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Abstract. Due to recent advances in data science the importance of

data is increasing also in the domain of business process management. To

reflect the paradigm shift towards data-awareness in service compositions,

in previous work, we introduced the notion of data-aware choreographies

through cross-partner data objects and cross-partner data flows as means

to increase run time flexibility while reducing the complexity of modeling

data flows in service choreographies. In this paper, we focus on the

required run time environment to execute such data-aware choreographies

through a new Transparent Data Exchange (TraDE) Middleware. The

contributions of this paper are a choreography language-independent

metamodel and an architecture for such a middleware. Furthermore, we

evaluated our concepts and TraDE Middleware prototype by conducting a

performance evaluation that compares our approach for cross-partner data

flows with the classical exchange of data within service choreographies

through messages. The evaluation results already show some valuable

performance improvements when applying our TraDE concepts.

Keywords: Service Choreographies, Data-awareness, Cross-Partner Data Flow,
Transparent Data Exchange, BPM

1 Introduction

Service-oriented architectures (SOA) have seen wide spread adoption. The concept
of composing self-contained units of functionality as services over the network
has found application in many research areas and application domains [18].
For example, in Business Process Management (BPM), Cloud Computing, the
Internet of Things, or eScience. The composition of services can be specified
through a broad variety of modeling languages which can be grouped into two
categories: service orchestrations and service choreographies.

While service orchestrations, also known as processes, are specified from the
viewpoint of one party that acts as a central coordinator, service choreographies
provide a global view on the potentially complex conversations between multiple
interacting services without relying on a central coordinator [3]. Therefore, the no-
tion of service choreographies focuses on services taking part in a collaboration, as
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so-called participants, and their interplay with other services by specifying corre-
sponding conversations through message exchanges between them [3]. Prominent
modeling languages for service orchestrations are the Business Process Man-
agement Notation (BPMN) [13] and the Business Process Execution Language
(BPEL) [12]. Service choreographies can be modeled, for example, with modeling
languages such as BPMN or BPEL4Chor [9].

With recent advances in data science the importance of data is increasing also
in the domain of business process management [11, 15]. For improving the level of
data-awareness of service choreographies, we introduced an extended management
life cycle [8] for data-aware choreographies and proposed an approach for enabling
transparent data exchange (TraDE) in choreographies motivated on shortcomings
of current choreography modeling languages [7]. The overall goal is to support
data capabilities already on the level of the choreography to reduce modeling
complexity while increasing run time flexibility.

In this work, we focus on the required middleware and its integration with
process engines to support the run time perspective of data-aware choreographies
as briefly outlined in Hahn et al. [7]. More specifically, the contributions of this
paper can be summarized as follows: (i) we introduce and discuss an internal
metamodel for a TraDE Middleware, (ii) present an architecture of such a
middleware together with a prototypical implementation, and (iii) evaluated the
prototype and the underlying TraDE concepts. The rest of this paper is structured
as follows: Section 2 provides an overview of our previous work on the concepts
of transparent data exchange in choreographies and the role of a corresponding
middleware. Based on that, we introduce a modeling language-independent
metamodel and a generic TraDE Middleware architecture and discuss how the
middleware can be integrated with corresponding process engines in Sect. 3.
In Sect. 4, we present a prototypical implementation of the architecture and its
integration with a process engine solution. Section 5 presents an evaluation of
the performance alteration when applying our TraDE concepts to a choreography
execution by integrating our TraDE Middleware prototype. Finally, the paper
discusses related work in Section 6, and concludes with our findings together
with an outlook on future work in Section 7.

2 Transparent Data Exchange Approach

As background, in the following, we shortly outline our previously presented
concepts for modeling and execution of data-aware choreographies through a
transparent data exchange as discussed in detail in Hahn et al. [7]. Therefore, we
briefly explain our modeling extensions, namely cross-partner data objects and
cross-partner data flows, and how these extensions can be supported during run
time by our new TraDE Middleware which is in the focus of this paper.

2.1 Cross-Partner Data Objects and Cross-Partner Data Flows

Figure 1 shows a motivation example of a data-aware choreography model with
three interacting participants with our applied modeling extensions. We use the
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Business Process Management Notation (BPMN) [13] as a basis to illustrate
our modeling extensions. However, the underlying concepts and the middleware
presented in this work are not bound to BPMN and can therefore be applied or
integrated with any other choreography modeling language.
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Fig. 1. Example choreography illustrated as BPMN collaboration model with applied

cross-partner data objects and cross-partner data flows.

