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Abstract—The fourth industrial revolution is driven by the in-
tegration and analysis of a vast amount of diverse data. Thereby,
data about production steps, overall manufacturing processes,
and also supporting processes is gathered to enable holistic
analysis approaches. These approaches promise to provide new
insights and knowledge by revealing cost saving possibilities and
also automated adjustments of production processes. However,
such scenarios typically require analytics services and data
integration stacks since algorithms have to be developed, executed
and therefore be wired with the data to be processed. This leads
to complex setups of overall analytics environments that have to
be installed, configured and managed according to the needs of
different analysis scenarios and setups. The manual execution of
such installations is time-consuming and error-prone. Therefore,
we demonstrate how the different components of such combined
integration and analytics scenarios can be modelled in order to
be reused in different settings, while enabling the fully automated
provisioning of overall analytics stacks and services.

I. INTRODUCTION

The technological evolutions of cloud computing, the Internet
of Things (IoT) and smart data analytics approaches from
the fields of data mining and artificial intelligence have
pioneered the 4th industrial revolution, which is also known
as Industry 4.0 [1]. Industry 4.0 endeavours concern, among
others, the optimization of production steps, whole production
lines and processes along with proactive optimizations, such as
machinery maintenance, based on the forecasting of failures and
wear and tear. To support these goals, vast amounts of data must
be collected and organized by data processing frameworks. This
data is required to enable the application of machine learning
and analytics algorithms to indicate and leverage opportunities,
e.g., in the aforementioned disciplines and service areas. The
combination of analytics algorithms, the data to be analyzed
and the deployment models of the underlying infrastructures
and components are called smart services [2].

However, since the data to be processed originates from
manufacturing processes and production steps, it is typically
of vital importance for the data creating and owning company.
Furthermore, this data is commonly proprietary and classified,
as it can contain sensitive information on business processes,

customers, or equipment. Thus, access to this data has to be
restricted, which can be achieved by specifying and enforcing
appropriate data policies [3]. Such policies often prohibit that
data is allowed to leave the company, implying that analytics
algorithms have to be provisioned locally to the data. In
addition, for accessing data from different data sources, such
as manufacturing execution systems, production scheduling
systems, or even machinery directly, a data integration mid-
dleware has to be employed. As a result, installation and
configuration of the overall analytics stack is typically complex,
time-consuming, and requires immense expertise, especially if
it is performed manually every time when new analyses have
to be executed [4].

Therefore, in this demonstration, we show how the OASIS
standard Topology and Orchestration Specification for Cloud
Applications (TOSCA) [5], [6] can be used to model ana-
lytics algorithms in association with their hosting execution
environments as smart services. Thereby, we emphasize the
separation of these components into deployment model frag-
ments, which can be reused in arbitrary new configurations for
automatic provisioning of entire analytics stacks. In addition,
we demonstrate how data integration services can be employed
into this deployment automation to enable wiring analytics
services with different types of data sources. Moreover, we
show how the specified deployment model containing these
components can be provisioned fully automatic by means of
OpenTOSCA, a standard-compliant runtime for deploying and
managing TOSCA-based applications. As an exemplary setup
of an analytics environment we use Apache Flink [7] as hosting
environment for analytics services.

The remainder of this work is structured as following: in
Section II we give a more comprehensive motivation for the
automation of analytics deployments in Industry 4.0 endeavours.
To understand the demonstrated modelling and automation
approach we discuss the fundamental concepts of TOSCA
in Section III. Finally, we describe the required setup and the
demonstration itself in Section IV, then we conclude this work
in Section VI by also giving directions for future work.
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Figure 1. Motivating Scenario: Both, analytics stack as well as data integration stack is hosted on a cloud infrastructure and access different data sources with
factory and machine data that are available and stored only in the manufacturing environment.

