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Abstract— Today, REST APIs have established as a means for 

realizing distributed systems and are supposed to gain even 

more importance in the context of Cloud Computing, Internet 

of Things, and Microservices. Nevertheless, many existing 

REST APIs are known to be not well-designed, resulting in the 

absence of desirable quality attributes that truly RESTful 

systems entail. Although existing analysis show, that many 

REST APIs are not fully REST compliant, it is still an open 

issue how to improve this deficit and where to start. In this 

work, we introduce a framework for the structural analysis of 

REST APIs based on their description documents, as this 

allows for a comprehensive, well-structured analysis approach 

that also includes analyzing the corresponding API description 

languages. A first validation builds on a set of 286 real world 

API descriptions available as Swagger documents, and 

comprises their transformation into a canonical metamodel for 

REST APIs as well as a metrics-based analysis and discussion 

of their structural characteristics with respect to compliance 

with the REST architectural style. 
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I.  INTRODUCTION 

The architectural style Representational State Transfer 
(REST) has become a popular choice for the realization of 
service-oriented architectures. Based on the core 
technologies of the World Wide Web (WWW), mainly the 
Hypertext Transfer Protocol (HTTP) together with URIs and 
MIME types, it promises simplicity, standards-based 
interoperability, and ubiquitous availability on all kind of 
platforms [1]. Even more important are the implications of 
the REST style on the quality attributes of a REST-compliant 
software system. Distributed software systems that follow 
the REST style are assumed to support inter alia software 
longevity, independent evolution of its components, 
scalability, and extensibility [2]. The main challenge in 
achieving these desirable quality attributes is the REST-
compliant design and realization of services. 

It has been shown that many APIs that claim to follow 
the REST style are not REST compliant at all [3][4][5]. A 
first step towards a REST compliant API is the correct usage 
of the HTTP protocol, respecting its syntactical as well as 
semantic specification [6]. However, being REST compliant 

typically requires more effort than this [7]. One of REST’s 
core constraints is called Hypertext as the Engine of 
Application State (HATEOAS). It demands that clients of a 
REST API are guided by the responses they receive from an 
API. Each response contains metadata like hyperlinks or 
forms that tell the client where it can go next and what 
actions are possible in the current state of its conversation 
with the API. Fulfilling this constraint has a major impact on 
the structure of a REST API, as it typically results in a 
graph-like structure of resources connected by hyperlinks. 

In order to improve the state of the art in the design and 
realization of REST APIs, it is crucial to be aware of this 
state of the art. The goal of this work is to provide a 
framework for the structural analysis of REST APIs. This 
framework can serve as a first step in creating a current 
inventory of real-world REST APIs describing their 
structural characteristics. This inventory, comprising a set of 
metrics as well as a graphical representation for each API, 
can then be used to identify the main characteristics of 
today’s REST APIs as well as their deficits with respect to 
compliance with the REST architectural style. We envision 
that knowing and analyzing these data in detail will allow 
deriving fitting approaches for resolving the identified 
deficits, helping to improve the state of the art with 
purposeful solutions. 

The rest of the paper is structured as follows. In section II 
we give an overview about existing works on the analysis of 
REST APIs and position our work. Our analysis is based on 
a metamodel for REST APIs that we have developed in 
previous work. This metamodel as well as the transformation 
of the Swagger description languages into this metamodel 
are introduced in section III. The core contribution of this 
paper, the framework for the structural analysis of REST 
APIs, is presented in section IV. Section V concludes the 
paper with a discussion of the main results and a short 
outlook to future work. 

II. RELATED WORK 

Several works already target the analysis of REST APIs. 
A first analysis of REST APIs has been conducted in [4]. 
The authors investigated a set of 222 Web APIs taken from 
ProgrammableWeb.com, a popular Web API directory. The 

https://www.programmableweb.com/


analysis has been conducted manually and focuses on 
technical aspects of the selected APIs. 

The work presented in [8] analyzes a set of 12 REST 
APIs with respect to a set of five patterns and eight anti-
patterns. For each of these (anti-) patterns the authors define 
a corresponding heuristics and detection algorithm, both 
based on the observation and investigation of request and 
response messages exchanged with an API. 

The work of [8] is continued and extended in [9]. Here, 
the authors focus on the analysis of the URI structure of 
REST APIs using a set of five linguistic patterns and anti-
patterns that are applied to a set of 15 REST APIs. The 
general analysis approach is the same as in [8]. Each (anti-) 
pattern has a corresponding heuristics and detection 
algorithm, which are then applied to a set of previously 
gathered request messages. 

In [10] a set of three REST APIs from three well-known 
cloud providers is analyzed with respect to a set of 73 best 
practices compiled from literature. The analysis is based on 
available API documentation and has been conducted 
manually, followed by a detailed analysis of the results. 