The conversations between the participants shown in Fig. 1 are modeled by
BPMN message intermediate events and message flows, e. g., mx1 in Fig. 1. Each
of the participants is instantiated through a corresponding BPMN message start
event, e. g., c1 in P1, which consumes an incoming request message and extracts
the contained data for processing it within the choreography. Choreography data
is modeled by our cross-partner data objects, e. g., input in Fig. 1, and the reading
and writing of the cross-partner data objects from tasks and events is specified
through cross-partner data flows, e. g., dx1 or dx3 in Fig. 1. To avoid confusion
between BPMN data objects as language-specific constructs and cross-partner
data objects as a general concept, we use the generic term data container when
we talk about modeling constructs that allow the specification of data on the
level of a specific modeling language, e. g., BPMN data objects or BPEL variables.
While data between participants is normally transfered through the exchange
of messages within conversations, the notion of cross-partner data objects and
cross-partner data flows allows us to decouple the exchange of data from the
exchange of messages. For example, instead of forwarding the data of the initial
request from participant P1 to participant P2 through the message flow mx1,
we can directly specify a cross-partner data flow to task A of participant P2
where the data are actually processed. The same applies for the result data of
task A, instead of forwarding it to other participants through the exchange of
messages, it can be directly stored in cross-partner data object output by the
specified cross-partner data flow dx3 as shown in Fig. 1.
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The notion of cross-partner data objects allows us to specify all data relevant
for a choreography by specifying a set of cross-partner data objects. Such a set
expresses the commonly agreed data of a choreography shared by and accessible
from all participants and can therefore be seen as a choreography data model.
This enables modelers to specify required data and their structures in a self-
contained and consolidated manner within a choreography model. A cross-partner

data object has a unique identifier and contains one or more data elements. For
example, the cross-partner data object input contains the two data elements D
and E as shown in Fig. 1. A data element has a name and contains a reference
to a definition of its structure, e. g., using a build-in type system or an XML
Schema Definition [16]. The actual data values during run time are held by these
data elements. Therefore, they are comparable to the classical data containers of
standardized choreography and orchestration modeling languages.

By introducing cross-partner data flows we support modelers so that they
are able to intuitively specify data flows within and across participants in a
choreography. While in classical choreography modeling languages, such as BPMN,
data can only be passed across participants through message flows, cross-partner
data flows allow to decouple the exchange of data from the exchange of messages.
This means that instead of introducing additional modeling constructs for passing
the value of a data container from one participant to another through a message
flow (e. g., mx1 in Fig. 1), cross-partner data flows allow to model the exchange
of data between participants and globally shared cross-partner data objects, e. g.,
dx2 or dx3 in Fig. 1. Since a lot of choreography modeling languages do not allow
to specify directly executable models, an established approach is to transform the
choreography models into a collection of private process models [4]. The resulting
private process models can then be manually refined by adding corresponding
internal logic for each participant. We extended this transformation step for data-
aware choreographies in our previous work [7] by translating all cross-partner
data objects into standard data containers on the level of the private process
models again, e. g., using data objects in BPMN or variables in BPEL. The reason
for this translation is that it allows modelers to refine the private processes using
both locally and globally shared data containers in the same manner.

2.2 Towards a TraDE Middleware

After we have introduced our modeling extensions for transparent data exchange,
the open research question is: “How can we support these modeling extensions
during run time in order to actually execute a modeled data-aware choreography?”.

Towards this goal in Hahn et al. [7] we outlined an overall system architecture
for a modeling and run time environment that enables the execution of data-
aware choreographies by supporting cross-partner data objects and cross-partner
data flows. Therefore, we discussed our concept of introducing links between
the data containers in the private process models of a choreography and the
cross-partner data objects and data elements they represent. To provide and
manage the cross-partner data objects of a data-aware choreography model we
sketched a new middleware layer, the TraDE Middleware. This middleware acts
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as a data hub between the choreography participants and therefore supports
the process engines that execute the private process models with the realization
of the modeled cross-partner data flows. In the following, we want to shortly
recap our vision presented in Hahn et al. [7] by describing how such a TraDE
Middleware is used to execute the example choreography shown in Fig. 1. This
will provide us the basis for the introduction and detailed discussion of an
underlying architecture and a prototypical implementation of a corresponding
TraDE Middleware solution within the context of this paper.
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Fig. 2. Execution of cross-partner data flows of example choreography shown in Fig. 1.

Figure 2 shows the private process models of all three participants from our
motivation scenario depicted in Fig. 1. For the sake of simplicity we omitted
the message flows between the participants. Furthermore, we only describe the
execution of the first three cross-partner data flows, namely dx1, dx2 and dx3,
depicted in Fig. 1 as an example. Each task and event that was connected through
a data flow with a cross-partner data object in Fig. 1 has a corresponding BPMN
data object associated. As indicated by the *, these BPMN data objects are
linked with the respective data elements of cross-partner data objects provided
by the TraDE Middleware as depicted in Fig. 2.