II. MOTIVATION & BACKGROUND

In the field of Industry 4.0, the analysis of data gathered,
e.g., in manufacturing environments, enables value-adding
opportunities, such as predictive maintenance or optimiza-
tion of production lines. However, the development of such
analysis algorithms requires a lot of expert knowledge in
implementing machine-learning algorithms, both in general and
domain-specific knowledge. Since typically the development
of analytics services is not the core competency of manu-
facturing companies, the task of developing these algorithms
and services is commonly out-sourced to professional data
scientists. However, due to data privacy and security reasons,
the data to be analyzed must not leave the company and thus,
needs to be processed locally. Therefore, the analytics service,
together with the whole analytics stack needs to be rolled
out in the manufacturing environment as close to the data
as possible. Moreover, for accessing different types of data
resources and unifying different types of data formats and
protocols, some kind of data integration middleware is required
additionally. However, the manual installation, configuration
and adaption of the whole analytics stack, as well as the data
integration middleware is commonly complex, time-consuming,
and requires vast know-how. The requirements are especially
high in case of manual cases. In order to resolve this, all
required components of the analytics stack as well as the data
integration stack need to be provisioned automatically in the
manufacturing environment. Furthermore, the wiring with the
data resources containing the data to be analyzed is required
to be performed automatically.

Figure 1 abstractly depicts a motivating scenario, showing the
provisioning of an analytics stack, as well as a data integration
middleware for gathering and processing machine and factory
data. Thus, the presented figure illustrates a typical Industry 4.0
scenario. On the left side, the Analytics Service and its required
analytics stack is depicted. The analytics stack consists of a
Python installation, Apache Flink as well as some additional

Python-based analysis libraries. Furthermore, this stack is
running on an Ubuntu virtual machine, which is hosted on
a cloud infrastructure. The data processing platform Apache
Flink can be operated on a cluster of several compute nodes, or,
like in this scenario, on one virtual machine. It allows batch, as
well as stream processing to analyze, e.g., aggregated machine
data and thus, enables the optimization of production lines
and processes, or predictive maintenance of manufacturing
systems. Moreover, it allows the deployment and execution of
analytics and machine-learning algorithms implemented, for
example in Python, Scala or Java. In this scenario, the Analytics
Service analyzing the data from the Data Integration Service is
implemented using Python. In the middle of the figure, the Data
Integration Service together with its stack is shown. Here, the
stack is based on an Apache Tomcat, also running on an Ubuntu
virtual machine and hosted on the same cloud infrastructure
as the analytics stack. The Data Integration Service enables
the unified access of multiple and diverse data resources. For
example, in the depicted scenario, the integration of a machine
using OPC UA [8], as well as a database using OData [9] is
shown. Therefore, the Data Integration Service is based on
different adapters supporting different types of data formats
and protocols, similar to an abstract application programming
interface (API) [10]. Furthermore, it provides transformation
and conversion capabilities to make the accessed machine
and factory data processable by the Analytics Service. Thus,
it enables the integration of various types of data resources
to enable the processing and analysis of different kinds of
data, such as machine or scheduling data. Both, the depicted
machine as well as the database are operated in a factory of
the manufacturing company. Furthermore, the database storing
metering data of the machines is running on a Windows-based
virtual machine, which is hosted on a legacy infrastructure,
again operated within the manufacturing environment due to
data security reasons.



III. OVERVIEW ON TOSCA
The OASIS standard Topology and Orchestration Specifica-

tion for Cloud Applications (TOSCA) [5], [6], [11] enables
the automatic provisioning and management of cloud and IoT
applications. The specified TOSCA meta-model allows the
definition of the structure of such applications in form of
Topology Templates. A Topology Template is a directed graph,
consisting of typed nodes and edges. The nodes represent
the components of the specified application and are called
Node Templates. The edges represent the relationships between
these Node Templates and are called Relationship Templates.
For example, between two Node Templates, a relationship
“hostedOn” may be defined, specifying that one Node Template
is hosted on the other on. Both, Node Templates as well
as Relationship Templates are typed by Node Types and
Relationship Types respectively. These types are specifying the
semantics of the templates. Node Types as well as Relationship
Types define Properties, enabling the configuration of instances
of these types. Furthermore, Node Types define Management
Operations for managing the instances of these types. For
example, an OpenStack Node Type may define both “startVM”
and “stopVM” operations to start and stop a virtual machine.

