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Abstract—The increasing amount of gathered sensor data in
Industry 4.0 allows comprehensive data analysis software that
creates value-adding opportunities. As companies often cannot
implement such software by themselves and as they typically
don’t want to give their data to external scientists, they com-
mission them to build the required software in order to execute
it locally. However, installing, configuring, and running complex
third party software on another company’s infrastructure and
linking them to local data sources challenges the responsible
administrators due to an immense technical complexity. More-
over, standards-based approaches for automation are missing. In
this paper, we present three TOSCA-based deployment modelling
approaches for function shipping that enable modelling data anal-
ysis software in a way that enables (i) its automated deployment
and execution in a remote, foreign IT infrastructure including
(ii) the wiring with the data sources that need to be processed
in this environment. We validate the practical feasibility of
the presented modelling approaches by a case study from the
domain of manufacturing, which is based on the open-source
TOSCA ecosystem OpenTOSCA, which provides a modelling tool,
a runtime, as well as a self-service portal for TOSCA.

I. INTRODUCTION

The increasing amount of gathered sensor data in the
fields of the Internet of Things [1] and Industry 4.0 [2]
allows comprehensive data analyses that create value-adding
opportunities, for example, predictive maintenance of cyber-
physical manufacturing systems. Unfortunately, the analysis of
gathered data typically requires complex and domain-specific
algorithms, which often cannot be developed by a company
itself without employing expensive experts. Therefore, many
companies commission external data scientists and third parties
to analyze their data, for example, for implementing machine
learning techniques [3]. However, this collaboration quickly
becomes complex due to political issues as the data to be
analyzed is often of vital importance for the company and
must not be distributed to their competitors. As a result, third
party data analysis software often has to be executed in the
local infrastructure of the company in order to prevent that
critical data about their business leaves their sovereignty [4].

One problem of this approach is that installing, configuring,
and running complex third party software on another company’s
infrastructure challenges the responsible administrators as
detailed expertise is required: (i) the middleware required by
the software needs to be provisioned, (ii) the software has to be
deployed, and (iii) the software needs to be configured in order

to obtain the required data. Thus, the responsible administrators
not only need to understand the required middleware but also
the software itself, which is a serious problem if the software
and its deployment are complex. Even if the developers of the
software support the administrators, different physical hardware,
employed virtualization technologies, and application platforms
lead to the same kind of deployment problems. Moreover, a
manual deployment approach is error-prone, time-consuming,
and, therefore, not efficient [5]. Thus, shipping specialized
software into a remote and foreign IT infrastructure of another
company is a highly complex challenge that comes with
technical as well as organizational deployment difficulties.

In this paper, we tackle these issues. We present three
deployment modelling approaches that enable describing data
analysis software in a way that enables (i) its automated
deployment and execution in a remote, foreign IT infrastructure
including (ii) the wiring with the data sources that need to be
processed in this environment. We call such software that is
shipped to the data it has to process a function. The presented
approaches tackle different levels of arrangement between the
third party developer and the ordering company. We first
describe these approaches in an abstract manner followed
by a detailed explanation how the TOSCA standard [6]–[8]
can be used to realize them. Thereby, deploying and running
third party software that processes locally stored data becomes
significantly simplified as no experts are required on the side
of the company to deploy, configure, and run the analysis
software. We validate the practical feasibility of the presented
deployment modelling approaches by a case study from the
domain of manufacturing, which is based on the open-source
TOSCA ecosystem OpenTOSCA [9]–[11], which provides a
modelling tool, a runtime, as well as a self-service portal.

The remainder of this paper is structured as follows. In
Sect. II, we present a motivation that is used throughout this
paper to explain the presented concepts. Afterwards, we briefly
describe the TOSCA standard in Sect. III. In Sect. IV, we
present different approaches for modelling shippable functions
in the form of automatically deployable models based on
the TOSCA standard. To validate the practical feasibility, we
discuss in Sect. V how the TOSCA ecosystem OpenTOSCA
can be used to automatically deploy shipped functions. In
Sect. VI, we present related work in terms of function shipping.
Section VII concludes the paper and discusses future work.
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Fig. 1. Motivating Scenario: Analytics functionality is developed on the basis of an analytics stack deyployed on a development notebook (left) and shipped
for production to an on-premise IT infrastructure in a manufacturing environment (right).

II. BACKGROUND & MOTIVATION

Developing services for analyzing data in the context of
Industry 4.0 is often an activity that requires immense expertise
about analytics techniques and algorithms as well as the
structure and characteristics of the data to be analyzed [12].
Further, also appropriate analytics platforms and analytics
stacks have to be configured and adapted in order to be utilized
for running such applications. Since analytics applications
are typically not part of the core business of manufacturing
companies, their development and implementation is often
sourced out to external data scientist, who specialize in analytics
aspects like the afore-mentioned. Thus, in such situations
manufacturing companies are faced with the problem to
(i) enable the development of valuable analytics algorithms by
sharing analysis data about their production processes while
(ii) preserving data security due to the fact that this data can
contain business critical information that has to be protected
and must not leave the company. Finally, also (iii) protecting
information about their employed IT infrastructure is often an
obstacle for efficiently cooperating with data scientists.

