
© ACM 2017
This is the author's version of the work. It is posted here by permission of ACM for

your personal use. Not for redistribution. The definitive version is available at
ACM: http://dx.doi.org/10.1145/3147704.3147721

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

@inproceedings{Reinfurt.2017,
author = {Reinfurt, Lukas and Breitenb{\"u}cher, Uwe and

Falkenthal, Michael and Leymann, Frank and Riegg, Andreas},
title = {Internet of Things Patterns for Device Bootstrapping

and Registration},
booktitle = {Proceedings of the 22nd European Conference on Pattern

Languages of Programs (EuroPLoP)},
year = {2017},
publisher = {ACM},
doi = {10.1145/3147704.3147721}

}

:

Lukas Reinfurt, Uwe Breitenbücher, Michael Falkenthal, Frank Leymann, and

Andreas Riegg. 2017. Internet of Things Patterns for Device Bootstrapping and

Registration. EuroPLoP’17, , Article (), 27 pages.

DOI: 10.1145/3147704.3147721

1Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{firstname.lastname}@iaas.uni-stuttgart.de

2Daimler AG, Stuttgart, Germany

{firstname.lastname}@daimler.com

Internet of Things Patterns for
Device Bootstrapping and Registration

Lukas Reinfurt1,2, Uwe Breitenbücher1, Michael Falkenthal1,
Frank Leymann1, Andreas Riegg2

Institute of Architecture of Application Systems

http://dx.doi.org/10.1145/3147704.3147721
mailto:%7Bfirstname.lastname%7D@iaas.uni-stuttgart.de
mailto:%7Bfirstname.lastname%7D@daimler.com

Internet of Things Patterns for Device Bootstrapping

and Registration

LUKAS REINFURT, Daimler AG

UWE BREITENBÜCHER, University of Stuttgart

MICHAEL FALKENTHAL, University of Stuttgart

FRANK LEYMANN, University of Stuttgart

ANDREAS RIEGG, Daimler AG1

All kinds of large and small organizations are trying to find their place in the Internet of Things (IoT) space and keep expanding

the portfolio of connected devices, platforms, applications, and services. But for these components to be able to communicate with

each other they first have to be made aware of other components, their capabilities, and possible communication paths. Depending

on the number and distribution of the devices this can become a complicated task. Several solutions are available, but the large

number of existing and developing standards and technologies make selecting the right one confusing at times. We collected

proven solution descriptions to reoccurring problems in the form of patterns to help Internet of Things architects and developers

understand, design, and build systems in this space. We present ten new patterns which deal with initializing communication.

Five of these patterns are described in detail in this paper. The patterns FACTORY BOOTSTRAP, MEDIUM-BASED BOOTSTRAP, and

REMOTE BOOTSTRAP are used to bring information for setting up communication onto the device. Devices can be registered using

the AUTOMATIC CLIENT-DRIVEN REGISTRATION, AUTOMATIC SERVER-DRIVEN REGISTRATION, or MANUAL USER-DRIVEN

REGISTRATION patterns. During this process, a SERVER-DRIVEN MODEL, PRE-DEFINED DEVICE-DRIVEN MODEL, or DEVICE-DRIVEN

MODEL is stored in a DEVICE REGISTRY to digitally represent the device.

CCS Concepts: • Computer systems organization → Embedded and cyber-physical systems; • Software and its engineer-

ing → Design Patterns

Additional Key Words and Phrases: Internet of Things, Device, Bootstrapping, Registration

ACM Reference Format:

Lukas Reinfurt, Uwe Breitenbücher, Michael Falkenthal, Frank Leymann, and Andreas Riegg. 2017. Internet of Things Patterns

for Device Bootstrapping and Registration. EuroPLoP’17, , Article (), 27 pages.

DOI: 10.1145/3147704.3147721

1. INTRODUCTION

The Internet of Things (IoT) has been growing in recent years. More and more everyday objects and

previously unconnected devices now talk as “things” to the internet, platforms, services, applications,

and to other devices. These cyber-physical systems are used to make data collected by the devices ac-

cessible for monitoring and analytics and to remotely control these devices and their surroundings [Voas

2016].

The growth of the IoT is not controlled by a central entity, but rather happens organically. Large and

small companies, research organizations, open-source projects, and governments are all trying to find a

footing in this evolving field. Thus, the technologies and standards used vary [Atzori et al. 2010; Gubbi

et al. 2013; Ishaq et al. 2013]. Additionally, solutions are often built with a particular market in mind,

Author’s address: Lukas Reinfurt and Andreas Riegg: Epplestraße 225, 70546 Stuttgart, Germany; email: [firstname].[last-

name]@daimler.com; Uwe Breitenbücher, Michael Falkenthal, and Frank Leymann: Universitätsstraße 38, 70569 Stuttgart, Ger-

many; email: [firstname].[lastname]@iaas.uni-stuttgart.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

EuroPLoP '17, July 12–16, 2017, Irsee, Germany

© 2017 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-4848-5/17/07…$15.00

https://doi.org/10.1145/3147704.3147721

1

1:2 • L. Reinfurt et al.

for example, home automation or smart factories, which has led to solution silos [Singh et al. 2016].

This results in a confusing collection of solutions which all basically do the same: i) send and collect

data from devices, ii) monitor and analyze the devices and their surroundings through this data, and

iii) use the resulting knowledge to remotely control devices and influence the environment.

We have identified and collected patterns in IoT systems with the goal of creating an IoT pattern lan-

guage. These patterns describe abstract solutions to reoccurring problems and, thus, bring some clarity

to the large collection of IoT solutions. The IoT pattern language will link these patterns to provide

guidance for reading and applying IoT patterns. The patterns and the pattern language should help IoT

architects and developers to select, use, and build IoT solutions. They may also give anyone interested

in the IoT an overview of common problems and solutions. In our previous work, we described eight

patterns for communication with and management of IoT devices [Reinfurt et al. 2016, 2017a], and six

patterns for device energy supply and operation modes [Reinfurt et al. 2017b]. An overview of these and

future IoT patterns can also be found online2. Some of these patterns make the assumption that the

device is already connected and able to communicate with a backend server or another device. But at

some point, any device has to undergo an initial setup procedure where these connections are config-

ured. We divide this into two steps (also see Section 3): Bootstrapping, where the information required

for the device to initiate communication is brought onto the device, and registration, where a device is

made known to its communication partners. For this procedure we collected ten new patterns, five of

which we present in detail in this paper.