Two types of artifacts are define by TOSCA: Implementation
Artifacts (IAs) as well as Deployment Artifacts (DAs). Imple-
mentation Artifacts are used for implementing the Management
Operations provided by Node Types. Deployment Artifacts,
on the other hand, implement the business functionality of
Node Templates. For example, the Deployment Artifact of
the Analytics Service Node Template may be a Python file,
implementing the algorithm of the Analysis Service to be
deployed on Apache Flink. The orchestration of Management
Operations is realized by using Management Plans. These plans
are executable workflow models, specifying which operations
are executed in which order. All TOSCA elements, artifacts
and plans can be bundled in a Cloud Service Archive (CSAR).
A CSAR is a self-contained archive format defined by TOSCA,
which can be executed by standard-compliant runtimes in order
to provision and manage the modelled application.

IV. DEMONSTRATION: SETUP AND DESCRIPTION

The TOSCA Topology Template describing the provisioning
of the analytics stack as well as the data integration middleware
is depicted in Figure 2. In the shown topology, the analytics
stack and the data integration middleware is provisioned
on a virtual machine, running an Ubuntu 14.04, hosted on
OpenStack [12]. Instead of OpenStack, of course, any other
hypervisor or cloud platform can be used by changing the
corresponding Node Template. On the virtual machine, the
data processing platform Apache Flink as well as Python 2.7
should be installed. Python 2.7 is a required dependency of the
Analytics Service modelled in the topology, and thus, needs
to be installed before the Analytics Service can be deployed
on Flink. Besides Flink and Python, Tomcat 8 is required to
be installed on the virtual machine to enable deployment of
the Data Integration Service. The Data Integration Service
is implemented as a Java application and packaged as Web

ID: VM
(Ubuntu14.04VM)

Type: t2.small 
User: ubuntu
[…]

ID: Hypervisor
(OpenStack)

Username: Fg423h 
Password: d3s8h0g
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Port: 8080 
[…]

ID: Analytics Tool
(Flink1.2)

Port: 9091 
[…]

ID: Python
(Python2.7)

[…]

DA: dataService.war

[…]

ID: Data Integration Service
(Java7App)

DA: analyticsService.py

[…]

ID: Analytics Service
(Python2.7App)

= hostedOn

= connectsTo

= dependsOn

Figure 2. TOSCA Topology Template describing the deployment of Analytics
Service as well as the Data Integration Service.

application Archive (WAR), which is why an application server,
such as Tomcat is required.

For creating the virtual machine and installing the compo-
nents on it different Implementation Artifacts are used. For
example, the OpenStack Node Type has an Implementation
Artifact implemented as a WAR, providing Management
Operations, such as “createVM” for creating the virtual
machine. Furthermore, the Ubuntu Node Type provides a
Management Operation for transferring files to the virtual
machine or to execute scripts on the virtual machine by
using a secure shell (SSH) connection. As in our scenario
Flink is installed on a single virtual machine, the installation
type called local setup is used. Therefore, in order to install
Flink on the virtual machine the Flink Node Type provides a
Management Operation “install”, which is implemented using
Ansible [13]. For simplification purposes, also some common
analysis libraries, for instance sklearn [14], are already installed
by the Ansible script, together with Flink. Alternatively, these
required libraries could also be modelled as separate nodes
within the topology.

Required information for executing Management Operations,
like for example the IP-address of the virtual machine or the
SSH credentials required for connecting to the virtual machine
are either specified directly in the topology model by defining
Properties, provided by the user starting the provisioning or
gathered during runtime. In TOSCA, Implementation Artifacts
implementing the Management Operations can be realized
using various technologies. For example, while in our sce-
nario the Implementation Artifact of the Flink Node Type is
implemented using Ansible, in contrast the “install” operation
of Tomcat is implemented using a simple bash script. The
Analytics Service Node Template for analyzing the data has a
Deployment Artifact attached to it, allowing to easily exchange



the implementation of the Analytics Service. Likewise, the Data
Integration Service Node Template has a Deployment Artifact
implementing the data integration capabilities. The Analytics
Service Node Template and the Data Integration Service Node
Template are connected by a relationship “connectsTo”. Thus,
the Analytics Service only needs to communicate with the
Data Integration Service to acquire the data that has to be
analyzed. The communication with different data resources,
such as machines or databases as well as transforming and
converting of the data is done by the Data Integration Service.
Therefore, the Data Integration Service implements different
adapters to support various types of data formats and protocols,
such as OData or OPC UA. Again, the endpoints of these
data resources can be either specified directly in the model or
provided during provisioning.