To resolve this dilemma, companies tend to only provide
parts of such analysis data, often in aggregated and anonymized
form to externals, besides closing strict non-disclosure agree-
ments with the data scientists. Thereby, external data scientists
are enabled to develop analytics algorithms in IT environments
that are not controlled by the manufacturing companies.
However, the developed analytics software requires access
to the actual data set from the manufacturing environment.
Thus, the analytics software and often the entire analytics stack
need to be shipped to the company’s IT environment to process
the real and continuously generated data there due to the policy
that the data must not leave the data-owning company.

This typical Industry 4.0 scenario is abstractly depicted in
Figure 1, which illustrates the connection of gathered machine-
data with the functionality to analyze them. In this scenario,
analytics algorithms are developed and provided by a Data
Scientist via a Prediction Service as depicted on the left side.

While developing the Prediction Service, the analytics stack
based on Apache Flink and further Python libraries are both
hosted on an Ubuntu virtual machine in the IT environment
of the data scientist. Flink is an analytics platform enabling
the integration of data sources, such as a MySQL database
containing a Development Dataset, along with capabilities
for batch as well as stream processing. This might be a
development notebook as depicted in Figure 1, a private cloud
infrastructure, some legacy system that can run the analytics
stack for development purposes but could also be a public cloud
offering capable of running the depicted stack. On the right side
of Figure 1, a MySQL database running on a virtual machine
hosted on OpenStack is shown, which is used to store analysis
data generated by the machines, which are operated in a factory
of the manufacturing company. The scenario assumes, that the
OpenStack is operated within the manufacturing environment
due to data security and privacy reasons as described above.

Since the machine-data often must not leave the company,
the Prediction Service needs to be shipped to the data for going
into production, i.e., it has to be deployed and executed close to
the data in the IT environment of the manufacturing company.
Therefore, particular components or even the whole analytics
stack, as depicted in Figure 1, have to be firstly shipped to
the IT environment of the data owner and then, secondly, be
wired with the data source containing the Production Dataset.
This can be generalized and grasped as function shipping to
deliver the Prediction Service to the data to be analyzed.

Such function shipping scenarios can strongly profit from
automated deployment mechanisms, which have evolved in the
domain of cloud computing over the last years. Independently
from the actually used deployment technology, the wiring of
the analytics functionality, i.e., the analytics algorithm or the
whole analytics stack, with the data to be analyzed needs to be
specified and modelled. Thereby, the amount of information
that can be added to such deployment models varies based on
circumstances, as for example, the mutual confidence of the data
scientist and the data owner. Thus, the amount of information
the data owner is willing to share with externals fundamentally



influences the design and configuration of the deployment
model. One option for the data owner is to share all required
information with the data scientist. Such required information
are, for example, how the externally developed analytics stack
can be wired with the locally operated production database.
However, while this means that endpoint addresses, usernames,
passwords, further required keys and certificates, etc. can
be integrated aprior in the deployment model, sharing this
information with third parties can cause critical security issues
and is, therefore, not suitable for many companies.

To prevent from such issues, the deployment model can also
be parametrized in a way that these data are only provided at
deployment time of the analytics stack in the manufacturing
environment. This approach ensures that, on the one hand,
a deployment model can be designed, which can be reused
for the automated deployment of the analytics stack in the
environment of the data owner and, on the other hand, that the
security-relevant data required for the provisioning and wiring
does not have to be shared with externals but can be provided
by the data owner themself when starting the provisioning.

Finally, a deployment model of the analytics stack can also
be elaborated in a way that only requirements are defined,
which specify mandatory capabilities the components in the
manufacturing environment have to fulfill or provide in order
to be wired with the analytics stack. For example, the analytics
stack can specify the requirement that the data to be analyzed
has to be served by a specific database system and must
be available in a specific schema. This option provides the
opportunity that the deployment model does not have to be
completely modelled by the third-party developer. This means
that the data scientist only models the analytics software and
all requirements that have to be fulfilled during deployment
and overhand this model to the data owner. Then the data
owner can complete the model by adding components, such
as the MySQL database containing the production dataset as
depicted in Figure 1, along with other required information,
such as username and password required for the deployment.

These three exemplary scenarios illustrate that a wide
spectrum of realizations of a deployment model is possible to
ship analytics functionality close to the data to be processed. In
this paper, we present how this can be realized using TOSCA.

III. THE TOSCA STANDARD

In this section, we briefly explain the Topology and Or-
chestration Specification for Cloud Applications (TOSCA) [6],
[8], [13], which is an OASIS standard for automating the
deployment and management of cloud applications. We use
TOSCA in the next section to explain how the presented
modelling approaches for function shipping can be realized.

TOSCA enables the description of the components of an
application, their dependencies, as well as required infras-
tructure resources in a portable manner. The structure of a
cloud application can be modelled as Topology Template. A
Topology Template is a directed graph consisting of typed nodes
and weighted edges. The nodes represent the components of
the application, for example, a MySQL-Database, an Apache

Tomcat, or an Ubuntu virtual machine, and are called Node
Templates. The edges represent the relationships between these
components and are called Relationship Templates. Relationship
Templates enable to model, e.g., that a PHP Application is
“hostedOn” an Apache 2 Web Server. For reusability purposes,
the semantics of Node Templates and Relationship Templates
are defined by Node Types and Relationship Types. Node
Types define, for example, Properties, e.g., the username and
password of a database or the port of a web server. Moreover,
Node Types may also define parameterizable Management
Operations that can be invoked to manage instances of this
Node Type. For example, a cloud provider or hypervisor
Node Type usually provides a management operation to create
(“createVM”) and terminate (“terminateVM”) a virtual machine.