The remainder of this paper is structured as follows: Section 2 presents related work. Section 3 gives a

general overview of the device bootstrapping and registration process and explains the terminology.

Section 4 shortly summarizes the pattern format we use and how we identified the patterns. Section 5

gives a short overview of all ten patterns, followed by a detailed description of five selected patterns.

Section 6 summarizes and concludes the paper.

2. RELATED WORK

Our patterns are based on the concept first introduced by Alexander et al. for the domain of architecture

[1977]. This pattern concept has since then been applied in other domains, including IT. Examples in-

clude the Messaging Patterns by Hohpe et al. [2004] or the Cloud Computing Patterns by Fehling et al.

[2014]. Others have worked on the pattern writing process [Meszaros and Doble 1996, Harrison 2006b,

2006a; Wellhausen and Fießer 2012; Fehling et al. 2014; Fehling et al. 2015b]. There has also been work

on improving the usability of abstract patterns. For example, linking abstract patterns to technology

specific patterns [Falkenthal et al. 2016] or to solution implementations [Falkenthal et al. 2014a, 2014b]

enables building solution languages [Falkenthal and Leymann 2017].

In our previous work, we introduced IoT Patterns for devices [Reinfurt et al. 2017b] and IoT communi-

cation and management [Reinfurt et al. 2016, 2017a]. The former publication contains patterns for dif-

ferent IoT device energy supply types and operation modes, while the latter are concerned with different

solutions to handle intermittent and constrained communication and remote device management. But

all these patterns assume that the initial configuration of communication channels has already hap-

pened.

Some other patterns for IoT or related topics exist. Eloranta et al. published patterns for constructing

distributed control systems [Eloranta et al. 2014a]. These patterns are mainly concerned with reliability

and fault-tolerance within large machines for foresting, mining, construction, etc., and not with small,

constrained devices common in the IoT. But they describe three patterns for system startup:

2 http://www.internetofthingspatterns.com

 Internet of Things Patterns for Device Bootstrapping and Registration • 1:3

BOOTSTRAPPER, SYSTEM-START-UP, and START-UP NEGOTIATION. The BOOTSTRAPPER pattern is con-

cerned with getting hardware into a defined state after every start-up by initializing memory and other

buses and running tests to identify problems early, often in several stages. SYSTEM-START-UP divides

multiple nodes within a system, which have different start-up times and resource requirements, into

master and slaves to handle these dependencies and ensure a proper start-up process. START-UP

NEGOTIATION, which is presented in more detail in [Eloranta et al. 2014b], describes a mechanism,

where nodes announce their presence and a central negotiator gathers these announcements to get an

overview of the state and available functionality of the overall system. These patterns are somewhat

related to ours and could be combined with them, but are generally concerned with lower levels of boot-

strapping. Qanbari et al. present four patterns in the IoT area for edge application provisioning, deploy-

ment, orchestration, and monitoring [Qanbari et al. 2016]. These patterns describe using existing tech-

nologies like Docker and Git to provision containers or code onto devices. For this to work, a connection

between the device and some backend server has to be configured, which they assume has been done

already. Thus, these patterns can be seen as a next step after bootstrapping and registering the device

with our patterns presented in this paper. Another paper describes a pattern language for IoT applica-

tions, where existing patterns were taken and classified into layers according to the problems they solve.

The resulting clusters or classes of patterns were put into relation to each other to form a pattern lan-

guage which allows navigating between these clusters [Chandra 2016]. Most of the patterns used in

this work are from blogs and do not resemble the patterns we are talking about, neither in form, nor

scope. Besides, the resulting language only allows navigating between the very broad clusters, but not

between the single patterns. Thus, its usability is limited.

3. TERMINOLOGY AND OVERVIEW

As described in more detail in [Reinfurt et al. 2017b], an IoT system is

usually made up of a few different components, as shown in Figure 1.

There are usually several devices, which contain sensors and actuators,

as well as processing, communication, and energy components. These

devices can be anything from environmental sensors to smart fridges,

cars, or manufacturing machines. There is also a backend server, a cen-

tral, powerful component which handles data processing, device man-

agement, and other tasks. There may also be other components which

access devices or device data through the backend server.

A central aspect of IoT devices is that they are connected, in general to

i) a backend server, ii) a DEVICE GATEWAY3, or iii) to other devices. But

such a connection has to be configured at some point in time. The pat-

terns presented in this paper describe various aspects of this configura-

tion process. By applying these patterns, a factory-new device without

any information about its communication partners is turned into a de-

vice which i) knows how and with whom to communicate and ii) that is

known to its communication partners. Figure 2 provides an overview of

this process, which is divided into two parts: Device Bootstrapping and

Device Registration.

3 Some devices do not have the communication technology to connect directly to an existing network, such as the internet. These

devices can be connected through a translating component, called a DEVICE GATEWAY [Reinfurt et al. 2016, 2017a].

Figure 1. IoT Overview {Reinfurt

2017 #1367}.

1:4 • L. Reinfurt et al.

The term bootstrapping is used in various fields, such as finance, statistics, linguistics, computing, etc.,

to describe a process where a simple system activates a more complicated system4. In the area of net-

worked communication and computing, this commonly means the initial distribution of settings and

configuration, such as identification and security information, in order to be able to create trust between

different communication partners and to start communication [Kumar et al. 2009; Heer et al. 2011;

IETF 2012]. Thus, in this paper, Device Bootstrapping refers the process wherein the bootstrap infor-

mation, i.e., information which a device needs to initiate communication with another component, such

as IP addresses and authentication data, is put on the device. As shown in Step 1 in Figure 2, we col-

lected three patterns which describe how and when this information may be placed onto the device:

FACTORY BOOTSTRAP, MEDIUM-BASED BOOTSTRAP, and REMOTE BOOTSTRAP.

Once the device has this bootstrap information, it may initiate communication with other components.

