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Abstract: The multitude of cloud providers and technologies diminish the interoperability and portability of applications
by offering diverse and heterogeneous functionalities, APIs, and data models. Although there are integration
technologies that provide uniform interfaces that wrap proprietary APIs, the differences regarding the servi-
ces offered by providers, their functionality, and their management features are still major issues that impede
portability. In this paper, we tackle these issues by introducing the SePaDe System, which is a pluggable de-
ployment framework that abstracts from proprietary services, APIs, and data models in a new way: The system
builds upon reusable archive templates that contain (i) a deployment model for a certain kind of application
and (ii) all deployment and management logic required to provide defined functionalities and management fea-
tures. Thus, by selecting appropriate templates, an application can be deployed on any infrastructure providing
the specified features. We validate the practical feasibility of the approach by a prototypical implementation
that is based on the TOSCA standard and present several case studies to evaluate its relevance.

1 INTRODUCTION

With the general acceptance of Cloud Computing,
problems related to availability of IT resources seem
to be diminished (Zhang et al., 2010). In Cloud Com-
puting, accessing compute, network, and storage ca-
pabilities can be categorized according to the NIST
(Mell and Grance, 2011) service models Software-
as-a-Service (SaaS), Platform-as-a-Service (PaaS),
and Infrastructure-as-a-Service (IaaS): SaaS delivers
complete software applications from within the cloud,
while PaaS allows users to deploy their own appli-
cations on already available, scalable, and configura-
ble hosting environments. IaaS allows a user to in-
stantiate and access virtual resources, such as virtual
machines and disks, which can be used to host the
users’ applications. While SaaS has the lowest ma-
nagement complexity, the complexity increases furt-
her from PaaS to IaaS as more and more management
must be done by the user himself. For example, a user
does not have to manage the scalability of an SaaS
solution as this is done by the cloud provider’s infra-
structure, whereas he has to explicitly specify scaling
rules when an application is hosted on an IaaS offe-
ring. Thus, depending on the users’ requirements, he
can select the most appropriate service model.

However, the multitude of vendors and their offe-

rings diminish the interoperability and portability of
applications with diverse and heterogeneous functi-
onality, APIs, and data models. Although there are
integration technologies that try to solve these issues
on the PaaS and IaaS layer by abstracting from pro-
prietary APIs and data models (Hoare, 2016), the dif-
ferences regarding (i) the services offered by provi-
ders, (ii) their functionality, and (iii) their manage-
ment features are becoming increasingly challenging.
Indeed, such integration technologies help deploying
applications on different clouds, but if required ser-
vices, functionalities, or management features are not
provided by the selected provider, applications can-
not be deployed as desired. Thus, as the offerings of
providers cannot be configured arbitrarily and as there
are typically no natively-supported means to add re-
quired functionality or management features, this is
a serious portability problem—from the functional as
well as from the non-functional perspective.

In this paper, we tackle these issues. We intro-
duce the SePaDe System, which is a pluggable de-
ployment framework that abstracts from cloud provi-
ders and technologies in a new way: instead of provi-
ding unified interfaces that wrap proprietary APIs and
normalizing data models, which are the typical ap-
proaches of integration technologies, the SePaDe Sy-
stem builds upon the concept of searching, packaging
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Figure 1: Overview of motivations for our work, ranging from issues of (i) missing application portability between different
*aaS providers, (ii) the need for custom functionality on top of *aaS providers, and (iii) the need for *aaS layers to be portable.

and deploying Self-Manageable Application Archive
Templates (SMAART). SMAARTs are reusable archi-
ves that contain (i) a deployment model for a certain
type of application on a certain infrastructure and (ii)
all executables, e.g., shell scripts, required to deploy
and manage the application to enable the functiona-
lities and management features requested. The goal
of the system is to enable the user to only specify
the application files, the target infrastructure, and the
desired features while the system automatically de-
ploys the application following these requirements.
We validate the practical feasibility by a prototype
based on the TOSCA standard (OASIS, 2013): By
applying SePaDe to TOSCA, we add an additional
layer on top of TOSCA that enables users to search
suitable templates that can be used to automatically
deploy given application files following specified re-
quirements. Moreover, we evaluate the practical re-
levance of our approach with case studies that show
how different kinds of functionalities and features that
are not natively supported can be added using the Se-
PaDe System. Thus, besides increasing the degree of
portability, the proposed concept can be also used to
add new functionalities and features to existing offe-
rings in a reusable way. Please note that our system
does not replace existing technologies but adds anot-
her layer of abstraction.