Figure 2 depicts an example Topology Template. Here, a
virtual machine with an Ubuntu 14.04 operating system is
hosted on OpenStack. On this virtual machine, Python 2.7 as
well as Apache Flink 1.2 is installed. A prediction service
implemented using Python is hosted on the Apache Flink
processing framework. Furthermore, it has dependencies on
the Python 2.7 installation. The Topology Template also shows
some exemplary modelled Properties, such as the port of the
Flink instance or username and password of OpenStack. Thus,
this model is a deployment model for our motivation scenario.

A. Artifacts, Management Plans, and CSARs

TOSCA defines two kinds of artifacts: (i) Implementation
Artifacts (IAs) and (ii) Deployment Artifacts (DAs). Imple-
mentation Artifacts implement the Management Operations
defined by Node Types and can be implemented using various
technologies. For example, as a web service packaged as
WAR file, a simple shell script, or by using a configuration
management technology such as Ansible [14] or Chef [15].
Deployment Artifacts, on the other side, implement the business
functionality of a Node Template. For example, a Python file
implementing the Prediction Service is a Deployment Artifact.

The creation and termination of instances of the modelled
application is done by TOSCA Runtimes. They either consume
a Topology Template declaratively and derive the actions to be
executed on their own, or invoke Management Plans that are
associated with the Topology Template. A Management Plan is
an automatically executable workflow model that imperatively
specifies the management operations to be executed for
executing a certain management functionality, for example,
to provision a new instance of the application or to scale it.
TOSCA allows to use any process modelling language, but
recommends to use workflow languages such as the Business
Process Execution Language (BPEL) [16] or the Business
Process Model and Notation (BPMN) [17]. Moreover, there
is a BPMN extension called BPMN4TOSCA [18], [19] that is
explicitly tailored for describing TOSCA-based deployment
and management plans. Thus, using imperative Management
Plans, arbitrary management functionality can be realized.

For packaging all the mentioned artifacts, type definitions,
templates, plans, and additional files, TOSCA defines a portable
and self-contained packaging format, which is called Cloud
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Fig. 2. Simplified TOSCA Topology Template describing the deployment of
the motivation scenario.

Service ARchive (CSAR). Thus, such a CSAR contains all
TOSCA model files as well as further software required to
enable the automated provisioning and management of the
modelled application. Furthermore, Cloud Service Archives
can be executed using a standard-compliant TOSCA Runtime.

B. Using TOSCA for Function Shipping

TOSCA’s capability to package the entire deployment
model including all required artifacts into a self-contained
CSAR optimally supports third-party developments in terms
of deployment automation: The CSAR just has to be executed
by a TOSCA Runtime to deploy the application, thus, neither
experts nor the developers are required to deploy the software.

However, there is no guideline how the TOSCA standard
can be used to ship functions into another environment that
have to process data sources available in this environment. For
example, if a CSAR contains an application stack including
all files, how to configure the deployment in a way that the
implemented function finds the data to be analyzed? Manually
adapting the CSAR by an administrator of the company for
injecting this information is not appropriate as it requires
knowledge about the application, which we have to avoid.
Moreover, some companies have tight arrangements with their
third-party developers, which possibly enables hard-coding such
data source endpoints directly in the TOSCA model. However,
also this breaks if the endpoint of the data source changes.
Thus, a guideline how to model the application in a way that
it is able to access the data source to be processed is missing.

IV. DEPLOYMENT MODELLING APPROACHES FOR
SHIPPING AND EXECUTING FUNCTIONS

In this section, we present three deployment modelling
approaches that enable to ship data analysis software into
arbitrary environments including their fully automated de-
ployment and wiring with local data sources that have to be
processed by the shipped software. The three approaches are:
(i) Complete Deployment Model, (ii) Configurable Deployment
Model, and (iii) Variable Deployment Model. Furthermore, each
modelling approach consists of a declarative and an imperative
variant. Therefore, in the following we provide a conceptual
guideline on how the TOSCA standard can be used for shipping
functions into remote manufacturing environments, also under
consideration of the respective existing requirements.

In the following, a declarative deployment model denotes a
model that specifies the components, their relationships, and
all properties of the desired deployment. A TOSCA Topology
Template is an example for such a model. In contrast, an
imperative deployment model is a process model that specifies
tasks to be executed as well as their order. An SH script or
a workflow model belongs to this kind, thus, also TOSCA
Management Plans are imperative deployment models. The
presentation of the modelling approaches is structured as
follows: We first present the main idea of the modelling
approach in an abstract manner, regarding the declarative and
the imperative variant of this approach. Afterwards, we describe
forces that have to be tackled when applying it. Subsequently,
we summarize the traits of the modelling approach. Finally,
we show how the approach can be realized using TOSCA.

A. Complete Deployment Model

The idea of this deployment modelling approach is to specify
every detail of the deployment in the model so that the
deployment model does not have to be parametrized.