But often, a second step is necessary: Device Registration. By being registered, the device is made known

to its communication partners and is often bound to a specific user or company account, as well as its

virtual representation, the device model. This allows other components to query a server or platform

about the metadata, such as device ID, device type, manufacturer, etc., of all the connected devices,

even if they are currently offline5. This step, for which we collected the three patterns AUTOMATIC

SERVER-DRIVEN REGISTRATION, AUTOMATIC CLIENT-DRIVEN REGISTRATION, and MANUAL USER-DRIVEN

REGISTRATION, is shown in Step 2 in Figure 2.

Figure 2. Overview of the device bootstrapping and registration process and associated patterns we present in this paper.

During this step, a Device Model instance, a virtual representation of the device, is stored in the DEVICE

REGISTRY, as shown in Step 3 in Figure 2. This virtual representation contains static metadata about

the device, such as name, type, id, manufacturer, etc., but may also include a description of operations

that can be invoked on them (for example, operating an actuator, or restarting the device) or information

that can be retrieved from them (for example, the most recent values of a sensor). The DEVICE REGISTRY

allows other components in the system to query it about all registered devices if they need to. We iden-

tified three different types of Device Models, which we describe in the patterns SERVER-DEFINED MODEL,

PRE-DEFINED DEVICE-DRIVEN MODEL, and DEVICE-DRIVEN MODEL. Once the registration process is com-

pleted, the device is now able to communicate and function as intended.

The previous description already shows that the application of these patterns follows a certain logical

order. Figure 3 makes this order explicit. At the start, we decide between the bootstrapping patterns.

As REMOTE BOOTSTRAP requires the address of a bootstrap server it has to be used together with another

4 https://en.wikipedia.org/wiki/Bootstrapping
5 In contrast, a DEVICE SHADOW goes a step further than only offering the static metadata of on- or offline devices. It allows other

components to interact with offline devices as if they were online, by storing a virtual copy of all the latest data they offered and

all commands send to the device but not yet transmitted [Reinfurt et al. 2016, 2017a].

 Internet of Things Patterns for Device Bootstrapping and Registration • 1:5

bootstrap pattern to supply this information. After that, we can choose one of the registrations patterns,

and, during this process, assign one of the model types to the registering device. At the end, this infor-

mation is stored in the DEVICE REGISTRY.

Figure 3. Graph of the pattern application order.

4. PATTERN FORMAT AND IDENTIFICATION PROCESS

The format used for the patterns in this paper is based on other existing pattern formats, as described

in Section 2 and in our previous work [Reinfurt et al. 2016, 2017a], but with some small adjustments:

The Name and the Icon provide a textual and visual way to identify the pattern, whereas other names

under which it may be known are listed under Aliases. A short summary gives an overview of the

pattern. The Context describes the circumstances in which a problem occurs. The Problem section

describes the core of the problem that the pattern addresses. Forces list different aspects which have

to be considered when choosing a solution to the problem. The Solution states the core steps which

solve the problem considering the forces, while the Solution Details section adds more details and lists

benefits and drawbacks. The Variants may contain variations of the pattern that do not warrant a

separate pattern. Related Patterns are also listed to create interconnections between patterns which

are used together or exclude each other. Finally, the Known Uses section (which was called Examples

in our previous work) lists the sources of the pattern.

As described in more detail in our previous work [Reinfurt et al. 2016, 2017a], the patterns were iden-

tified and collected following the process of Fehling et. al [2015a]: We looked at product pages, user

manuals, technical documentations, standards, whitepapers, and research papers of a sample of ran-

domly selected IoT solutions for both businesses and consumers. We collected and categorized reoccur-

ring solutions, which were then grouped by similarity into rough pattern candidates. We followed the

rule of thumb described by Coplien [1996] and collected at least three different examples from different

manufacturers per pattern before we authored the candidates into abstract patterns.

5. INTERNET OF THINGS PATTERNS FOR DEVICE BOOTSTRAPPING AND REGISTRATION

In this section, we present ten IoT Patterns for device bootstrapping and registration. Table 1 gives a

short overview of all of them. The later subsections go into more detail on five of these patterns:

MEDIUM-BASED BOOTSTRAP, REMOTE BOOTSTRAP, AUTOMATIC CLIENT-DRIVEN REGISTRATION, SERVER-

DRIVEN MODEL, and DEVICE-DRIVEN MODEL.

1:6 • L. Reinfurt et al.

Table 1: Overview of the presented patterns

Pattern Icon and Name Short Pattern Description

Device Bootstrapping Patterns

FACTORY BOOTSTRAP

The information a device requires to create the first connection to its

communication partners is placed on the device during manufactur-

ing.

MEDIUM-BASED

BOOTSTRAP

(p.7)

The information a device requires to create the first connection to its

communication partners is placed on the device during deployment.

A storage medium, such as a USB stick, is put into the device. The

device uses the information stored on this medium to create the first

connection.

REMOTE BOOTSTRAP

(p.12)

The information a device requires to create the first connection to its

communication partners is remotely sent to the device by a bootstrap

server.

Device Registration Patterns

AUTOMATIC

CLIENT-DRIVEN

REGISTRATION

(p.15)

To make itself known to its communication partners, a device initiates

a registration process: It calls a registration API on the backend

server and supplies required information about itself. From this in-

formation, a device model instance is created and stored on the

backend server for future reference.

AUTOMATIC

SERVER-DRIVEN

REGISTRATION

The backend server is informed about new devices by an out-of-band

mechanism and initiates a registration procedure: It requests the re-

quired information from the devices. From the responses, it creates

and stores a device model instance for future reference.

MANUAL

USER-DRIVEN

REGISTRATION

A user manually registers new devices using an API or GUI provided

by the backend server. The user has to create a new or select an ex-

isting device model, create an instance of it and fill it with the

metadata of the device. Once completed, the device can now connect

to the backend server.

Device Model Patterns

SERVER-DRIVEN MODEL

(p.19)

Device models, which describe the attributes and functionalities of

particular types of devices, are created and stored on the backend

server. The backend server also assigns instances of these models to

the respective devices.