In the following, we use the term choreography instance to refer to the
collection of interconnected instances of the private process models implementing
the choreography. Thus, in this example, a new choreography instance is created
whenever participant P1 receives a new request message which is modeled by
the BPMN message start event. The request message contains values for both
data containers D and E of private process model P1. Process Engine 1 extracts
these values from the request message to store them in the associated data
containers. Since the data containers D and E are linked with the respective data
elements D and E of cross-partner data object input, the process engine detects
this linking and instead of storing the data internally, it directly uploads the data
to the corresponding data elements in the TraDE Middleware (step 1 in Fig. 2).
Subsequently, participant P1 invokes participant P2 through a message exchange
(cf. mx1 in Fig. 1). As soon as participant P2 reaches task A, Process Engine 2
reads the value of its data container D. Again the process engine detects that
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this data container is linked to a cross-partner data object in the middleware
and, therefore, retrieves the value directly from data element E of cross-partner
data object input at the middleware (step 2 in Fig. 2). After task A is completed,
the process engine stores the tasks’ result data in data container F. Based on the
linking, the data is directly uploaded to data element F of cross-partner data
object output from where it can be retrieved by participant P1.

3 The TraDE Middleware

While in Hahn et al. [7] we outlined the overall vision and concepts of data-aware
choreographies focusing on their modeling, in this paper, our main focus is on
the TraDE Middleware. In the following we introduce a choreography language-
independent metamodel and a detailed architecture for such a middleware as
well as describe how it can be integrated with process engines.

3.1 Metamodel

The middleware and its underlying concepts should not be bound to any specific
choreography and process modeling languages or related run time environments.
Therefore, the TraDE Middleware has its own internal metamodel shown in Fig. 3.

CrossPartnerDataObject DataElement

CrossPartnerDataObjectInstance DataElementInstance DataValue

ChoreographyDataModel

1..*
1..*1

0..*

1

1 1..*

1
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0..10..*

1

name

name

name type contentType

CorrelationProperty
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name type contentType

Entity
Legend

AttributeWeak Entity

data

Fig. 3. Metamodel of the TraDE Middleware

The collection of cross-partner data objects of a choreography is represented
by a ChoreographyDataModel entity within the TraDE Middleware. Therefore,
a ChoreographyDataModel has a qualified name and contains one or more
CrossPartnerDataObject entities which represent the cross-partner data objects of
a choreography. A CrossPartnerDataObject has a unique name, a reference to
its ChoreographyDataModel and contains one or more DataElement entities. A
DataElement has a name, a type and a contentType definition. While the type
allows to specify a concrete data structure and its syntax, e. g., in XML or JSON,
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the contentType enables to specify the kind of data and its semantics. Therefore,
the middleware can handle binary data without its interpretation while still being
aware of its content and how to represent it. This allows us to support various
types of data, e. g., structured and unstructured data, videos or pictures, as well
as data formats and representations, e. g., XML, plain text, MPEG, or PNG.
Such content type information can be specified, for example, using Media Types1.

Since we have to represent and manage the data of multiple instances of a
choreography model referring to the same CrossPartnerDataObject and DataEle-
ment entities during run time, we apply the well-known concept of model instances

from BPM to our metamodel. Therefore, we introduce corresponding CrossPartner-
DataObjectInstance and DataElementInstance entities which allow us to represent
concrete instances of cross-partner data objects and their data elements for
one specific instance of a choreography model. In order to correlate the data
managed by the TraDE Middleware, i. e., CrossPartnerDataObjectInstance and
DataElementInstance entities, with a choreography model instance, correspond-
ing correlation information have to be supported and provided by the metamodel.
Therefore, we associate a set of CorrelationProperty entities to the DataObjectIn-
stance and DataElementInstance entities. These CorrelationProperty entities
allow to uniquely identify a choreography instance on the level of a process
engine as well as to identify the data that belongs to this instance on the level of
the TraDE Middleware. Since the concept of property-based correlation is well
known in the domain of BPM, we therefore reuse existing correlation mechanisms
as provided, for example, by BPMN or BPEL in order to enable the instance
correlation between process engines and the TraDE Middleware. To enable the
reuse of data across choreography instances, concrete data should not be bound
directly to one DataElementInstance entity. Therefore, the actual data is provided
by an independent DataValue entity as shown in Fig. 3. This allows us to reuse
and share DataValue entities across multiple DataElementInstance entities by
referencing them. Moreover, it enables the manual creation of DataValue entities
and therefore the upload of data to the middleware independent of a choreography
instance. A DataValue has a name, a type defining the structure of its data and
a contentType definition similarly as for DataElement entities. Furthermore, it
holds the concrete data.

