parastatidis, and I. Robinson, “REST in practice:
Hypermedia and systems architecture", O'Reilly Media, 2010.

[2] R.T. Fielding and R.N. Taylor, “Principled design of the modern Web
architecture”, ACM Trans. Internet Technol. 2, May 2002: 115-150.

[3] D. Renzel, P. Schlebusch, and R. Klamma, “Today’s top ‘RESTful’
services and why they are not RESTful”, WISE, 2012.

[4] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating web
APIs on the World Wide Web”, The 8th IEEE European Conference
on Web Services (ECOWS 2010), 1-3 Dec 2010, Ayia Napa, Cyprus.

[5] P. Adamczyk, P.H. Smith, R.E. Johnson, and M. Hafiz, "REST and
Web services: In theory and in practice", REST: from Research
to Practice, Springer New York, 2011.

[6] R. Fielding and J. Reschke, “Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content”, RFC 7231, 2014,
http://www.ietf.org/rfc/rfc7231.txt.

[7] F. Haupt, M. Fischer, D. Karastoyanova, F. Leymann, and K.
Vukojevic-Haupt, “Service composition for REST”, Enterprise
Distributed Object Computing Conference (EDOC), 2014 IEEE 18th
International (pp. 110-119). IEEE.

[8] F. Palma, J. Dubois, N. Moha, and Y.G. Guéhéneuc, "Detection of
REST patterns and antipatterns: a heuristics-based approach", ICSOC
2014, Springer Berlin Heidelberg, 2014.

[9] F. Palma, J. Gonzalez-Huerta, N. Moha, Y.G. Guéhéneuc, and G.
Tremblay, "Are restful apis well-designed? detection of their
linguistic (anti) patterns." International Conference on Service-
Oriented Computing. Springer Berlin Heidelberg, 2015.

[10] F. Petrillo, P. Merle, N. Moha, and Y.G. Guéhéneuc, "Are REST
APIs for Cloud Computing Well-Designed? An Exploratory Study."
ICSOC 2016, Springer International Publishing, 2016.

[11] Rodríguez, Carlos, et al. "REST APIs: A Large-Scale Analysis of
Compliance with Principles and Best Practices." International
Conference on Web Engineering, Springer, 2016.

[12] M. Fowler, “Richardson maturity model: steps toward the glory of
rest”, http://martinfowler.com/articles/richardsonMaturityModel.html,
2010.

[13] Swagger, http://swagger.io/

[14] RESTful API Modeling Language (RAML), http://raml.org/

[15] Open API Initiative, https://www.openapis.org/

[16] F. Haupt, D. Karastoyanova, F. Leymann, and B. Schroth, “A model-
driven approach for REST compliant services”, ICWS, 2014.

[17] F. Haupt, F. Leymann, and C. Pautasso. "A conversation based
approach for modeling REST APIs." WICSA 2015 , IEEE, 2015.

[18] K. Vukojevic-Haupt, F. Haupt, F. Leymann, and L. Reinfurt,
"Bootstrapping Complex Workflow Middleware Systems into the
Cloud." e-Science 2015, IEEE, 2015.

[19] M. Nottingham, “Home Documents for HTTP APIs”,
https://tools.ietf.org/html/draft-nottingham-json-home-05

All links were last followed on 26.02.2017.

	cover-IEEE
	2017-03-01_2230_pdfa