1) Declarative Deployment Model: If a declarative deploy-
ment model is used, this means that (i) every component,
(ii) every relationship between the components, as well as
(iii) every property of components and relationships are exactly
specified in the deployment model. For example, if the function
to be shipped is implemented as Java application that has to be
executed within a Java Virtual Machine that runs on an Ubuntu
operating system hosted on an OpenStack cloud management
system, every detail must be specified in the declarative model.
This means that, for example, the exact version of the Ubuntu
operating system must be specified as well as the IP-address,
username, and password of the OpenStack in order to enable
instantiating the required virtual machine. Moreover, the model
must exactly specify the data to be processed by the software.
For example, the model must contain a database component
including all properties required to retrieve data from this
database, e. g., IP-address, username, password, name of the
table, etc. In Figure Fig. 3, the motivating scenario is illustrated
as declarative deployment model fulfilling these characteristics.

2) Imperative Deployment Model: If an imperative de-
ployment model is used, i. e., a process model such as a
workflow, this means that every task of the deployment must be
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Fig. 3. Overview of the Complete Deployment Model approach using TOSCA illustrating the motivation scenario.

modelled in a self-contained manner. Thus, the process model
has no input parameters and can be executed without any
further information. For example, if the imperative deployment
model is implemented as script, the script must contain every
information: The IP-address of the OpenStack as well as
username and password. In addition, the script has to invoke
the respective OpenStack API to create a virtual machine, has
to log into this virtual machine via SSH to install the JVM,
Python, etc. Moreover, the script has to exactly know (i) where
the data to be processed is stored and (ii) how to access it.

3) Forces: A Complete Deployment Model, either imper-
ative or declarative, requires all information of the desired
deployment. Thus, as the software, for example, the function,
has to be shipped into a remote environment, every required
information must be contained in the model. For example, the
IP-address, username, and password of the OpenStack must
be known by the third party developers for enabling them to
build such a model. However, this means that the company that
commissions these external developers must trust that they do
not misuse this information. Thus, the Complete Deployment
Model approach is only suited for trustworthy collaborations.

4) Result: By using a Complete Deployment Model, the
third-party developer can ship the application in a fully self-
contained manner. For executing the deployment, no expertise is
required as all information is completely contained in the model.
Thus, the company that wants to use this software only has to
execute the corresponding model, no parametrization or further
information is required. However, a Complete Deployment
Model is tightly coupled to the target infrastructure. Thus, e.g.,
if the username or password of the OpenStack account to be
used or its IP change, the deployment model has to be adapted.
As deployment quickly become very complex, this probably

requires the third party developer and causes additional cost.
5) Complete Deployment Model in TOSCA: The Complete

Deployment Model approach is natively supported by TOSCA
in both flavors: TOSCA Topology Templates can be used to
model the deployment declaratively while properties of Node
Templates and Relationship Templates can be used to precisely
specify all required information and desired configurations as
shown in Fig. 3. The illustrated Complete Deployment Model
shows the analytics stack on the left side, containing Flink and
the Prediction Service, as well as the MySQL database stack on
the right side. Both stacks are connected using a Relationship
Template. Thus, the relation between the Prediction Service
and the MySQL database can be specified, for example, by
defining a “connectsTo” relation. Furthermore, all specified
Properties, such as the IP-address of the OpenStack, the IP-
address of the MySQL database management system, and
username and password of the MySQL database are already
filled in the Complete Deployment Model. Thus, the application
can be provisioned without adding additional parameters, as it
is shown on the right side of Fig. 3. In contrast, as TOSCA
supports Management Plans, imperative deployment models
can be created as well and packaged as a CSAR. Of course,
these Management Plans also need to contain all information
required for the provisioning and wiring of the application with
the database, such IP-addresses, usernames, and passwords.

B. Configurable Deployment Model

The idea of this deployment model approach is to model
the deployment of all components, but without specifying all
details required for the provisioning and wiring. Therefore,
resulting in a deployment model that needs to be parametrized.



Function
Shipping

Data
Scientist

State: Uninstalled

(PredictionService)

State: Uninstalled

(Python2.7)

State: Uninstalled

(Flink1.2.0)

State: Uninstalled

(Ubuntu14.04VM)

IP: getInput()
User: getInput()
PW: getInput()

(OpenStack)

• OpenStack available for
hosting the application

• MySQL 5.7 Database contains dataData Scientist creates 
Configurable Model

2 Administrator sends
required information

1

3

DBName:ProDat142
DBUser: ProDataU
DBPW: 75a2fds
State: Running

(MySQLDB5.7)

IP: 192.168.200.4
State: Running

(MySQLDBMS5.7)

State: Running

(PredictionService)

State: Running

(Python2.7)

State: Running

(Flink1.2.0)

State: Running

(Ubuntu14.04VM)

IP: 192.168.4.3
User: Prod
PW: $2dfs5§$

(OpenStack)

Configurable Deployment
Model as TOSCA CSAR

DBName: getInput()
DBUser: getInput()
DBPW: getInput()
State: Running

(MySQLDB5.7)

IP: getInput()
State: Running

(MySQLDBMS5.7)

Missing properties
are provided
during deployment

4

Fig. 4. Overview of the Configurable Deployment Model approach using TOSCA illustrating the motivation scenario.