3.2 Architecture

Figure 4 presents the TraDE Middleware architecture. The design follows the
three layer architecture pattern [5], which we describe in a top-down manner.

The Presentation layer provides a Web User Interface (UI) and a (set of)
REST API(s) which enable the interaction with the TraDE Middleware, and
its integration with other systems. By following the REST architectural style,
each entity of our internal TraDE metamodel shown in Fig. 3 is represented as a
resource and can, therefore, be easily accessed, referenced, and shared through

1 Internet Assigned Numbers Authority (IANA), Media Types: https://www.iana.org/

assignments/media-types/media-types.xhtml

https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
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a Uniform Resource Locator (URL). For example, process engines can use the
REST API to integrate with the middleware in order to upload or retrieve data.
Modeling tools can use the REST API to support modelers with deploying their
specified collections of cross-partner data objects, i. e., choreography data models,
to the middleware, so that they are available to the process engines during
choreography run time.

Business Logic

Ex
te

ns
io

nsData Management

Persistence

TraDE Instance Models

Auditing & Monitoring

TraDE Node &
Network Management

Presentation
REST APIWeb UI

Resources

DataModels & Metadata

Fig. 4. Architecture of the TraDE Middleware

The Business Logic layer contains the core functionality of the middleware
which is grouped into the following components. The TraDE Instance Models

component contains instances of the metamodel shown in Fig. 3 to represent
concrete cross-partner data objects and their instances within the middleware. All
functionality related to data management is provided by the Data Management

component which is the core component of the middleware. It supports the access
and inspection of data associated to corresponding cross-partner data objects
through the REST API. Furthermore, it provides the functionality to upload
and retrieve data for a corresponding DataValue or DataElementInstance entity.
Related to that, it also handles the correlation of the TraDE Instance Models
with choreography instances in order to enable the process engines to access and
retrieve the correct TraDE Instance Models and their associated data. Moreover,
it is responsible for the management of the life cycle of the TraDE Instance Models.
Therefore, it provides and implements corresponding life cycle operations such as
create, instantiate, archive and delete. The TraDE Node & Network Management

component is responsible for enabling a decentralized deployment of multiple
middleware nodes and their connection into networks to allow more efficient
data placement and staging as well as further optimizing the data exchange
between the choreography participants. In order to decouple the life time of
the data from its choreography instance the Persistence component stores both
the internal metamodels of the middleware as well as the managed data in an
underlying data source in order to guarantee its availability for later (re)use.
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The Auditing & Monitoring component provides an associated life cycle for each
of the entities in the above introduced metamodel. This enables the auditing
and monitoring of all entities by emitting corresponding events whenever the life
cycle of an entity changes. Furthermore, these internal events can be consumed
by any interested component within the middleware, for example, allowing the
Data Management component to trigger corresponding actions on state changes
in order to realize the life cycle management of the TraDE Instance Models.
The whole middleware is designed to be extensible in order to integrate new
or adapt existing components. Therefore, the Extensions component provides
corresponding functionality and mechanisms to plug-in new functionality as
well as extensions or variants of existing components. For example, the default
persistence component can be replaced by a new implementation that uses a
different technology stack by adding it as an extension to the middleware.

The Resources layer contains all required resources used within the Business
Logic layer. This comprises data sources for the persistence of TraDE Instance
Models and related metadata about nodes and networks (Models & Metadata

data source in Fig. 4) as wells as a data source for the actual data managed by
the TraDE Middleware (Data data source in Fig. 4).

3.3 Integration with Process Engines

In the following we want to briefly discuss two approaches how the TraDE
Middleware can be integrated with a process engine as shown in Fig. 5.

TraDE
Middleware

REST API

Process Engine
TraDE Client

(a) TraDE-aware integration.

TraDE
Middleware

Event API PE Client

Process Engine (PE)
Data APIEvent Propagation

(b) Two-way integration.

Fig. 5. Approaches for the integration of the TraDE Middleware with a process engine.

The TraDE-aware integration approach depicted in Fig. 5a explicitly intro-
duces the TraDE Middleware at the process engine by extending its implementa-
tion with a TraDE Client. Therefore, the process engine is aware of the existence
and functionality of the TraDE Middleware and actively uploads or retrieves data
from the middleware in order to execute the specified cross-partner data flows.
The advantage of this approach is that the process engine remains in control of
the overall choreography execution or the corresponding private processes it is
responsible for, respectively. The main disadvantage is that the process engine
implementation has to be extended in order to integrate the client and introduce
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required functionality to identify and handle the linking of data containers to
cross-partner data objects. Especially, if the collaborating partners use different
process engine solutions this integration approach requires too much effort.