PRE-DEFINED DEVICE-

DRIVEN MODEL

Device models, which describe the attributes and functionalities of

particular types of devices, are created and stored on the backend

server. The devices themselves choose a model that fits them from the

provided selection and fill an instance of it with their metadata.

DEVICE-DRIVEN MODEL

(p.23)

Device models, which describe the attributes and functionalities of

particular types of devices, are created and stored on the device itself.

The device supplies this model instance to its communication part-

ners.

 Internet of Things Patterns for Device Bootstrapping and Registration • 1:7

Device Registry Pattern

DEVICE REGISTRY

Device model instances of registered devices are permanently stored

for future reference. This allows static device metadata to be retrieved

even if the device is offline, and simplifies the management of regis-

tered devices.

5.1 Device Bootstrapping Patterns

As previously explained in Section 3, it is the aim of Device Bootstrapping, and, thus, also the aim of

the following patterns, to get all information required to start communication onto the device. This

bootstrap information may reach a device in different ways, which will be detailed in the following sec-

tions, which explain the MEDIUM-BASED BOOTSTRAP and the REMOTE BOOTSTRAP patterns in more de-

tail. Figure 4 also puts these two patterns in the context of the other bootstrapping and registration

patterns.

Figure 4. Context of the Bootstrapping patterns explained in Section 5.1.

1:8 • L. Reinfurt et al.

5.1.1 MEDIUM-BASED BOOTSTRAP

Context: You have a new device which has to communicate with other components to fulfill its purpose.

The device is either connected directly to the other components, or it goes through a network and mul-

tiple intermediaries. Either way, the new device has to know how to create these connections.

Forces:

 Independence: The device should not depend on third parties for bootstrapping to avoid ven-

dor lock-in.

 Flexibility: The details needed for first communication may change with time. You possibly

need to adapt the device to these changes.

 Choice: You need a level of choice of how and to whom the device connects but baking this

information into the device during production using FACTORY BOOTSTRAP means personalizing

every device. It binds the device to this choice and makes it uninteresting for parties which have

other needs.

 Cost: There may be solutions which offer more flexibility, but may require additional software

or hardware components which could increase the overall cost of a device.

 Security: Security credentials for authentication, authorization, or encryption may be needed

for communication, but these credentials have to be brought onto the device without an attacker

being able to eavesdrop on them or alter them.

 Scalability: In some situations, large amounts of devices have to be bootstrapped, which can

be a lot of work.

 Physical Access: Some devices may be hard to reach because they are set up in high places or

at remote locations or rough terrain.

 Resilience: Some devices need to be built to withstand harsh conditions, but some components

will decrease their ability to do so, for example, movable parts which break more easily or ex-

ternal ports which could let in water or dust.

Solution: Bootstrap, i.e., configure the device on-site from a replaceable storage medium, for exam-

ple, a USB stick, that contains all necessary bootstrap information. When the device starts, let it

read and use the information placed on this medium to start communication. Have the device copy

its content for later use.

Problem: A new device needs some basic information to be able to create connections and to start

communication. This information may change over time. How do you get this information onto the

device while keeping it as independent as possible?

The information a device requires to create the first connection to its communication

partners is placed on the device during deployment. A storage medium, such as a USB

stick, is put into the device. The device uses the information stored on this medium to

create the first connection.

 Internet of Things Patterns for Device Bootstrapping and Registration • 1:9

Solution Details: Device Bootstrapping is the process wherein the bootstrap information, i.e., infor-

mation which a device needs to initiate communication with another component, is put on the device.

MEDIUM-BASED BOOTSTRAP utilizes a removable storage medium to store bootstrap information, for ex-

ample, in the form of a memory card or USB stick. So during manufacturing, no bootstrap information

is placed on the device. Instead, the bootstrap information is put onto a bootstrap medium in a prepa-

ration step, as seen in Step 1 in Figure 5. This could be done by a communication service provider who

then distributes these media to its customers, or by the device owner as preparation for the deployment.

The medium is used as a transport medium to get the bootstrap information onto the device. An instal-

lation or maintenance worker inserts the storage medium into the device. The device reads the bootstrap

information from the medium and stores it locally for future use (Step 2). The device should be able to

identify, if a storage medium with different bootstrapping information as already saved on the device is

inserted, and use this updated information to overwrite the old one. Afterwards, the worker removes

the medium and may use it to bootstrap other devices. The device then gathers information on how to

create a first connection from the bootstrap information copied from the medium and starts communi-

cation (Step 3).

The bootstrap information on the storage medium has to include an address for the device to contact,

e.g., an IP address. Here, it also makes sense to provide multiple addresses, if possible, in case one of

them is not reachable for some reason. If the communication has to be secure, the bootstrap information

needs to store security credentials, for example, a pre-shared key or a certificate, or enable the device

to get those credentials. Since this information is sensitive, it cannot be accessible to unauthorized par-

ties. The device manufacturer has to take proper measurements to secure the channel between the

device and the storage medium.

Figure 5. Sketch of the MEDIUM-BASED BOOTSTRAP pattern.

Benefits:

 Independence: MEDIUM-BASED BOOTSTRAP allows devices to be independent of any one organ-

ization. This simplifies device production, as one generic device is customizable with different

storage media.

 Flexibility: The bootstrapping details can be updated by reinserting a storage medium. It can

also be used to bootstrap different devices.

 Choice: Bootstrapping the device on-site during deployment allows you to choose how and to

whom to connect the device until the last minute.

 Security: The bootstrap information is not transported over wired or wireless communication

channels, where it could be copied or altered by an attacker.

1:10 • L. Reinfurt et al.

Drawbacks:

 Availability: The device cannot create a connection if the target of the bootstrap information

is temporarily not available. To avoid the device retrying to connect to this one target, provide

a list of fallback targets.

 Scalability: Using a storage medium to bootstrap large numbers of devices does not scale.

REMOTE BOOTSTRAP might be a better alternative in such situations.

 Physical Access: The device has to be physically accessible to be able to use a storage medium

to bootstrap it. When the device’s location is hard to reach, MEDIUM-BASED BOOTSTRAP should

be done before the device is installed in its final location. REMOTE BOOTSTRAP is another alter-

native.