In [11] a dataset of 78GB of HTTP traffic from an Italian 
mobile internet provider is analyzed with respect to REST 
principles and guidelines. The authors define a set of five 
best practices for REST APIs and a corresponding set of 18 
heuristics for the compliance with these best practices. These 
heuristics are then implemented and applied to a 
representative sample of the whole dataset. In addition, the 
same heuristics are used to calculate the maturity level of the 
investigated REST APIs with respect to the maturity model 
by Richardson [12]. 

What has not been covered so far, to the best of our 
knowledge, is the analysis of REST APIs based on machine-
readable API descriptions. REST API description languages 
like Swagger [13] and RAML [14] gain more and more 
importance, which amongst other things recently resulted in 
the Open API Initiative [15] as a standardization approach 
for API descriptions. We use this potential to allow a new 
perspective on REST APIs, supported by different analysis 
approaches. In this paper, we present a framework 
supporting an automated REST API analysis that is based on 
machine-readable API descriptions. This analysis focuses on 
the structure of REST APIs and can already be applied at 
design time, as it only requires a description (a model) of an 
API but no implementation. 

III. A CANONICAL METAMODEL FOR REST APIS 

There exist many languages for the description of REST 
APIs from both academia as well as industry. For our 
analysis we are concentrating on description languages that 
are commonly used in real world, assuming that API 
descriptions based on these languages will then be available 
for a wide range of real-world APIs. 

Before analyzing them, we will transform REST API 
descriptions available in different languages into a canonical 
metamodel. This approach has several benefits. First, most 
description languages do not explicitly describe the structure 
of an REST API, whereas our canonical metamodel does. 
Second, using the canonical metamodel as a common base 

for analysis enhances the portability of our analysis 
framework. 

In order to get a better understanding about the structure 
of REST APIs and to help designers and developers to create 
better REST APIs, we have developed a set of metamodels 
for REST APIs and successfully integrated them in a model-
driven approach for the design and realization of REST APIs 
[16][17][18]. The core model is the atomic resource model, 
which describes a REST API in terms of its basic elements 
like resources, methods, or representations. Another 
important model is the URI model. The HATEOAS 
constraint of REST demands that clients navigate through an 
API independent of any specific URIs by following 
hyperlinks. The separation of the resource model from the 
URI model reflects this very important aspect of REST and 
intends to support API designers as well as API clients in 
following the HATEOAS principle. A simplified version of 
the metamodel for the atomic resource model as well as for 
the URI model is shown in Fig. 1. Regarding the analysis of 
the structure of an REST API i.e. the analysis of the 
resources and their connections, the resource model contains 
all necessary information and we will therefore ignore the 
URI model in the following. 

Resource

+name

Method

Relationship

+supports

+enables

+target

Navigation Creation

relPath

+attachedToRestAPI

+consistsOf

atomic resource model URI model  
Fig. 1 Simplified metamodel for atomic resource model & URI model 

The Swagger API description language has established as 
the de-facto standard for modeling and describing REST 
APIs. Therefore, we decided to transform and analyze 
Swagger documents as a first validation of the feasibility of 
our framework. The transformation of a Swagger model 
comprises two phases. First, all resources are identified and 
transformed including their entire detailed configuration like 
the supported methods, representations or query parameters. 
Second, the relationships between the resources are 
identified. Unfortunately, Swagger does not provide any 
means to describe links between resources explicitly. 
Instead, the structure of a REST API is usually given by the 
paths the API provides. Here it is generally accepted that 
these paths represent hierarchical relationships. We build on 
this assumption for determining the relationships between 
resources. Consequently, the resulting resource graph is 
always a tree, as Swagger is inherently limited to such 
structures. 

IV. STRUCTURAL REST API ANALYSIS FRAMEWORK 

The general approach of the REST API analysis 
framework is depicted in Fig. 2. Starting from available 



REST API description documents, we transform them into 
our canonical metamodel and store them in a model 
repository. This way, the following analysis steps are easily 
reusable for other REST API description languages, they 
only need to be transformed into the canonical metamodel. 

The models stored in the repository can be automatically 
processed by the analysis component, which in turn builds 
on a repository of algorithms that are able to calculate the 
metrics we are interested in, making this part easily 
extendable with new metrics as desired. The results of this 
analysis (i.e. a set of metric values for each REST API) are 
written to CSV files, allowing further analysis and 
processing by common office tools.  

Swagger

X X

REST API Models

Analysis

Metrics

… …

X

 

Fig. 2 Analysis approach 

The REST API models stored in the repository can in 
addition be visualized using a graphical editor we developed 
as part of a toolchain around our REST API metamodel. We 
assume that the graphical representation of the resources and 
their relationships enables domain as well as REST experts 
to easily understand and assess the structure of an API. 

As a first validation of our analysis approach, we 
performed a test run based on a set of 286 Swagger API 
description documents retrieved from https://apis.guru, a web 
page (and API) that describes itself as “Wikipedia for WEB 
APIs”. The set includes only APIs that are publicly available 
(free or paid) and includes renowned providers like 
Microsoft Azure, Google, BBC, GitHub, Instagram, 
NYTimes, Spotify, and Wikimedia. 