In contrary, the two-way integration approach depicted in Fig. 5b integrates
the process engine and the TraDE Middleware in a loosely coupled manner
through corresponding APIs. The basic idea of this integration approach is to
extract any data-related knowledge from the data-aware choreography models,
e. g., which participant requires or produces which cross-partner data objects, to
move the control of executing specified cross-partner data flows to the TraDE
Middleware. Therefore, the process engines have to expose the execution state of
their private process model instances through a corresponding event propagation
mechanism, e. g., using messaging. The emitted state change events can then
consumed by an Event API at the TraDE Middleware, so that it is always
aware of the current execution state of the overall choreography instances for
which it executes the cross-partner data flows. Furthermore, the process engine
implementations have to expose an Data API which allows external parties, such
as the TraDE Middleware, to retrieve and write data from and to data containers
of the private process model instances executed by a process engine. The advantage
of this integration approach is that the process engine implementation is not
directly coupled with the TraDE Middleware. Instead it has to be only extended
with generic event propagation functionality and expose its data management
capabilities through an API. Some process engine implementations potentially
already provide such capabilities and if not, the required extensions are not only
bound and therefore usable for the integration with the TraDE Middleware. The
main disadvantage of this approach is that the TraDE Middleware has to keep
track of the execution state of all choreography instances to fully take over control
of the execution of the cross-partner data flows which increases the complexity of
the TraDE Middleware implementation and requires (to a certain extend) control
over and access to the process engines.

4 Validation

To validate the practical feasibility of our concepts, we prototypically implemented
the TraDE Middleware architecture shown in Fig. 4 and integrated it with a
process engine following the TraDE-aware integration approach shown in Fig. 5a.
For the implementation of our TraDE concepts, we extended the choreography
modeling language BPEL4Chor and the process modeling language BPEL. The
extension of BPEL4Chor allows us to specify cross-partner data objects and
cross-partner data flows and the extension of BPEL enables us to link BPEL
variables with cross-partner data objects in the resulting private process models
constituting the overall data-aware choreography. An extended version of the
open source BPEL engine Apache Orchestration Director Engine (ODE)2 is
used as process engine solution. In order to support the reading and writing
2 The Apache Software Foundation, Apache ODE: http://ode.apache.org

http://ode.apache.org
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of cross-partner data objects, we extended the underlying implementation of
Apache ODE and integrated it with our TraDE Middleware following the TraDE-
aware integration approach discussed in Sect. 3.3. Therefore, the communication
between the process engine and the TraDE Middleware is realized by integrating
a REST API client into Apache ODE. On top of this client, we introduced a new
TraDE Manager component that encapsulates logic for the retrieval and upload
of data to the TraDE Middleware. For example, this comprises the creation and
resolution of DataElementInstance and DataValue entities for a private process
instance in order to upload data to the TraDE Middleware.

The TraDE Middleware itself is realized as a Java-based web server which
exposes its functionality through a REST API. As underlying web server we
are using Eclipse Jetty3 in embedded mode. The REST API is specified and
documented in form of a Swagger Specification4 and implemented based on the
Jersey RESTful Web Services framework5. For the implementation of the REST
API, we are following an API-first approach which means that we developed
against the API specification. Therefore, we use the related Swagger tooling
support to generate client code as well as server code skeletons directly from
the API specification. This approach has two major advantages. First, only the
relevant business logic of the REST API has to be implemented and provided and
second, changes in the API specification are directly reflected on the level of the
code keeping the API and its implementation in sync. For the persistence of the
TraDE instance models and the associated (business) data, we support MongoDB
as a document-oriented database and the local file system as persistence layer
for the middleware at the moment. Which persistence layer to use and a lot of
other configuration options for the middleware can be specified in configuration
files. At the moment, we only support a single-node deployment of the TraDE
Middleware, but for future work, we are aiming at supporting also multi-node
deployments by leveraging the capabilities of corresponding distributed data grid
frameworks as provided, for example, by the Hazelcast In-Memory Data Grid6.
The complete open source code of the middleware is available on GitHub7.