The remainder of this paper is structured as fol-
lows: In Section 2, we motivate our approach based
on the issue of portability. Afterwards, we present an
overview of the SePaDe System, its architecture, and
introduce the concept of SMAARTs in Section 3. We
present a TOSCA-based prototype in Section 4 while
Section 5 illustrates case studies. In Section 6 related
work is discussed, Section 7 concludes the paper and
outlines possible future work.

2 MOTIVATION &
STATE-OF-THE-ART

In this section, we discuss three motivating scena-
rios that are difficult to realize using state-of-the-art
technologies (see scenarios in Figure 1).

2.1 Missing Application Portability

The application portability problem results from ven-
dors providing proprietary APIs, services, and data
models (see left side in Figure 1). As a result, develo-
ping applications on top of one provider’s APIs raises
the issue of vendor lock-in, which impedes porting an
application to another provider. Available integration
technologies such as Nucleus (Röck and Kolb, 2016)
tackle these issues by providing generic APIs and data
models that wrap proprietary implementations. Also
container technologies such as Docker (Fink, 2014)
tackle portability issues. However, these approaches
do not solve portability issues in general: if, for ex-
ample, PaaS offerings of two different providers sup-
port deploying Docker containers, a container may be
technically portable from a functional point of view.
However, if one provider offers a required manage-
ment feature, e.g., automated scaling, that is not sup-
ported by the other provider, the portability fails on
the non-functional level. Thus, de facto and de jure
standards and technologies only help partially regar-
ding portability as they cannot support all variants
that may be needed to get applications portable on the
functional as well as on the non-functional level. The
same applies to integration technologies: if one pro-
vider offers a service that is not supported by another
provider, an application is not portable between these
providers if this service is mandatorily required.
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Figure 2: Overview of the SePaDe approach.

2.2 Custom Layers

Deploying custom layers on top of existing resour-
ces enables to use arbitrary hardware and eases the
deployment of applications on these (see middle in
Figure 1). Applications can use available resources
in a transparent manner as they are developed on top
of chosen platforms, and, therefore, are not bound to
a specific environment. Especially within fields such
as the Internet of Things (Atzori et al., 2010), it is
not feasible to expect homogeneous resources. This
trend raises the need for portable platforms which can
be deployed on arbitrary resources. However, instal-
ling and configuring such layers is typically a com-
plex, knowledge-intensive, and time-consuming task
that requires automation. Our approach tackles this
by enabling developers to build / reuse custom layers
and to ship them in automatically installable archi-
ves. This enables to ship custom platforms which are
highly specialized for a particular domain.

2.3 Layer Portability

Enabling developers to use their preferred layers de-
creases the issue of vendor lock-in, e.g., when an ap-
plication is developed based on Cloud Foundry. By
making the platform portable, the application can be
migrated between different infrastructures, too (see
right side in Figure 1). However, if a provider does
not support all functions and features required by such
a platform, the same issue of portability raises up one
layer above. Nevertheless, bringing the whole plat-
form logic to where it is needed is one concept of our
approach. But in contrast to using a single portable
platform for this purpose, we present a generic appro-
ach that is not coupled to a certain platform techno-
logy, which enables selecting an appropriate imple-
mentation for the target environment.

3 THE SEPADE SYSTEM

In this section, we introduce the SePaDe System,
which is a pluggable deployment framework that ab-
stracts from cloud providers and technologies in a
completely new way. We first present an overview of
the approach and detail the concepts in the following.