1) Declarative Deployment Model: When using a declarative
deployment model, similar to the first approach, (i) the compo-
nents of the application and (ii) the relationships between these
components are specified in the deployment model. However,
in this approach, not all properties are specified in the model.
For example, instead of modelling a MySQL database with all
its properties, such as IP-address, username, and password, only
the components themselves without specifying the concrete
property values are modelled. These properties are filled during
the deployment time of the application either (i) by the person
initiating the deployment or (ii) the runtime environment.
Furthermore, since only the information to connect to the
database are required, it is not necessary to define, for example,
on which version of the Ubuntu operating system the database
is hosted. In Figure Fig. 4 a declarative deployment model of
this approach is depicted, illustrating the motivating scenario.

2) Imperative Deployment Model: If an imperative de-
ployment model is used for this approach, this model, for
example, a workflow, must be parameterized by defining input
parameters. In order to get the missing information, these input
parameters can be filled either (i) by the user initiating the
provisioning or (ii) the runtime by using available instance data.
For example, before starting the provisioning of the application,
the administrator can enter the missing information such as the
IP-address of the locally operated OpenStack or the username
and password for accessing the available MySQL database.

3) Forces: A Configurable Deployment Model does not
require all information of the desired deployment. Instead, it
needs to be designed in a way to be is configurable and reusable.
For example, only the components of the application, such as a
MySQL5.7 database, must be specified in the deployment
model. Additional information, e.g., the IP-address or the

username and password required for accessing the database,
are set during the deployment time. Thus, in this approach
information about the available hosting infrastructure, e.g.,
OpenStack, and already running components, e.g., a MySQL5.7
database need to be exchanged between the third party and
the company as shown in Fig. 4 in order to enable external
developers creating a Configurable Deployment Model. But
in contrast to the first approach, no detailed or credential
information about the target IT environment are required. Thus,
the Configurable Deployment Model approach fits best, when
concrete information about the available target IT infrastructure
can be shared with third parties, but detailed information, e.g.,
IP-addresses, usernames, and passwords should be kept secret.

4) Result: This approach allows the creation of a flexible and
reusable deployment model. Furthermore, for creating the Con-
figurable Deployment Model, no credential information about
the target environment infrastructure, such as IP-addresses or
usernames and passwords are required. For this deployment
model approach, only the available components in the target
environment need to be known. However, for executing the
deployment model, additional information are required.

5) Configurable Deployment Model in TOSCA: TOSCA
supports both, the declarative as well as the imperative
processing of a Configurable Deployment Model. Within the
TOSCA Topology Template, the properties of Node Templates
and Relationship Templates can be left open or marked with
“getInput()” [13] as shown in Fig. 4. Thus, the TOSCA Runtime
Environment operated in the target IT environment understands
that additional information, such as the IP-address of OpenStack
or the username and password of the MySQL database are
required and requests the user to enter them. For example,
in the shown Configurable Deployment Model, for privacy
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Fig. 5. Overview of the Variable Deployment Model approach using TOSCA illustrating the motivation scenario.

reasons, all Properties of the components operated in the target
IT environment, such as the OpenStack or the MySQL database
are marked with “getInput()”. Thus, the third party developer
can create the deployment model, although parameters required
for the provisioning are missing. Furthermore, as shown in
the figure illustrating the motivation scenario, for example, the
information on which operating system the database is hosted is
not required for provisioning the analytics stack and connecting
the Prediction Service to the database. Thus, such information
do not need to be shared between the data-owning company
and the developer of the analytics software. However, since
the Properties are defined within the Node Types, the Node
Types of the components available in the target IT environment,
such as the MySQL 5.7 database or the OpenStack, are
required for modelling the Configurable Deployment Model.
For the imperative variant of the Configurable Deployment
Model, input parameters can be specified for Management
Plans in order to make them parametrizable. Thus, before the
Management Plans are executed in the target environment, the
missing parameters can be entered, e.g., by the administrator.

C. Variable Deployment Model

The idea of this deployment modelling approach is that as
little as possible needs to be modelled in order to get a Variable
Deployment Model. For example, only the function that should
be shipped and its requirements are modelled in this approach.

1) Declarative Deployment Model: In case of a Variable
Deployment Model, only the components that should be
shipped may be specified in the deployment model. Moreover,
in order to be able to provision the shipped components later
on, requirements of this components need to be specified
in the model. For example, if a prediction service needs to

be hosted on Apache Flink, has a dependency to Python,
and requires to be connected to a MySQL database, these
requirements need to be specified in the deployment model. The
specified requirements are used to find components providing
matching capabilities in the target IT environment. In Fig. 5 the
motivating scenario is illustrated as TOSCA-based declarative
deployment model fulfilling the described characteristics.

2) Imperative Deployment Model: If the imperative deploy-
ment model variant is used for the Variable Deployment Model
approach, this model can be shipped as incomplete model.
Before the provisioning, this incomplete deployment model
needs to be completed by the data-owning company itself.
For example, if a workflow is used as deployment model,
abstract activities, for instance “createVM”, “installFlink”, and
“deployApp” can be defined. However, these abstract activities
need to be implemented manually by the data-owning company.

3) Forces: The Variable Deployment Model only contains
the components to be shipped as well as requirements for the
provisioning of them. Thus, no detailed information about the
target infrastructure are required. For example, the developer
of the prediction service only needs the information that
an Apache Flink instance is available, but neither on which
operating system it is hosted nor if it is running on a local
OpenStack or any other hypervisor or cloud provider. Thus,
the Variable Deployment Model approach is suitable if as little
as possible information should be shared with other parties.