 Inflexibility: Having fixed bootstrap information is not suited for situations which need fre-

quent changes to this information. One solution is to store a pointer to a bootstrap server for

REMOTE BOOTSTRAP instead of the final communication partner. The bootstrap server dynami-

cally manages the bootstrapping of devices, for example, to carry out load balancing.

 Outdated Information: The bootstrap information on the storage medium may become out-

dated with time. Updating the information is cumbersome: First, one has to know the storage

media which contain outdated information. Next, one has to manually retrieve those media,

update the information, and redistribute them to their original locations. One way to avoid this

is by enabling Over-The-Air Updates to the bootstrap information. Outdated information is less

of a problem when using REMOTE BOOTSTRAP.

 Resilience: Movable pieces are prone to fail in harsh conditions which involve vibration, shock,

humidity, or extreme temperatures. This may make devices with a removable storage medium

unusable for such purposes. Using FACTORY BOOTSTRAP or REMOTE BOOTSTRAP may be more

suited in such situations.

 Logistics: You or a third party has to buy the storage media, fill it with the bootstrapping

information, and bring it to the devices. This entails complex logistics and increases costs.

REMOTE BOOTSTRAP simplifies this process.

 Costs: Devices need the appropriate hardware and software components to be able to use a

storage medium for bootstrapping, which increases costs. Additionally, the manual labor re-

quired to get the medium to the device also adds to the costs. Designing the device so that these

components can also be used for other tasks and integrating MEDIUM-BASED BOOTSTRAP into

the deployment process helps to control these costs.

 Security: The storage medium could be stolen or copied. SYMMETRIC ENCRYPTION or

ASYMMETRIC ENCRYPTION could be used so that the information on the device cannot be read by

attackers without the proper key [Fernandez 2013].

 Trust: Any medium could be inserted into the device, but the device has to know if it can trust

the information contained on the medium. Using a DIGITAL SIGNATURE WITH HASHING is one

solution to prove that the content on the medium is genuine and was not tempered with [Fer-

nandez 2013].

Variants:

 IDENTIFICATION-MEDIUM-BASED BOOTSTRAP: This variant is similar to MEDIUM-BASED

BOOTSTRAP in that a storage medium with bootstrapping information is placed inside the device,

as shown in Step 2 in Figure 6. But here the storage medium is used in a more permanent

fashion as an identification medium for the device, similar to SIM cards used for mobile phones.

It gives the device an identity and associated access rights as long as it stays in the device. The

device does not save the bootstrap information (Step 3). It has to be aware if you remove the

storage medium or change the information on it. In this case, the device rereads the information

from the medium every time before it uses it, i.e., before it executes update and registration

operations.

 Internet of Things Patterns for Device Bootstrapping and Registration • 1:11

Figure 6. Sketch of the IDENTIFICATION-MEDIUM-BASED BOOTSTRAP variant.

Related Patterns:

 FACTORY BOOTSTRAP: For situations where you need rugged devices, FACTORY BOOTSTRAP is

more suited.

 REMOTE BOOTSTRAP: Pointing the device to a bootstrap server instead of its final communica-

tion partner increases flexibility and resilience.

 AUTOMATIC DEVICE-DRIVEN REGISTRATION, AUTOMATIC SERVER-DRIVEN REGISTRATION,

and MANUAL USER-DRIVEN REGISTRATION: After an MEDIUM-BASED BOOTSTRAP, the next

step is often registering the device with one of these registration patterns.

Known Uses: Bootstrapping via removable medium is familiar to average consumers in the form of

Subscriber Identification Module (SIM) cards put in mobile phones. But this form of bootstrapping is

not restricted to SIMs and mobile phones. For example, Gemalto offers other types of media, such as

Machine Identification Modules (MIMs), to bootstrap other devices [Gemalto 2016b]. OMA LWM2M

defines a bootstrapping interface which includes bootstrapping from a Smartcard. If necessary, it uses

a secure channel between the device and the smart card to protect the bootstrapping information. If you

insert such a smart card, the client has to use it as a primary bootstrapping source. Before each register

or update operation, the client has to check if you removed the smart card or changed the information

on it. Afterward, the device has to update or delete the information it has stored to stay consistent [Open

Mobile Alliance 2015]. The interface is able to remotely update the bootstrapping information stored on

the smartcard [3GGP 2003]. Many products offer the ability to update the software on the product (and,

thus, the bootstrap information) by exchanging a USB stick or SD-Card. Examples include Intel’s Gal-

ileo board [Intel 2017], the Raspberry Pi [Raspberry Pi Foundation 2017], or Devialet’s Phantom con-

nected speaker [Devialet 2016].

1:12 • L. Reinfurt et al.

5.1.2 REMOTE BOOTSTRAP

Context: You have a new device which has to communicate with other components to fulfill its purpose.

The device is either connected directly to the other components, or it goes through a network and mul-

tiple intermediaries. Either way, the new device has to know how to create these connections. The device

is located in a remote location where it is hard to reach for maintenance.

Forces:

 Security: Security credentials for authentication, authorization, or encryption may be needed

for communication but these credentials have to be brought onto the device and have to be se-

cure themselves.

 Simplicity: The device has to work without any further actions required by its owner. For ex-

ample, the end-user does not have the ability to do any required setup or a company wants to

install a large number of devices.

 Size or Cost Constraints: The device's design, i.e., its form factor and the number of compo-

nents, has to be small and simple because it needs to fit into size or cost limitations. Adding

components just for bootstrapping, such as a memory card slot or USB connector for MEDIUM-

BASED BOOTSTRAP may not make sense.

 Robustness: You intend to use the device in harsh environments and you need it to be durable.

For example, you want to seal it to be water tight, or you want to put into a rugged enclosure

which is intentionally hard to access to prevent any adverse effects from the outside. But this

limits access to the device for legitimate maintenance purposes.

 Flexibility: The details needed for first communication change with time. You need to adapt

the device to these changes.

 Physical Access: You want to place the device in a location that is hard to reach, which makes

it difficult or dangerous to do a MEDIUM-BASED BOOTSTRAP.

 Scalability: You have to set up communication for a large number of devices, which costs time

and resources if done manually.