3.1 Overview of the Approach

The overall SePaDe approach is shown in Figure 2.
The SePaDe System enables users to deploy the ap-
plication automatically on a desired target infrastruc-
ture without the need to deal with technical deploy-
ment details. Thus, no technical expertise about de-
ployment technologies such as Chef, virtualization
technologies such as OpenStack, or cloud provider
API handling is required. Using the SePaDe System,
the user only has to specify the following information:

• Application files that shall be deployed as well as
the application’s type, for example, that the appli-
cation is implemented in PHP.

• Management features that have to be provided au-
tomatically during operation, for example, that the
application shall be automatically scaled.

• Target infrastructure on which the application
shall be deployed, e.g., a certain OpenStack in-
stallation or a cloud provider such as Amazon.

• Required Management operations that can be trig-
gered manually, for example, that an operation
must be provided to update the application files.

The SePaDe System is connected to a SMAART
Repository that contains reusable archive templates
(SMAARTs) for deploying applications (see next sub-
section for details). Each of these SMAARTs can be



used to deploy a certain type of application on a spe-
cific type of infrastructure and provides a defined set
of management features and operations. As this in-
formation is annotated to each SMAART, the system
can match this information with the specified user re-
quirements and selects an appropriate SMAART for
deploying the application files. All required deploy-
ment and management logic is contained in these
SMAARTs, which provides a pluggable deployment
approach as reusable archives for arbitrary target in-
frastructures and requirements that can be developed.
Thus, the SePaDe System itself is a generic techno-
logy that only executes the deployment and manage-
ment logic contained in SMAARTs and is, therefore,
not bound to a certain technology. Using the system,
users just have to upload their application files and to
specify the desired infrastructure as well as the requi-
red functionalities and features, and the system selects
an appropriate SMAART to automatically deploy the
application following these requirements.

3.2 Self-Manageable Application
Archive Templates (SMAARTs)

Our approach is based on application packages cal-
led Self-Manageable Application Archive Templates
(SMAARTs), which are reusable archive templates
that contain (i) a deployment model for a certain
type of application on a certain infrastructure, e.g.,
to deploy a PHP application on OpenStack. In ad-
dition, (ii) a SMAART contains generic executables,
e.g., scripts, required to deploy and manage this type
of application in a way that defined functionalities
and management features are provided. The idea of
SMAARTs is to put the user’s application files into
a suitable archive template that matches the user’s
requirements, which is then deployed automatically
using a deployment system that is capable of invo-
king the contained deployment and management exe-
cutables. We present a possible standards-based rea-
lization of this approach in Section 4. Thus, by se-
lecting a suitable SMAART from the repository that
fulfills the users requirements and putting the user’s
application files into it, arbitrary deployments on va-
rious infrastructures can be wrapped. This allows the
reuse of available SMAARTs for a certain applica-
tion type, a set of requested features, the specified tar-
get infrastructure, and required management operati-
ons. Moreover, the generic management executables
in SMAARTs enable the automated management of
the deployed application on runtime. These are either
triggered automatically by the runtime or invoked by
a user to execute a certain management operation.
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Figure 3: Meta-Model of Self-Manageable Application Ar-
chive Templates (SMAARTs).

The meta-model of SMAARTs as an ER model is
shown in Figure 3. A SMAART has an Application
Type property that specifies the type of applications it
can deploy on a certain Target Infrastructure, which
is specified by the Deployment Model. Moreover, this
model describes all components and their relations-
hips that are involved in this deployment. Manage-
ment operations specify operations that can be expli-
citly invoked, e.g., to undeploy the application, while
Management Features are built-in features that are en-
forced automatically, for example, automated scaling.
The Injection Target is specified by the Deployment
Model and defines the path in the archive template to
which the application files must be copied. Mana-
gement Executables implement operations or features
and expect the application files exactly at this path.