4) Result: By using the Variable Deployment Model ap-
proach, the third party developer can create a deployment
model without the requirement of getting all information about
the target IT infrastructure. Therefore, the development of
components as well as the modelling of the deployment model
can be done mostly independently of the target IT environment,



resulting in a highly flexible and reusable deployment model.
Only some basic information need to be shared for this
modelling approach. However, in order that the requirements
and capabilities match, this approach requires that the definition
of requirements and capabilities is done in a consistent manner.

5) Variable Deployment Model in TOSCA: For realizing
the declarative approach, TOSCA allows the definition of
Requirements and Capabilities for Node Types [6], [7]. Again,
Requirement Types and Capability Types can be modelled as
reusable entities. Requirements and Capabilities can be used
to define, for example, that a component requires a feature
that is provided by another component. For example, the
Prediction Service shown in Fig. 5, specify that it requires
a SQL endpoint for accessing the stored data. Furthermore,
it also requires a Python installation and a Flink runtime.
Thus, components fulfilling these defined Requirements by
providing matching Capabilities can be found in the target IT
environment. For example, if the Prediction Service specifies
a “SQLEndpoint”-Requirement, the TOSCA Runtime can find
the MySQL database providing a “SQLEndpoint”-Capability.
Furthermore, for Relationship Types a valid source and a valid
target can be defined. As a valid source, a Requirement Type
can be specified and as a valid target, a Capability Type can be
specified. Thus, a concrete Relationship Type for connecting
the components having Requirements and providing matching
Capabilities can be defined indirectly. For our motivation
scenario, for example, a “SQLConnection” can be indirectly
specified between the Prediction Service and the MySQL
database by defining the “SQLEndpoint”-Requirement as valid
source and the “SQLEndpoint”-Capability as valid target of the
Relationship Type. As shown in Fig. 5, using this approach, only
the function that needs to be shipped has to be modelled in the
Variable Deployment Model. Thus, the Variable Deployment
Model is an incomplete deployment model, that can be
completed by a TOSCA Runtime in the target environment. The
declarative approach can be realized by defining Management
Plans containing abstract activities. However, since there is no
approach for automatically completing an imperative Variable
Deployment Model available yet, these abstract activities need
to be implemented manually by the data-owning company.

V. VALIDATION & PROTOTYPE

In this section, we present our implemented prototype
supporting the different function shipping approaches presented
in the previous section. The prototype validates the practical fea-
sibility of our proposed function shipping modelling concepts.
Furthermore, in this section, we show how our implemented
prototype can execute the deployment models automatically.

The prototype is based on the OpenTOSCA Ecosystem, a
standards-based TOSCA Runtime Environment. OpenTOSCA
consists of three main components: (i) Winery1 [10], a graph-
ical tool for modelling TOSCA models, (ii) OpenTOSCA
container2 [9], the provisioning and management engine for

1https://github.com/OpenTOSCA/winery
2https://github.com/OpenTOSCA/container

TOSCA models, and (iii) the graphical self-service portal
Vinothek3 [11] for starting the provisioning. The source code
of these three components can be obtained from GitHub.

Winery enables the graphical modelling of TOSCA Topol-
ogy Templates of the application that should be deployed.
Furthermore, the topology as well as all required files can be
packaged into a CSAR. Also, the matching of requirements and
capabilities and the resulting auto-completion of the topology
model can be done using Winery. The OpenTOSCA container
is able to process the resulting CSAR, interprets the contained
TOSCA model, deploys required Implementation Artifacts
and Management Plans and finally provisions the modelled
application. Furthermore, the OpenTOSCA container is able to
process declarative as well as imperative deployment models.
For the end user, the self-service portal Vinothek is provided.
Vinothek is a graphical user interface allowing to choose an
available application and start the provisioning of it. If required,
the user initiating the provisioning of an application can insert
missing information required for the provisioning here.

The OpenTOSCA container is implemented using the
programming language Java 1.7. Furthermore, it is based on the
OSGi Framework Equinox4, which is a Java-based runtime for
building modular and dynamic applications. Management Plans
implemented using BPEL are deployed by the OpenTOSCA
container on a local workflow engine namely the WSO2
Business Process Server (BPS)5 to make them executable.
Winery is implemented using the programming language
Java 1.8. Winery is available as Web Application Archive
(WAR) and thus, can be easily deployed on a web container
such as Tomcat. From an architectural perspective, Winery is
split into the graphical front end for modeling the topologies,
called Topology Modeler and Winery Repository, which is
basically the back end of Winery. The graphical web interface
of Winery is implemented using Javascript and Java Server
Pages (JSP). Moreover, the self-service portal Vinothek is also
implemented using Java Server Pages and packaged as WAR.

Since all these components of the OpenTOSCA ecosystem
are available as open-source implementations, with our pro-
totype, we implemented an open-source end-to-end toolchain
for TOSCA-based cloud and IoT applications. The prototype
enables the modelling, provisioning, management, orchestration,
and communication of these applications, as well as the ship-
ping of functions into remote manufacturing IT environments,
by using the proposed function shipping modelling approaches.
Besides the TOSCA Specification [6] and the TOSCA Primer
[7], explaining the concepts of the specification in more
detail, there is also a TOSCA Simple Profile [13] available.
While in the Specification and the Primer XML is used for
rendering TOSCA, in the Simple Profile YAML is used instead.
Also both version provide different concepts. The concept
of Management Plans, for example, is only specified in the
TOSCA Specification. The concept of getting properties by

3https://github.com/OpenTOSCA/vinothek
4http://www.eclipse.org/equinox/
5http://wso2.com/products/business-process-server/



the user at deployment time by using a “getInput” function
originates from the Simple Profile. However, our prototype
fully supports the XML TOSCA Specification as well as a
small selected subset of concepts from the Simple Profile in
YAML. How the different approaches are supported by our
prototypical implementation is explained in the following.