Solution: Store the bootstrapping information on a bootstrap server. Provide the device with details

on how to get to this server by FACTORY BOOTSTRAP or MEDIUM-BASED BOOTSTRAP or have the server

informed about new devices. Download the bootstrap information from the bootstrap server onto the

device. Use the bootstrap information to start communication.

Problem: A new device needs some basic information to be able to create connections and to start

communication. This information is not the same for all devices and it may change from time to

time. How do you get this information onto the device while retaining flexibility and allowing for a

robust construction, all while the device is hard to reach?

The information a device requires to create the first connection to its communication

partners is remotely sent to the device by a bootstrap server.

 Internet of Things Patterns for Device Bootstrapping and Registration • 1:13

Solution Details: Device Bootstrapping is the process wherein the bootstrap information, i.e., infor-

mation which a device needs to initiate communication with another component, is put on the device.

In the case of a REMOTE BOOTSTRAP, no bootstrap information for its final communication partner is

initially placed on the device. The device has either no bootstrap information or has the contact infor-

mation for a bootstrapping server stored.

In the first case, the bootstrap server has to execute a server-initiated REMOTE BOOTSTRAP. This re-

quires a mechanism which informs the bootstrap server of new devices. This happens through an out-

of-band communication channel and allows the server to directly connect to the devices to bootstrap

them, as shown in Step 2 in Figure 7.

In the second case, the device is able to execute a client-initiated REMOTE BOOTSTRAP. Here, the device

uses the stored information (from a FACTORY BOOTSTRAP or MEDIUM-BASED BOOTSTRAP) to connect to a

bootstrap server and requests a bootstrap (Step 1). In this case, it makes sense to provide the device

with multiple bootstrap servers to select from, in case one of them is not reachable for some reason. In

either case, the bootstrap server now sends bootstrap information to the device, as shown in Step 2 in

Figure 7, which the device uses to start normal communication (Step 3).

The bootstrap information has to include an address for the device to contact, e.g., an IP address. Here,

it also makes sense to provide multiple addresses, if possible, in case one of them is not reachable for

some reason. If the communication has to be secure, the information needs to store security credentials,

for example, a pre-shared key or a certificate, or enable the device to get those credentials. Since this

information is sensitive, it cannot be accessible to unauthorized parties. The person or organization

responsible for the bootstrapping infrastructure has to take proper measurements to secure the com-

munication channel between the device and the server.

The bootstrap server is able to offer extra functionality such as security or load-balancing features. For

example, the bootstrap server may randomly assign new devices to backend servers to spread the load

evenly across them. Alternative assignment methods may be implemented which use the device type or

any other metadata.

Figure 7. Sketch of the REMOTE BOOTSTRAP pattern.

1:14 • L. Reinfurt et al.

Benefits:

 Flexibility: You are able to alter the bootstrap information if required by changing circum-

stances. The information is sent to the device just-in-time when it starts.

 Genericity: The devices stays generic in terms of their communication information until it is

remotely bootstrapped. In cases where the bootstrap server belongs to one organization the de-

vice stays generic in the boundaries of this organization and could be used everywhere inside

this boundary. In cases where a third party provides the bootstrapping server, the devices are

generic even across organizations until remotely bootstrapped.

 Robustness: Movable parts, such as cards and card slots, etc., are prone to failure. When the

bootstrap information is sent remotely after the manufacturing process, there do not have to be

movable parts. Access to the device enclosure is not required. This allows the manufacturer to

seal or ruggedize devices to make them water- or dust-resistant or resilient against vibrations

and shock.

 Simplified Logistics: The bootstrap information does not have to be available during produc-

tion and it is not required to handle physical media. This simplifies logistics.

 Scalability: A large number of devices can be bootstrapped with little effort.

 Physical Access: No physical access is required to the device in order to bootstrap it.

 Size Constraints: The device does not need additional hardware components, so the size can

be kept small.

 Simplicity: Bootstrapping happens automatically without further action required by users.

 Added Functionality: The bootstrap server is able to offer extra functionality, such as security

or load-balancing features, for which normally a separate server would be used. For example,

by first returning the addresses of the most underutilized backend servers to a device, the boot-

strap server acts as a load balancer who ensures that devices are registered evenly across the

backend servers.

Drawbacks:

 Cost/Effort: REMOTE BOOTSTRAP requires an infrastructure with bootstrapping servers to

work. Each device operator providing bootstrapping infrastructure for themselves means added

cost and effort. Using a third party for bootstrapping services allows this third party to pool

resources and work more efficiently.

 Dependence: REMOTE BOOTSTRAP needs infrastructure which is able to send bootstrap infor-

mation to the devices. This infrastructure is either self-hosted or run by a third party. Regard-

less, infrastructure fails and companies go out of business. Being able to use MEDIUM-BASED

BOOTSTRAP as a backup is a solution in such cases.

 Initiation: For client-initiated REMOTE BOOTSTRAP the information required to contact the

bootstrap server has to be brought onto the device. This can be done during manufacturing with

FACTORY BOOTSTRAP or with MEDIUM-BASED BOOTSTRAP, which would place the generic contact

information of the bootstrap server on the device. The bootstrap server would then provide the

specific bootstrapping information to the device.

 Security: The bootstrapping information is send remotely to the device which makes it a po-

tential target for hacking attempts. Use SYMMETRIC ENCRYPTION or ASYMMETRIC ENCRYPTION

to keep the information private and DIGITAL SIGNATURE WITH HASHING to proof it is genuine

and has not been tampered with [Fernandez 2013].

Related Patterns:

 MEDIUM-BASED BOOTSTRAP: Consider MEDIUM-BASED BOOTSTRAP as a backup solution if

REMOTE BOOTSTRAP is not working. It could also be used to get the information required by the

device to contact the bootstrap server.

 FACTORY BOOTSTRAP: To get the initial information required to contact the bootstrap server

from the device, FACTORY BOOTSTRAP is one option.

 Internet of Things Patterns for Device Bootstrapping and Registration • 1:15

 AUTOMATIC DEVICE-DRIVEN REGISTRATION, AUTOMATIC SERVER-DRIVEN REGISTRATION,

and MANUAL USER-DRIVEN REGISTRATION: After a REMOTE BOOTSTRAP, the next step is often

registering the device with one of these registration patterns.