5 Evaluation

In the following, we introduce a performance evaluation comparing cross-partner
data flows with the classical exchange of data through messages within service
choreographies. Therefore, we first present the underlying evaluation methodology
we apply, followed by a description of the experimental setup and finally a
discussion of the evaluation results.
3 The Eclipse Foundation, Eclipse Jetty: https://www.eclipse.org/jetty/
4 TraDE Swagger Specification: https://github.com/traDE4chor/trade-core/blob/

master/server/swagger.json
5 Oracle Corporation, Jersey: https://jersey.java.net
6 Hazelcast, Inc., Hazelcast IMDG: https://hazelcast.org/
7 TraDE Middleware: https://github.com/traDE4chor/trade-core

https://www.eclipse.org/jetty/
https://github.com/traDE4chor/trade-core/blob/master/server/swagger.json
https://github.com/traDE4chor/trade-core/blob/master/server/swagger.json
https://jersey.java.net
https://hazelcast.org/
https://github.com/traDE4chor/trade-core
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5.1 Evaluation Methodology and Experimental Setup

The focus of the evaluation is at empirically analyzing the performance variation
when introducing our TraDE concepts. We therefore use the example choreography
depicted in Fig. 1 to measure variations of the response time perceived by a user
invoking the choreography. As a baseline, we use the same choreography model
without our concepts applied, i. e., the data is passed within messages through
the modeled message flows between the participants of the choreography. For
example, the data contained in the initial request sent to participant P1 for data
elements D and E is not uploaded to the TraDE Middleware, instead the data
is stored in corresponding local data containers at the process engine and then
passed within a message exchange to participant P2. The same applies for all
other data exchanges depicted through cross-partner data flows in Fig. 1. For the
sake of completeness, the standards-based choreography model used as baseline
is shown in Fig. 6.

P1

P3
P2

B

D

E

F

E

G

G

DE F
A

G

Fig. 6. Standards-based version of the example choreography shown in Fig. 1.

The two choreography models are implemented using BPEL4Chor [4] as
choreography modeling language and are transformed [14] to three BPEL process
models, one for each participant, which are manually refined in order to make
them executable. The tasks A and B of participant P2 and P3 are implemented
through BPEL assign activities so that they duplicate the random data contained
in data containers D and E by its concatenation and store the result in data
containers F and G. To guarantee that for both, the baseline scenarios and
the TraDE scenarios, data has to be actually transferred through messages or
the TraDE Middleware, respectively, we deploy each of the resulting executable
private process models to a separate process engine instance using an extended
version of Apache ODE with its default configuration. The BPEL process models
for the TraDE scenarios are furthermore extended with corresponding TraDE
annotations so that the process engine is aware of the linking of the BPEL
variables with the cross-partner data objects managed by the TraDE Middleware.

In order to also measure a potential impact of the size of the data being
processed, we introduce three scenarios with increasing data size for each of the
input data elements (data object input, data elements D and E): 1KB, 128KB and
256KB. While for the baseline scenarios all data is stored locally in corresponding
data containers at the process engines, in the TraDE evaluation scenarios the
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data are uploaded once to the corresponding cross-partner data objects in the
middleware and retrieved directly from there only when required. For each of the
six scenarios summarized in Table 1, a workload consisting of randomly generated
request messages with the above mentioned data element sizes is created. The
workload is distributed among a warm-up phase (𝑤(𝑡0)) with 10 messages followed
by an experimental phase comprising a set of 310 requests sent in five load bursts
according to the following function over time:

𝑚(𝑡𝑖) = 𝑤(𝑡𝑜) +
5∑︁

𝑖=1
2𝑖−1 · 𝑘 | 𝑘 = 10, 𝑤(𝑡0) = 10

The experimental environment is set up in an on-premise private cloud in-
frastructure on two virtual machines (VM). The evaluation VM is configured
with 8 virtual CPUs, Intel® Xeon® CPU E5-2690 v2 3.00GHz, 32GB RAM,
120GB disk space, and is running an Ubuntu 14.04.4 64bit server distribution.
We use Docker8 within this VM to deploy the required three separate instances
of Apache ODE and in addition one TraDE Middleware instance in the TraDE
scenarios. The idea behind this level of nesting and using Docker for the de-
ployment of the evaluation environment is that we want to have a clean and
therefore identical setup for each of the conducted experiments towards creating
reproducible evaluation results.

In order to setup the evaluation environment and to conduct the workload
for each of the defined evaluation scenarios, we use Apache JMeter 3.29 as load
driver which is deployed in a separate VM, with the following configuration:
2 virtual CPUs, Intel® Xeon® CPU E5-2690 v2 3.00GHz, 4GB RAM, 40GB
disk space, running an Ubuntu 14.04.2 64bit desktop distribution. We created a
JMeter test plan for each of the defined six scenarios, i. e., three baseline scenarios
and three TraDE scenarios with data sizes of 1KB, 128KB and 256KB each,
which concurrently sends the above defined workload for five concurrent users
to the endpoint of the BPEL process model implementing participant P1. To
alleviate the effect of outliers in the experimental results, we execute ten rounds
of each scenario and calculate the average response time for each load burst while
excluding the samples which are timed-out at the process engine.