A. Complete Deployment Model

In the Complete Deployment Model all required information
for provisioning the modelled function as well as its required
components are described. Since a plan generator [20] is part of
our prototype, we are able to generate a Management Plan based
on the declarative TOSCA Topology Template. As workflow
language we use the Business Process Execution Language
(BPEL). Furthermore, since our prototype is able to deploy
BPEL workflows and execute them, of course, it is also possible
to create imperative deployment models manually using BPEL,
which contain all required information for the provisioning.

B. Configurable Deployment Model

The Configurable Deployment Model does not contain all
information required for provisioning the modelled function and
its components. For example, the IP-address and the username
and password for the OpenStack running in the target IT
environment may be omitted in the deployment model. In
case of the declarative deployment model, these information
are defined within the properties of Node Templates. The plan
generator is able to detect the missing properties and to generate
a parametrized provisioning plan. Thus, if properties are kept
empty, the prototype requests the user who is initiating the
provisioning to enter missing information. Furthermore, the
prototype is also able to use existing instance data to find
missing information. In case of an imperative deployment
model, a parametrized BPEL workflow can be used. Again,
before executing the workflow, the missing information can be
entered by the user or are determined by the TOSCA Runtime.

C. Variable Deployment Model

The Variable Deployment Model only defines the function
that should be shipped as well as its requirements. In this case
the specified requirements are resolved by the OpenTOSCA
Runtime by finding existing components specifying matching
capabilities, therefore, resulting in a completed TOSCA Topol-
ogy Template. Based on this, the plan generator is used to
generate an executable provisioning plan again. But, since
requirements and capabilities need to be matched in this
approach, our prototype does not support the imperative variant
of this modelling approach yet.

D. Comparison of the 3 Deployment Models and Discussion

In order to discuss the characteristics of the three presented
deployment models, in this section we compare these three
function shipping modelling alternatives and describe their
advantages as well as their impact on the deployment regarding
aspects, such as time, complexity, and the required skill of the
persons responsible for the deployment.

Since in the Variable Deployment Model not the entire
stack but only the function that should be shipped as well
as its requirements need to be modelled, the Variable De-
ployment Model is the fastest modelling variant regarding the
time required for creating the model. In both, the Complete
Deployment Model as well as the Configurable Deployment
Model the entire stack needs to be modelled, thus, there is
no big difference between these two alternatives regarding
the time required for modelling. However, the Complete
Deployment Model contains all required information for the
deployment, thus it can be directly provisioned in the target
environment, whereas in the Configurable Deployment Model
required information, for example IP-addresses, usernames,
or passwords, need to be inserted by the administrator first.
Moreover, in case of the Variable Deployment Model, the
components matching the specified requirements additionally
need to be determined first.

Regarding the complexity of the different presented de-
ployment model alternatives, again, the Variable Deployment
Model only requires the function as well its requirements
to be modelled. However, in order that required components
can be determined during provisioning time, the specified
requirements need to be defined in a way that they can be
matched with capabilities provided by components already
available in the target environment. Thus, in order to use
this function shipping modelling alternative the definition of
requirements and capabilities need to be managed thoroughly.
The declarative variants of the Complete Deployment Model
as well as the Configurable Deployment Model is pretty much
straight-forward since all components as well as their relations
are known. However, if not only software should be provisioned
in the target environment, but also, for example, a device needs
to be physically connected to a machine first, this can only be
modelled using an imperative deployment model. Thus, using
the imperative variants, the complexity of the deployment
models can vary significantly depending on the respective use
case. For example, if data of a machine should be analyzed,
but that machine is missing any possibility for transferring the
data, some more complex tasks are required. One possibility to
handle this problem would be to physically connect a separate
device, such as a Raspberry Pi with the machine and configure
it in a way that it is working as a proxy. Thus, the analytics
algorithm can retrieve the data by requesting the device instead
of the machine itself. Another solution would be to manually
copy the data to a location where the data can be retrieved
from. These both tasks can not be described within a declarative
deployment model, but could be realized by modelling human
tasks within the imperative deployment model.

Although all components required for the Complete De-
ployment Model as well as the Configurable Deployment
Model are known, however, implementing the management
operations of the components requires specific knowledge about
the components contained in the model, for example, how they
can be installed and managed. Furthermore, the composition
of the components itself in order to create, for example, a
functioning analytics stack requires domain-specific knowledge.



VI. RELATED WORK

The principle of function shipping is already applied in
different research fields in various ways. Thus, in this section,
different approaches regarding this principle are presented.

Regarding databases, for example, there is the concept of
stored procedures [21]. These procedures are stored on the
server, thus, they can be executed near to the data. Similar to
our approach, it is also possible to develop a procedure and
send it to another company. However, this approach is limited
to certain databases supporting the stored procedures approach.