For deploying the presented topology model, the Open-
TOSCA ecosystem, a standards-based open-source TOSCA
runtime environment is used. It enables the automatically
provisioning and management of TOSCA-based applications.
The ecosystem consists of the three main components: (i)
Winery [15], (ii) OpenTOSCA container [16], and (iii)
Vinothek [17]. Winery is a graphical modelling tool for creating
TOSCA Topology Templates of the applications that should be
deployed using the OpenTOSCA container. The OpenTOSCA
container is the engine processing these Topology Templates
and, thus, enabling the provisioning and managing of the
described applications. The Vinothek is a graphical self-service
portal, enabling the end user to select available applications
and initiate the provisioning of them. The Management Plans
required for the provisioning of the applications can be
generated by the plan generator [18], a component of the
OpenTOSCA container, by analysis of the application topology
model. As workflow language the Business Process Execution
Language (BPEL) [19] is used. The generated Management
Plans are deployed and executed by the OpenTOSCA container
on a locally running workflow engine, here the WSO2 Business
Process Server (BPS). The source code of OpenTOSCA is
publicly available on GitHub1.

V. RELATED WORK

In this section, we present different works that are related
to automated provisioning and integration of components.

Script-centric configuration management technologies, such
as Chef2, Puppet3, or Juju4 enable the wiring and configuration
of components by writing deep technical scripts. However,
manually writing low-level scripts for integrating different
components is not trivial and thus, an error-prone task. Further-
more, these technologies are mainly used to install or configure
components on a target infrastructure, but are not directly able
to integrate proprietary management APIs, for example, to
provision a new virtual machine. In contrast, using TOSCA as
a high-level modeling language enables the modelling of the

1https://github.com/OpenTOSCA
2http://www.chef.io/chef/
3http://puppet.com/
4http://jujucharms.com/

provisioning, configuration, and wiring of virtual machines as
well as software components.

There are also different related works [20]–[22] available,
discussing about using container technologies, for example,
Docker Compose5, Docker Swarm6, and Kubernetes7 for a
fast and automated deployment of applications as well as
orchestrating them. Using such a container technology enables
the creation of images containing whole application stacks as
well as transferring them between different environments. Thus,
also enabling the reusability of the created images. However,
the container-based approaches only consider the orchestration
of containerized components, whereas TOSCA provides a
flexible and generic, infrastructure and container independent
orchestration approach. Especially if multiple heterogeneous
components or physical devices needs to be integrated.

In [23], Breitenbücher et al. discuss problems and challenges
occurring when integrating different components and technolo-
gies. For example, they state that most of the cloud providers’
available APIs and web services are not standardized, thus,
preventing the fully automated provisioning of components
and applications. In their work, they present an approach for
integrating different script- and service-centric provisioning
and configuration technologies. In [24], Eilam et al. discuss
the challenges of deploying and configuring web applications
in the context of data centers. In their work, they state that
the deployment as well as the configuration of applications
are complex and error-prone tasks and thus, model-driven
approaches should be favored over low-level and error-prone
script-based technologies.

Besides TOSCA, there are other alternatives for modelling
cloud applications, such as Blueprints [25], CloudML [26],
and enterprise topology graphs [27]. However, because of
the tooling support available, we decided to use TOSCA as
interoperable modelling language to realize our demonstration.

VI. CONCLUSION

In this paper we showed how analytics algorithms, analytics
stacks and data integration services can be bundled as smart
services by using TOSCA. We showed how the modelling
capabilities of TOSCA can be used to create reusable topology
fragments of the overall service, which can be rearranged and
configured for particular use cases and analysis scenarios at
hand. In future works, we plan to enrich the data integration
service in order to enforce policies attached to data to
assure security and compliance aspects for business critical
manufacturing data.
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