Known Uses: OMA LWM2M defines a bootstrapping interface which offers client- or server-initiated

remote bootstrapping. A pre-provisioned remote bootstrapping server stores the necessary information

and configures clients by calling their write or delete functionality. [Open Mobile Alliance 2015]. The

Kaa IoT platform uses one or multiple bootstrap services. A Software Development Kit (SDK) automat-

ically provisions devices with a list of bootstrap service URIs during development. The device randomly

contacts one of these to get a list of available operations services. The bootstrap service selects and

orders this list by using different load-balancing strategies [CyberVision 2016b]. Gemalto offers an On-

Demand Provisioning Service (OPS) for their UICCs. When a user activates a device for the first time,

it automatically connects to the OPS platform. The OPS downloads a customized provider profile to the

device to finish bootstrapping [Gemalto 2016a].

5.2 Device Registration Patterns

After applying one of the patterns described in the previous section to get the initial information re-

quired for communication onto the devices, they are now ready to communicate. But as described earlier

in Section 3, this may not be the only step required before the devices are ready to work as intended.

Often, the next step is that they register themselves at a backend server, which we called Device Regis-

tration. This step allows them to be linked to user or company accounts and to a virtual representation

of themselves, an instance of a Device Model. The following section describes one of the registration

patterns, AUTOMATIC CLIENT-DRIVEN REGISTRATION, in more detail. Figure 8 puts this patterns into

context compared to the other bootstrapping and registration patterns.

Figure 8. Context of the Bootstrapping patterns explained in Section 5.2.

1:16 • L. Reinfurt et al.

5.2.1 AUTOMATIC CLIENT-DRIVEN REGISTRATION

Aliases: Self-registering Devices

Context: Some devices should be connected to a backend server. Often, the backend server has to allo-

cate resources for each device, for example, communication queues or storage space for stored events.

Forces:

 Scalability: In some cases, a large number of devices might be intended to connect to one

backend server. Allocating the necessary resources and managing the registration by hand

would involve a lot of work.

 Dynamics: Devices might move between locations and backend servers in a very dynamic fash-

ion. Managing these changing associations manually would be a lot of work or even impossible

in highly dynamic scenarios.

 Security: Not every device should be allowed to connect to a specific platform. There have to be

some rules that govern which devices are allowed.

Solution Details: Device Registration is the process of making a device known to its communication

partners, and often binding it to a specific user or company account, as well as its virtual representation,

the device model. AUTOMATIC CLIENT-DRIVEN REGISTRATION allows devices to register themselves with

a backend server that they didn't have any contact before without human intervention. For this to work,

the device has to know the details of how it can contact the backend server and how it can invoke the

registration process. These details have to be given to the device during the bootstrapping process, for

example by doing FACTORY BOOTSTRAP, MEDIUM-BASED BOOTSTRAP, or REMOTE BOOTSTRAP.

To make itself known to its communication partners, a device initiates a registration process:

It calls a registration API on the backend server and supplies required information about itself.

From this information, a device model instance is created and stored on the backend server for

future reference.

Solution: Allow unknown devices to register themselves at the backend server via an API. The

devices should provide at least a minimal set of metadata in the API call for successful registration.

This should include the device id, details on how to communicate with the device, and some kind of

authentication information, such as a token. Check the metadata to prevent illegitimate registration

attempts, for example by comparing metadata against a list of allowed values or by validating the

authentication information. If successful, place this metadata in a DEVICE REGISTRY so that the de-

vice can be identified later on.

Problem: Usually, many devices will be connected to one backend server, but for security or privacy

reasons and to prevent misusage not any device should be able to connect at will. Some information

about the authorized devices has to be known to the backend in order to be able to contact and

manage them. How can this be done if the devices are autonomous and very dynamic?

 Internet of Things Patterns for Device Bootstrapping and Registration • 1:17

Once the device wants to register with a backend server, e.g., when it is started and has no associated

backend or cannot connect to an associated backend because it is not yet registered, as shown in Step 1

in Figure 9, it contacts the backend server and invokes the registration process as specified in the boot-

strapping information (Step 2). This usually involves passing along some arguments in a registration

API call. A minimal set of arguments for successful registration has to be defined so that normal oper-

ation is possible if only these arguments are provided during the registration process. This set usually

includes a device ID, the device communication details, such as the IP address, and some kind of au-

thentication and authorization information. Tokens6 are a common way to provide this information.

The backend server should now check if the provided information satisfies the minimal requirements.

If they do and if the authentication and authorization information are valid, the device metadata is

added to the list of registered devices in the DEVICE REGISTRY (Step 3). Additional checks can be imple-

mented with rules or policies to provide fine-grained control over connecting devices. The backend server

now also can set up and allocate all the resources which it needs to properly integrate the device, such

as communication queues or other storage, etc. Now, the registration process is complete and the device

is able to access the full functionality of the platform (Step 4).

Figure 9. Sketch of the AUTOMATIC CLIENT-DRIVEN REGISTRATION pattern.

Benefits:

 Scalability: The registration process is automated and does not require human intervention.

This allows a large number of devices to be registered very fast.

 Security: Checking the provided registration data allows the backend server to filter out un-

wanted requests and prevents unnecessary resource allocation.

 Dynamics: Devices can be dynamic and move between different locations and backend servers

on their own without the need for manual work.

Drawbacks:

 Reachability: The registration service might not be reachable due to some unforeseen event,

in which case the registration attempts will fail. To prevent such cases, a list of multiple regis-

tration servers could be given to the device so that it can try to find a working one. Another

option is to provide a highly available registration service with automatic failover.

 Out-of-Date: The connection information for registration stored on the device might be out of

date once the device tries to register. For example, the information was put on the device during

manufacturing with FACTORY BOOTSTRAP, but the device is first started a few months later when

the information is already outdated. In such cases, it should be possible to manually register

the device so that it can connect to the backend, for example by using a MANUAL USER-DRIVEN

6 Tokens are used to store and pass along information about an entity in a tamper-proof way. The information usually includes

an ID and some claims about the entity but may also include additional information. A signature of this information is also part

of the token. By applying a cryptographic algorithm to the information and comparing the result to the signature, the recipient

of the token is able to validate the claims.