To implement the deployment and management
executables, the SMAART concept specifies no re-
strictions: Both, using low-level technologies such
as scripts to implement these operations as well
as using high-level orchestration approaches such
as workflow technology may be used. Especially,
workflow technology provides several standards such
as BPEL (OASIS, 2007b) that is already used for
automating the provisioning of applications (Brei-
tenbücher et al., 2014). Of course, the employed de-
ployment system has to support the chosen techno-
logy. We will present how to realize these concepts in
Section 4 based on the OpenTOSCA ecosystem.
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Figure 4 shows an example for the deployment of a
PHP application on OpenStack, which is both speci-
fied by the Application Type and Target Infrastruc-
ture. The SMAART contains a deployment model
and associated BPEL workflow that implements the
deploy() operation: the Management Executable de-
ploy.bpel installs the needed components such as the
Apache2 HTTP server and the PHP modules on an
Ubuntu virtual machine, which it provisions before
on an OpenStack installation. The workflow extracts
configurations, such as the HTTP port to be used, out
of the deployment model. User-specific information,
for example, the account information of the Open-
Stack to be used, are passed to the workflow via in-
put parameters. Moreover, the SMAART contains
an executable update.bpel that implements the ope-
ration to update() the deployed files. Both operati-
ons are exposed in the form of the Management Ope-
rations property. Thus, it defines supported manage-
ment operations that can be triggered by the system or
the user. Moreover, the SMAART also supports auto-
scaling, which is specified by the Management Featu-
res property. In this example, installing and configu-
ring auto-scaling is the responsibility of the deploy-
ment workflow. To enable the system to put the user’s
application files into the archive, the Injection Target
specifies the path where the files need to be stored.
The generic deployment and management workflows
expect these application files exactly at this path.

3.3 SePaDe System & Matchmaking

In this section, we present the system architecture of
the SePaDe system (see Figure 5). The main functio-
nalities of the system are Selection, Packaging, and
Deployment, hence SePaDe. In the following, we
describe how the system enables the deployment of
applications with a suitable SMAART.

Users specify their requirements in the user inter-
face of the system. They enter (i) the application fi-
les to be deployed and their Application Type, e.g.,
a PHP Application, (ii) desired Management Featu-
res such as auto-scaling, (iii) the Target Infrastruc-
ture, e.g., a certain OpenStack installation, and finally
(iv) the Management Operations they need, e.g., a
deploy() and an update() operation. Of course,
the user does not have to specify all of these require-
ments. For example, if the user only requests a special
application type, features, and management operati-
ons but no special infrastructure, multiple SMAARTs
that are based on different infrastructures are offered
and the user selects one of them based on his prefe-
rences. When such a request arrives at the system, the
SMAART Selector starts querying the SMAART Re-
pository for a suitable SMAART that matches these
inputs. To be a suitable SMAART, the following con-
ditions must be fulfilled:

• The entered Application Type must match the Ap-
plication Type of the candidate SMAART

• The entered Target Infrastructure must match the
supported Target Infrastructure of the candidate

• The entered Management Operations must be a
subset of the Management Operations supported
by the candidate SMAART

• The entered Management Features must be a sub-
set of the Management Features supported by the
candidate SMAART

Based on these matchmaking rules, the SMAART Se-
lector calculates a possible set of suitable SMAARTs
that fulfill the requested criteria and selects afterwards
one option from the set, e.g., based on different pri-
ces if SMAARTs are available for different providers.
If no SMAART can be found, the application can-
not be deployed in the requested way. After this se-
lection step, the selected SMAART is passed to the
SMAART Packager together with the given applica-
tion files. This packager injects the passed application
files to the path specified by the Injection Target pro-
perty of the SMAART’s Deployment Model. Please
note, all Management Executables in the SMAART
expect these files exactly there, thus, they can be exe-
cuted automatically after this injection.
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Finally, the generated archive is shipped to a De-
ployment System that is capable of executing the Ma-
nagement Executables contained in the SMAART. To
deploy an instance of this archive, i.e., to deploy the
entered application files, the Deployment System in-
vokes the Management Executable that implements
the deploy() operation of the SMAART. Thus, this
operation must be provided by each SMAART.