5.2 Experimental Results

Figure 7a shows the experimental results comparing the user-perceived perfor-
mance (average response time) of the load bursts of all scenarios. If we compare
the baseline (B1-B3) with the TraDE (T1-T3) scenarios, there exists an overall
beneficial impact to the user-perceived performance when introducing cross-
partner data flows. However, this impact greatly varies on the size of the data
being exchanged as well as on the workload applied throughout the load bursts.
Comparing the scenarios with 256KB data size (B3 vs. T3) shown in Fig. 7a the
8 Docker Community Edition: https://www.docker.com/community-edition
9 Apache JMeter: http://jmeter.apache.org/

https://www.docker.com/community-edition
http://jmeter.apache.org/
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performance is improved by approximately 90% in total. When we have a look at
the different load bursts in detail, this improvement decreases from approximately
136% in burst 1 to approximately 32% in the last load burst. Therefore, we can
assume that when increasing the load on the middleware, the improvement will
further degrade and actually convert to an overall performance deterioration.
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Fig. 7. Evaluation results for the defined six scenarios.

This is also underpinned when comparing the 128KB scenarios (B2 vs. T2)
shown in Fig. 7a where the performance is still improved by approximately 56%
in total. However, again the performance alters from an improvement of approx-
imately 117% in burst 1 to a small performance degradation of approximately
0.04% in the last load burst. Comparing the scenarios with 1KB data size (B3
vs. T3) shown in Fig. 7a, the performance is degraded by approximately 66% in
total when introducing the middleware and cross-partner data flows. There the
overhead of introducing additional communication between the process engines
and the TraDE Middleware to conduct the cross-partner data flows is higher
than the improvements gained by reducing the amount of data to be exchanged.

Furthermore, Fig. 7a shows that for the baseline scenarios with message-based
data exchange, the performance maintains quite stable in terms of increasing the
workload across the load bursts but decreases significantly when increasing data
element sizes. This fact is also underpinned when comparing the overall average
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response time among all load bursts of the six scenarios based on the processed
data element sizes as shown in Fig. 7b. In contrast, for the TraDE-based scenarios
with cross-partner data flows, the performance maintains quite stable in terms of
data element sizes as shown in Fig. 7b, but decreases significantly when increasing
the workload throughout the five load bursts as shown in Fig. 7a.

Both types of scenarios are not fully able to process the complete workload
in all load bursts without having a set of samples that timeout at the process
engine (by default after 120s for Apache ODE). For the baseline scenarios this
is especially the case in scenario B3 with a data element size of 256KB, where
about 30% of the samples in load burst 5 (after approximately 556 successful
samples) result in timeouts. A reason for this behavior might be the large amount
of data (1550 instances * 3840KB ≈ 5.9GB) ODE is not capable of handling in
its default configuration at a certain point in time. For the TraDE scenarios such
samples causing timeouts are randomly distributed across nearly all scenarios
and load bursts, but also with a peak in load burst 5. The reason for such an
unpredictable behavior is most probably related to the resolution of required data
from the TraDE Middleware through the process engine. To correlate process
instances and data object instances and to finally retrieve data element values, the
process engines poll the middlewares’ REST API by sending repeated requests
every second as long as the process instance is not timed-out. These requests
are queued up at the TraDE Middleware while throttling its performance for a
certain amount of time which again results in timeouts at the process engines.
The average amount of timed-out samples as well as a summary of the scenarios
and their average response times is shown in Table 1.

Table 1. Summary of the experimental evaluation scenarios and their results.

Scenario ID
Data Element Total Data Size Timed-out Avg. Resp.

Size (in KB) (in KB/instance) Req. (in %) Time (in ms)

Baseline

B1 1 15 0.04 1451.58

B2 128 1920 0.32 10272.86

B3 256 3840 6.49 17540.36

TraDE

T1 1 6 0.20 4313.86

T2 128 768 0.47 6560.86

T3 256 1536 0.61 9214.08

In summary the evaluation results show that introducing a TraDE Middleware
layer and applying our concept for cross-partner data flows in service choreogra-
phies provide valuable performance improvements already for relatively small
data sizes above 128KB. To alleviate the performance degradation when increas-
ing the load at the middleware, in future work, we will improve our prototypical
implementation and its integration with Apache ODE so that its performance
maintains stable when increasing the workload. Therefore, future experiments
will aim at investigating current capacity limitations of the TraDE Middleware
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when increasing the data sizes as well as the number of concurrent users and
requests. The complete evaluation result data and any related material, e. g.,
BPEL process models and JMeter test plans, are available on GitHub10.

6 Related Work

In this section, we will compare our TraDE approach and the introduced mid-
dleware with related work on cross-partner data flows in service choreographies.
Since our focus is on improving and extending the role of data in classical con-
trol flow driven choreography and process modeling languages such as BPMN,
BPEL4Chor, and BPEL, we focus on related work following the same paradigm.