There is also a self-extensible database middleware sys-
tem for integrating distributed data sources, called MOCHA
(Middleware Based On a Code SHipping Architecture) [22].
MOCHA enables the automatically shipping of functionality
implemented in Java to the data site where the functionality
should be executed. The goal of MOCHA is to reduce the
amount of data that needs to be moved in order to be processed.
However, MOCHA enables only the shipping of functions
implemented using Java and is limited to those functions
that are stored in the central code repository. In contrast,
our approach is standards-based by using TOSCA, extensible
regarding the implementation of the functions, and supports
various application stacks as well as various data source types.

In the area of cloud computing, there is also the concept
of serverless architectures [23], [24]. The idea behind the
serverless architecture approach is that the developer of
a function does not need to setup the system or runtime
environment the function is executed on. Instead, the cloud
provider is responsible to provide a runtime environment that
ensures all required capabilities for executing the function and
also to manage these resources. This principle is also called
Function as a Service (FaaS) [23]. However, with this concept
the functions can only be shipped to a cloud provider, that is
providing such a serverless architecture. Thus, to ship functions
near to the data, for example, into a manufacturing environment,
a cloud provider independent approach is required.

Regarding distributed data processing, cluster computing
frameworks such as Apache Hadoop [25] or Apache Storm
[26] are making use of the function shipping principle as well.
In Apache Hadoop, for example, the functions implementing
the MapReduce [27] functionality are shipped to other nodes
within the cluster. In Apache Storm, the topology describing
the processing logic is analyzed by the master node, which
distributes the tasks to worker nodes where they are executed.

All these different approaches have in common that only
the function itself can be shipped into the target environment
and not an entire stack consisting of the function as well as
additional required components. Furthermore, these concepts
are dependent on a specific target environment, for example, a
specific database, a middleware, or a cloud provider, where the
function can be shipped in. Thus, using the TOSCA standard
enables a more flexible and generic realization of the function
shipping principle.

In distributed computing, Remote Procedure Calls (RPC)
are used in order to execute a procedure in a different address

space. There are different implementations available such as
Java RMI [28] or CORBA [29]. However, here only the request
to invoke an operation is transfered and not the function itself.

Mobile agents [30] are another related paradigm in the field
of distributed computing. They are enabling the autonomously
migration of software from a node to another node within a
network, thus reducing the network bandwidth consumption.
However, from a data security and privacy point of view,
autonomously moving code is often not possible in production
environments as described by our motivating scenario.

In the area of microarchitecture, function shipping is also
a research field. With near-data processing (NDP) [31], [32],
for example, the data movement between processor chips and
memory is reduced by processing the data as near as possible
to the location of the data. However, this mainly is a hardware-
dependent solution and not a general approach for enabling
function shipping from a software perspective of view.

While function shipping is often used due to data privacy
reasons, there may be other scenarios where the data have
to be shipped to the function that processes the data, called
data shipping. In the manufacturing domain, the data shipping
principle is used, for example, when the IT infrastructure
near the data has not enough computing power for processing
the data. In this case, the data needs to be transferred to a
more powerful execution environment, e.g., in a public cloud.
Thus, the best suitable shipping paradigm is depending on the
concrete scenario. In the area of simulation workflows, data
provided by different data sources is required. SIMPL (SimTech
- Information Management, Processes, and Languages) [33] is
an extensible framework providing a generic abstraction for
data provisioning activities in simulation workflows. Therefore,
they defined extraction, transformation, and load operations
(ETL) to access arbitrary external data in simulation workflows
in a unified way. However, since this is a workflow specific
solution, this is no general approach for realizing data shipping.

In [4] the key challenges for realizing the both paradigms
function and data shipping in manufacturing environments
are stated in the context of the project SePiA.Pro (Service
Platform for intelligently optimizing Applications in Production
and Manufacturing). In this work, we discuss organizational
as well as technical challenges. Furthermore, in [34] we
demonstrate how an analytics stack based on Apache Flink
can be automatically provisioned using OpenTOSCA.

VII. CONCLUSION

In this paper, we presented three different deployment
modelling approaches for function shipping, which enable (i)
the automated deployment and execution of these functions in a
remote infrastructure as well as (ii) the wiring of these functions
with data sources available in the target IT environment. For
each modelling approach, we first described the main idea of
the approach in an abstract manner, regarding the declarative
as well as the imperative variant of this approach. Furthermore,
we presented the forces that have to be tackled when applying
one of these function shipping modelling approaches. In order
to enable the selection of a modelling approach suitable for a



concrete scenario, we also described the benefits and drawbacks
for each of the presented modelling approach. We also showed
how the TOSCA standard can be used for realizing our
concepts. Thus, we provide a conceptual guideline on how
function shipping can be enabled in remote manufacturing
environments. To validate the practicable feasibility of the
presented approaches, we also implemented a prototype, which
is able to process the declarative as well as the imperative
variants of the shown modelling approaches. In future work we
plan to find an approach for completing imperative deployment
models. Since there are scenarios where the data needs to
be shipped to another location, we also plan in future work
to describe modelling concepts for realizing data shipping as
well. In the context of the BMWi-funded project SePiA.Pro,
together with our industrial partners we are going to evaluate
the three presented function shipping modeling concepts in
real world production scenarios. This way, we want to gain
more insights about which use-cases benefit most from which
modeling concept.
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