4 A TOSCA-BASED PROTOTYPE

In this section, we describe how we validated our ap-
proach using the TOSCA standard. We first describe
the standard in Section 4.1, afterwards we describe
how we mapped our SMAART meta-model to TO-
SCA in Section 4.2. In Section 4.3, we present our
prototype that implements the SePaDe concept based
on TOSCA CSARs and the open-source TOSCA en-
vironment OpenTOSCA (Binz et al., 2013).

4.1 An Introduction to TOSCA

In this section, we present an overview of the Topo-
logy and Orchestration Specification for Cloud Appli-
cations (TOSCA) (OASIS, 2013), which enables auto-
mating the deployment and management of applicati-
ons. TOSCA is an OASIS standard that specifies a
meta-model for modelling the structure of cloud ap-

plications in the form of so-called Topology Templa-
tes. A Topology Template is a colored and attributed
graph wherein nodes represent the components (Node
Templates) of an application, and edges their relati-
onships (Relationship Templates). Both Node and Re-
lationship Templates are typed by Node Types or Re-
lationship Types, respectively, specifying a template’s
semantics. Node Types expose Management Opera-
tions to manipulate instances of these types, e.g., a
VSphere Node Type may expose operations to start
and stop virtual machines. Thus, using these concepts
various kinds of cloud infrastructures and technolo-
gies can be integrated as Node Types. Further, both
types define a set of Properties that represent confi-
gurations of instances. A relationship between com-
ponents can represent arbitrary types of relations spe-
cified by the corresponding Relationship Type, e.g., a
PHP Application Node Template is hostedOn a Apa-
che 2 Node Template. Thus, as TOSCA’s type system
is extensible, arbitrary application structures of com-
ponents and their relationships can be modelled.

TOSCA defines two types of artifacts: Deploy-
ment Artifacts (DAs) implement the business functi-
onality of a Node Template, for example, a DA for
a PHP Application Node Template are the PHP fi-
les implementing the application. The second type
is called Implementation Artifacts (IAs). IAs are used
to implement the management operations defined by
Node Types, e.g., . To orchestrate operations, TOSCA
defines the concept of Management Plans, which are



1 <ServiceTemplate id="PHP_OpenStack" ...>
2 <Tags>
3 <Tag name="ApplicationType" value=
4 "{http://.../Types}PHP5Application"/>
5 <Tag name="InjectionTarget" value="DA12"/>
6 <Tag name="TargetInfrastructure" value=
7 "OpenStack-Liberty-12"/>
8 <Tag name="Features" value="AutoScaling"/>
9 </Tags>
10 <BoundaryDefinitions>
11 <Interfaces>
12 <Interface name="SePaDe-Lifecycle">
13 <Operation name="deploy">
14 <Plan planRef="BuildPlan"/>
15 </Operation>
16 <Operation name="update">
17 <Plan planRef="UpdatePlan"/>
18 ...
19 </BoundaryDefinitions>
20 <TopologyTemplate>
21 <NodeTemplates>
22 <NodeTemplate name="App" ...

Figure 6: TOSCA Service Template for SMAART.

executable workflow models that implement a certain
management functionality, e.g., the provisioning of
the entire application. All these elements are sum-
marized in a Service Template. Moreover, TOSCA
defines Cloud Service Archives (CSARs) to package
all the mentioned elements into a self-contained ar-
chive file. Thus, TOSCA enables to embed all requi-
red software and models into such CSARs, which can
be executed by standard-compliant runtimes to deploy
and manage the application.