 An overview about the aggregated values of all metrics 
that were calculated during the analysis is given in TABLE I. 
The first group of four metrics concentrates on the resources 
of an API. For the number of resources, i.e. the size of an 
API, the deviation between the mean value and the median 
indicates that the distribution is rather uneven and includes 
breakout values. This can in detail be seen in Fig. 3, which 

shows the distribution of the API size throughout the set of 
all APIs. The majority of APIs (53.5%) has a size of 10 or 
less resources (33% APIs have a size between 1 and 5 
resources and 20.5% APIs have a size between 6 and 10 
resources). Another 37.5% of all APIs has a size ranging 
between 11 and 40 resources and the remaining 9% have a 
size between 41 and the maximum of 264 resources (the 
distribution between 111 and 270 resources has been 
combined into one value in Fig. 3). 

The set of APIs considered in the analysis comprises two 
noteworthy subsets, a set of 39 API models from Microsoft 
Azure, and a set of 105 API models from Google. As these 
two sets represent a significant amount of the complete API 
set, Fig. 3 also shows the distribution of the API size 
separately for the set of Azure APIs, the set of Google APIs, 
and the set of all remaining APIs. These three distributions 
vary in parts. The share of APIs with a size up to five 
resources is 23% and 36% for the Azure and Google APIs 
respectively, and nearly 45% for all remaining APIs. In 
contrast, the share of APIs with a size from six up to ten 
resources is much smaller for the remaining APIs than for 
Azure and Google. 

TABLE I.  AGGREGATED METRICS OVERVIEW 

 MIN MAX MEAN MEDIAN 

#Resources 1 264 20,3 9 

#ReadOnlyResources 0 227 10,4 4 

#POST 0 93 6,5 3 

#DELETE 0 40 2,6 1 

#roots 1 227 8,1 4 

#Links 0 248 12,2 4 

maxDepth 0 7 1,8 1 

The next metric, the number of read-only resources 
(#ReadOnlyResources in TABLE I. ) counts all resources 
that support only the GET method but no other methods. For 
POST and DELETE, we count all resources that support 
these methods (and maybe others, as usually every resources 
is supposed to support GET requests). 

The distribution of the share of read-only resources in an 
API is shown in Fig. 4, again for the whole API set (bars) as 
well as separately for the three subsets (curves). Looking at 
the whole set, it is noticeable that around 24.5% of all APIs 
have a share of read-only resources between 90% and 100%, 
i.e. these APIs focus on information retrieval rather than on 
content creation and manipulation. Looking at the three 
subsets, their distributions are rather different. The majority 
of Azure APIs (61.5%) has a read-only share between 30% 
and 60%, whereas the distribution for the Google APIs is 
more even. For the set of all remaining APIs, 50.5% have a 
read-only share of 90% or more. These differences probably 

Fig. 3 Distribution of API size (number of resources) 
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result from the fact, that the Azure and Google APIs provide 
similar functionality in their APIs (both provide common 
cloud services) which includes not only information retrieval 
but also content creation and manipulation. The set of all 
remaining APIs however covers a much broader spectrum of 
services, which evidently includes a significant set of 
information services. 
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Fig. 4 Share of read-only resources in APIs 

The next group of three metrics in TABLE I. adds data 
about links between resources to the analysis. A generally 
accepted best practice in REST API design, driven by the 
HATEOAs constraint, is that an API should have only one 
(or at least few) root resource [19]. However, the numbers in 
TABLE I. show that today’s REST APIs usually have quite 
some root resources. The maximum depth of an API is given 
by the longest path of resources that are connected by links. 
This metric shows rather small values if we compare it to the 
number of resources, which indicates that APIs are in general 
“more wide than deep”. Speaking from a client’s view, this 
means that when navigating through an API there are 
comparatively little possibilities to navigate “deeper into the 
API” but at each of these steps, there are in average many 
alternatives to navigate further. 

V. DISCUSSION AND OUTLOOK 

The work we presented in this paper combines two 
approaches that are both new to the area of REST API 
analysis. First, we use API description documents as starting 
point for the analysis, and second, we focus on analyzing the 
structure of REST APIs. In addition, we rely on a canonical 
metamodel for REST APIs, an approach that has several 
benefits. Our canonical metamodel explicitly describes the 
structure of a REST API, whereas most description 
languages do not. Furthermore, using the canonical 
metamodel as a common base for analysis enhances the 
portability of our analysis framework. 

A first validation of the framework provided metrics for a 
high-level overview and characterization of a large set of 
real-world REST APIs. We discovered that the APIs under 
investigation are on average small with a median of nine 
resources per API, but that the distribution of the API size is 
rather uneven and that some APIs have more than 250 
resources. Another result is that read-only resources are very 

common and that there is even a subset of APIs that are 
completely read-only. 

As a next step, we plan to focus on the analysis step and 
the resulting metrics. The main research questions are the 
identification of suitable metrics reflecting quality attributes 
of REST APIs (e.g. complexity or REST compliance) as well 
as their validation. 
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