Meyer et al. [10] introduce a model-driven approach towards improving the
modeling and enactment of data exchange in choreographies through messages.
Through an extension of the BPMN modeling language with annotations on
BPMN data objects they enable the specification and enactment of message
extraction from and message storage to local databases. This allows them to com-
pletely automate the exchange of data across participants and also to enrich model
transformations with data-related aspects. However, our approach introduces
the TraDE Middleware as an abstraction layer and data hub, instead of directly
binding data containers to databases on the level of the models. This allows us to
decouple the exchange of data from the exchange of messages towards increasing
run time flexibility while reducing modeling complexity of choreographies.

Barker et al. [1] introduce MAP as new language for executable service
choreographies. By introducing the concept of so-called peers they provide a
mechanism to apply extra functionality that enables web services to participate in
a choreography without requiring to adapt the underlying service implementations.
In contrast to their approach, we are building on top of standardized languages
and tools in order to support cross-partner data flows in choreographies.

Furthermore, Barker et al. [2] introduce the Circulate approach which combines
the advantages of the orchestration and choreography paradigm. While the control
flow remains orchestration-based the data flow is realized in a choreography-
based manner. Similar to the above mentioned peers, proxies are introduced to
enable the transfer of data across services. Based on that, the process engine
communicates with the proxies in order to invoke services and exchange data
between them. In general, our approach is similar since we introduce the TraDE
Middleware as an intermediary to realize the data exchange. However, instead of
explicitly invoking proxies to conduct the data exchange, we propose to introduce
cross-partner data flows which are transparently conducted through the TraDE
Middleware and its integration with the process engines. With our approach,
models are enriched instead of changed to preserve their portability.

Habich et al. [6] provide an approach for cross-partner data flows similar to
ours but with focus on the level of process models and BPEL in particular. They
try to solve the problem of BPEL’s by value semantics for data exchange resulting
10 TraDE Evaluation: https://github.com/traDE4chor/trade-core-evaluation/tree/

master/initial-evaluation

https://github.com/traDE4chor/trade-core-evaluation/tree/master/initial-evaluation
https://github.com/traDE4chor/trade-core-evaluation/tree/master/initial-evaluation
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from the centralized and implicitly specified data flows in BPEL through variables
and assign activities. Therefore, they extend BPEL with the notion of BPEL
data transitions and apply their concept of Data-Grey-Box Web Services. These
web services provide enhanced interfaces specifying related data aspects and
therefore allow to define which parameters are passed by value or by reference.
With the help of the introduced data transitions, explicit data flows between
the composed Data-Grey-Box Web Services can be specified in BPEL process
models. The combination of both concepts further allows to integrate specialized
data propagation tools and logic, e. g., Extract Transform Load (ETL) tools, to
implement the modeled data transitions which act as mediators to provide and
resolve data by reference between the composed Data-Grey-Box Web Services
during run time. In contrast to introducing explicit data flows between interacting
services on the level of BPEL, or process models in general, we argue that cross-
partner data flows can be specified much easier and more intuitively on the
level of choreography models since choreographies provide a global view on the
interactions and conversations between the services. Our overall goal is to hide
cross-partner data flows on the level of the process models by transparently
providing the required logic and functionality through the TraDE Middleware.

7 Conclusions and Outlook

To support the notion of data-aware service choreographies, we previously intro-
duced our concepts for transparent data exchange through cross-partner data
objects and cross-partner data flows in choreographies. In this work, we focused
on the execution of data-aware choreographies with the help of a new middleware
layer: the TraDE Middleware. Therefore, we introduced an architecture and an
internal metamodel for the TraDE Middleware and discussed its integration with
a process engine. To evaluate the feasibility and applicability of our approach and
the middleware, we conducted a performance evaluation comparing our approach
for cross-partner data flows with the classical exchange of data through messages
within service choreographies. The evaluation results already show interesting
performance improvements for relatively small data sizes when applying our
TraDE concepts and integrating the TraDE Middleware with process engines.

In future work, we will provide a Web UI for our TraDE Middleware prototype
in order to enable its use by human users and also ease manual data access and
inspection. Furthermore, we plan to tackle the performance weaknesses identified
within the evaluation towards improving the overall performance and robustness
of the middleware as well as to improve its integration with Apache ODE, e. g.,
introducing a callback mechanism instead of periodically polling resource changes.
Moreover, we are planning to integrate our middleware with the ChorSystem

middleware introduced in Weiß et al. [17]. The goal is to leverage the capabilities of
the ChorSystem middleware to ease and improve the deployment and management
of data-aware choreographies in the future.
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