4.2 Mapping SePaDe to TOSCA

We map the SMAART meta-model (cf. Figure 3)
to TOSCA as follows. SMAARTs are realized as
TOSCA CSARs that contain a Service Template as
shown in listing 6. For modelling the Application
Type, Management Features, and Target Infrastruc-
ture supported by the SMAART, we used the concept
of Tag-elements that can be attached to TOSCA Ser-
vice Templates (lines 2-9). To realize the Deployment
Model of the SMAART meta-model, we use TO-
SCA Topology Templates (lines 20-22). Management
Operations supported by the SMAART are modelled
using the Boundary Definitions of a Service Template,
which contains interfaces that specify invokable ope-
rations (lines 10-19). Management Executables are
realized as Implementation Artifacts that implement
the operations exposed in the Boundary Definitions.
The Injection Target is modelled as a Tag, whose va-
lue points to a Deployment Artifact’s name to which
the entered application files shall be attached. For at-

taching these files, only the referenced Deployment
Artifact’s file path property has to be updated. Using
this injection mechanism, no Implementation Arti-
facts (i.e., Management Executables) are affected as
these only refer to Deployment Artifacts by name and
extract the file path property on runtime. Thus, the
injection is seamless and does not affect executables.
As a result, many concepts of SePaDe can be mapped
to the native meta-model of TOSCA. Thus applying
the SePaDes approach to TOSCA adds an additional
layer on top of TOSCA (based on the SMAART meta-
model) for searching suitable templates that can be
used to automatically deploy application files follo-
wing specified requirements.

4.3 Prototypical Implementation

In this section, we present our TOSCA-based pro-
totype. We implemented the SePaDe concept into two
systems: We extended (i) the open-source TOSCA
modelling tool Winery1 (Kopp et al., 2013) as well
as (ii) the open-source TOSCA runtime environment
OpenTOSCA2 (Binz et al., 2013).

In the following, we describe the RESTful API
which was implemented inside the OpenTOSCA
Container to provide SePaDe’s functionality. The API
expects a single HTTP POST request with the fol-
lowing data: (i) the application file to be deployed,
(ii) an XML QName indicating a TOSCA Artifact-
Type which is the Application Type, (iii) a set of XML
QNames denoting TOSCA Node Types that serves fi-
ner selection, (iv) a single XML QName denoting a
TOSCA Node Type that serves as Target Infrastruc-
ture, (v) a set of strings stating the requested features
for the application. For (i), we expect a single file
which can range from archive files to binaries. This
file is typed through the QName of the TOSCA Arti-
fact Type specified by (ii). For (iii), we expect a pos-
sibly empty set of TOSCA Node Types specified as
XML QNames which indicates that the SMAART to
be selected must contain Node Templates of the given
Node Types. This enables a finer-grained selection
of SMAARTs. Our approach enables the deployment
of applications on a target infrastructure and environ-
ment specified by (iv) with a single QName pointing
to the desired target in the form of a Node Type. This
Node Type specifies the infrastructure requested, e.g.,
OpenStack, Raspberry Pi, or Amazon AWS. As the
last part, for (v) we expect an also possibly empty
set of strings, which state requested Management Fe-
atures of the SMAART. These strings are then chec-
ked against the tags defined inside TOSCA Service

1https://projects.eclipse.org/projects/soa.winery
2https://github.com/OpenTOSCA/container
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Templates implementing our SMAART meta-model.
After sending such a request to the API, it will se-
arch inside the back-end for suitable SMAARTs, and
after finding a suitable SMAART, the entered file is
injected and the resulting CSAR is deployed on the
OpenTOSCA container. To actually provision the ap-
plication, i.e., to execute the deploy() operation, the
user has to enter required input parameters into a user
interface, e.g., credentials for OpenStack or the MAC-
Addresses of the Raspberry Pis that have to be used.
Then OpenTOSCA executes the associated executa-
ble for the deploy() operation, which is a BPEL or
BPMN workflow model in our prototype.

5 CASE STUDIES

How our system complements existing integration
technologies regarding the issue of application porta-
bility (Section 2.1) has been shown throughout the pa-
per: by specifying non-functional requirements regar-
ding management features, our approach is capable of
providing them. For example, the SMAART (see Fi-
gure 4) used throughout the paper for deploying PHP
applications on OpenStack shows how auto-scaling
can be provided regardless of the actually used un-
derlying system. To validate our concepts also regar-
ding custom layers (Section 2.2) and layer portabi-
lity (Section 2.3), we describe two case studies in this
section with the goal to provision a single PHP appli-
cation on different infrastructures with the means of
packaging a custom layer in different SMAARTs.

The SMAART on the left in Figure 7 resembles
our example SMAART from Figure 4, with the diffe-

rence in available Management Operations. Here we
altered the package to expose a scale-out() instead
of an update() operation to show how we manage to
scale applications on different infrastructures. While
in the example version of the SMAART users can
request an update of the applications’ topology by
executing update(), in this case the SMAART is
able to scale the PHP application by executing the
scale-out() operation. This is achieved with the
TOSCA Plan implementing the scale-out() ope-
ration, which at runtime can instantiate a new PHP
application stack on top of OpenStack, i.e., creating
new instances of the Ubuntu 14.04 virtual machine,
the Apache2 server, the PHP5 module, and the PH-
PApp application. After creating such a new stack the
scale-out() operation additionally adds the end-
point of the stack to the Proxy Balancer nodes’ con-
figuration to serve arriving request to it, enabling the
overall application to serve more requests, thus scale.
To show that our approach enables layer portability
the second SMAART on the right in Figure 7 is also
usable for PHP applications and implements the same
Management Operations as the first (deploy() and
scale-out()). Difference between the SMAARTs is
the underlying infrastructure the PHP application will
be hosted on, instead of an OpenStack cloud the right
SMAART enables the usage of Raspberry Pis as the
infrastructure. At the beginning of deploying such a
SMAART all relevant components for the PHP appli-
cation are installed, these components are analogous
to the OpenStack case, but instead of installing the
load balancer stack (Apache2 and Proxy Balancer)
and PHP application stack (Apache2, PHP5 and PH-
PApp) on two distinct Ubuntu 14.04 instances, they
are installed on the same initial Raspberry Pi at de-



ployment time. After deployment the load balancer
is listening on the intended application port, e.g., port
80, and redirects requests to the application. As a sin-
gle Pi is not sufficient to keep up with large request
loads, the package exposes the add-Pi() operation.
Users can use this operation to add additional resour-
ces at runtime to the topology, which can then be used
by the scale-out() operation to scale the overall ap-
plication. The add-Pi() operation will when execu-
ted add a Raspberry Pi to the instance model, i.e, by
creating a new Raspberry Pi node (New Raspberry Pi)
and a node for its installed operating system (Rasp-
bian Jessie on the right in the topology). Properties
of the created nodes are taken from the input of the
add-Pi() operation, containing information such as
the MAC and/or IP address and credentials. When
the system needs to scale, the scale-out() opera-
tion would detect the new Raspberry Pi nodes (har-
dware and os) and install a whole new stack of the
PHP Application, i.e., installing an Apache2, a PHP5
and a PHPApp node and add the new PHP application
endpoint to the Proxy Balancers’ configuration.

In summary, we showed how to extend available
APIs with our approach to build custom layers by ma-
king management operations portable. Additionally,
these case studies show layer portability by enabling
the user to either deploy his PHP application on an
OpenStack cloud or on a physical Raspberry Pi.

6 RELATED WORKS

Related works are concepts that introduce a layer
on top of multiple PaaS providers, that reuse templa-
tes for cloud applications, and which allow users to
develop applications without committing to a speci-
fic provider. In summary most approaches solve the
challenges of PaaS platform interoperability by defi-
ning their own API on top of PaaS platforms. Ho-
are (Hoare, 2016) studied state-of-the-art research in
PaaS interoperability and identified, beside the API
approaches, the use of techniques in the field of the
semantic Web. Loutas et al. (Loutas et al., 2011) in-
troduce a PaaS Semantic Interoperability Framework
that contains descriptions of different PaaS platforms
to resolve interoperability issues. Yangui et al. (Yan-
gui et al., 2013) describe a method on how to use
the OASIS standard Service Component Architecture
(SCA) (OASIS, 2007a) as a model for composite ser-
vices. With these models a split into a set of services
is taking place, which are afterwards deployed to so-
called Micro-Containers which may already run in-
side one of the PaaS solutions. Yangui et al. argue that
these Micro-Containers must be implemented once to

be deployable into new PaaS environments, which in
return allows the set of services to be deployed on
those. Röck et al. (Röck and Kolb, 2016) tackle the
problem of API differences between PaaS providers
by introducing an abstract API on top. The general
concept behind the API is to use adapters for different
PaaS providers while the API itself exposes the ca-
pabilities of the environments as abstracted objects to
the user, e.g., ranging from a generic Service to an Ap-
plication. Similar to this is the Cloud4SOA platform
by D’Andria et al. (D’Andria et al., 2012), which is
also based on adapters for each supported PaaS plat-
form. In contrast to our approach, these works in-
troduce another API on top of the existing solutions,
which nevertheless binds the applications against a
particular interface. Our approach enables incorpora-
ting entire PaaS platforms inside a single SMAART,
which allows to use the desired platform. It also ena-
bles installing platforms on bare metal, which additi-
onally reduces portability issues. Yamato et al. (Ya-
mato et al., 2014) introduce a Template Management
Server which stores OpenStack HOT Templates for
reuse by its users. The server enables user to create,
share, extract from running OpenStack resources and
update of templates to reflect changes in the environ-
ment. Additionally, the server is responsible for in-
stantiating the templates by creating virtual resources
inside the target OpenStack cloud. While this appro-
ach leverages a similar idea as our paper, it is limi-
ted to the OpenStack cloud, our approach can be im-
plemented for arbitrary technologies as shown by the
case studies. Another approach based around tem-
plates is presented by Gao et al. (Gao et al., 2012).
Templates in their approach are virtual machine ima-
ges that incorporate different software packages and
services. Users can select an appropriate template
from a repository and use it to provision their ser-
vices. After such a request is made, the system se-
lects appropriate cloud resources based on criteria gi-
ven by the user to install the image and afterwards the
services to run on those resources. While this appro-
ach is related to our method, it only deals with the
deployment on virtual machines, our approach also
incorporates bare-metal and arbitrary *aaS resources.
Nguyen et al. (Nguyen et al., 2012) introduce the Blu-
eprints meta-model, which specify a cloud applica-
tion model according to basic properties, offerings,
implementation artifacts, resource requirements, vir-
tual architecture, etc. While a Blueprint allows speci-
fying fine-grained information about a cloud applica-
tion enabling to select an appropriate blueprint from
a repository, these blueprints describe complete, de-
ployable cloud applications and are not intended for
reuse to deploy new applications.



7 CONCLUSIONS

In this paper, we presented an approach to deploy
arbitrary applications on arbitrary infrastructures by
leveraging the concept of templates. We showed in
case studies how the reuse of deployment models can
be enabled to deploy applications on heterogeneous
resources such as virtual machines, PaaS layers, and
also bare-metal machines. Further, our approach ena-
bles developers to choose their preferred platform and
package their applications along with it in a single ar-
chive. This enables to port applications from one *aaS
provider to another without the need to change imple-
mentations as the needed platform API’s and services
can be shipped together with the application.

Our approach enables wrapping entire *aaS lay-
ers in a reusable manner and, thereby, allows to cope
with future challenges of growing fields such as IoT
and Fog Computing. One challenge of those fields
is to integrate local bare-metal resources with virtual
resources of the cloud, and enable applications to be
migrated between those resources. By enabling reuse
of proven SMAARTs to automatically deploy *aaS
layers on environments close to the “edge”, the com-
plexity of migrating applications from the traditional
cloud to these scenarios is significantly reduced.

For future work, we plan to extend our appro-
ach by generating SMAART archives in an automa-
ted way, e.g., by determining the Application Type
and Implementation Placeholder of a deployment mo-
del. Moreover, we plan to extend the approach to re-
ference multiple infrastructures suitable to be used as
underlying resources for the deployment model.
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