1:18 • L. Reinfurt et al.

REGISTRATION process. Once connected, the outdated information should be detected and up-

dated automatically by the backend.

 Dynamics: In highly dynamic environments, devices may only register for a short time of ac-

tivity, then go offline and seldom or never reconnect. Storing all these obsolete registrations

may become a problem over time. Thus, registrations should be removed after a certain amount

of time without any activity has passed.

Related Patterns:

 FACTORY BOOTSTRAP, MEDIUM-BASED BOOTSTRAP, and REMOTE BOOTSTRAP: The device

needs some initial information to be able to communicate and register with a backend server.

This information may be provided with FACTORY BOOTSTRAP, MEDIUM-BASED BOOTSTRAP, or

REMOTE BOOTSTRAP.

 SERVER-DRIVEN MODEL, PRE-DEFINE DEVICE-DRIVEN MODEL, and DEVICE-DRIVEN

MODEL: An instance of one of these device model types is created and filled with metadata

during the AUTOMATIC CLIENT-DRIVEN REGISTRATION process.

 DEVICE REGISTRY: The device model instance created during the AUTOMATIC CLIENT-DRIVEN

REGISTRATION process is stored in a DEVICE REGISTRY. Other components can query this registry

to get an overview of or static metadata about registered devices.

 DEVICE WAKEUP TRIGGER: A device has to be registered so that its metadata is available when

it is offline and can be used for a DEVICE WAKEUP TRIGGER7 [REINFURT ET AL. 2016].

Known Uses: OMA LWM2M allows clients to register with one or more servers through the client

registration interface. The client has to provide the server with information that allows it to contact the

client and maintain the registration. The client also has to periodically execute an update operation, or

otherwise, the server will remove the registration [Open Mobile Alliance 2015]. SiteWhere allows de-

vices to self-register by sending a unique hardware id and a specification token. If the device registers

for the first time, a new device record will be created, otherwise, an existing record will be selected by

SiteWhere [SiteWhere 2015]. With the Kaa IoT middleware, devices use the endpoint registration pro-

cess to send their DEVICE-DRIVEN MODEL along with security credentials to the Kaa cluster for initial

registration. The device itself does not know the address of the servers where it will be registered.

Instead, it has been given a list of bootstrapping servers during development, which will then use load-

balancing strategies to handle the registration of the device to a specific server [CyberVision 2016b].

Autodesk SeeControl also has an auto-provisioning mechanism where devices can register themselves

by sending messages to the platform and passing rules and policy checks [Autodesk 2016].

7 A DEVICE WAKEUP TRIGGER uses a secondary low-power communication channel to tell a currently offline device to enable its

main communication channel and reconnect to the backend server [Reinfurt et al. 2016, 2017a].

 Internet of Things Patterns for Device Bootstrapping and Registration • 1:19

5.3 Device Model Patterns

In Section 5.1 we have seen, how different Device Bootstrapping patterns may be used to bring the

information required to start communication onto devices. In Section 5.2 we then argued, that this may

not be sufficient to allow a new device to fully function as intended, and that devices may have to reg-

ister with a backend server beforehand by taking part in a Device Registration procedure. During this

procedure, an instance of a Device Model, a virtual representation of the device, is stored in a Device

Registry. Such a model instance contains various metadata about a registered device, which allows other

components to search a backend server for and interact with registered devices based on this data. The

following patterns describe two different kinds of Device Models which may be used in more detail,

namely the SERVER-DRIVEN MODEL and the DEVICE-DRIVEN MODEL. Figure 10 puts these pattern into

the context of the other bootstrapping and registration patterns.

Figure 10. Context of the Bootstrapping patterns explained in Section 5.3.

5.3.1 SERVER-DRIVEN MODEL

Aliases: Service-Driven Model

Context: You have devices that each offer a specific set of functionality to other components, such as

operations that can be invoked on them (for example, operating an actuator, or restarting the device) or

information that can be retrieved from them (for example, the most recent values of a sensor). Each

device is also described by a set of metadata, which could include its name, type, id, manufacturer, etc.

You have other components, like other devices, a backend server, an application, etc., that need to in-

teract with these devices.

Device models, which describe the attributes and functionalities of particular

types of devices, are created and stored on the backend server. The backend

server also assigns instances of these models to the respective devices.

1:20 • L. Reinfurt et al.

Forces:

 Compatibility: For other components to be able to interact with a device they have to somehow

have a common understanding of the available functionality.

 Unmodeled Devices: Not all devices will come with a DEVICE-DRIVEN MODEL or have the abil-

ity to store such a model, or a pointer to a PRE-DEFINED DEVICE-DRIVEN MODEL. Especially

legacy devices or very constrained devices might not be able to store and provide such infor-

mation themselves. It should be possible to also integrate these devices.

 Flexibility: The abilities of a device might change through firmware updates. Other compo-

nents have to be made aware of and adapt to these changes. This will be hard if changes have

to be made on all other components, especially if changes have to be made by hand.

 Diversity: Many different kinds of devices with different functionality exist. Storing and man-

aging descriptions of all of these devices centrally might be very hard.

Solution Details: A Device Model is a virtual representation of the device, which contains various

metadata about a registered device that allows other components to search a backend server for and

interact with registered devices based on this data. SERVER-DRIVEN MODELS are device models that are

stored and assigned to a device on the server side. They are usually created before or during the

AUTOMATIC SERVER-DRIVEN REGISTRATION or MANUAL USER-DRIVEN REGISTRATION process by an ad-

ministrator using a graphical user interface or an API, as shown in Step 1 in Figure 11. They can be an

alteration or combination of other already existing models, which allows for some reusability and higher

efficiency.

They must at least contain some kind of identifier of the device so that they can be linked to the device.

They usually also contain additional static metadata, such as manufacturer, owner, version numbers,

creation date, etc., which allow the models, and therefore the connected devices, to be filtered by various

criteria. More complex models might describe attributes of the device that can be read or written by

other components. For example, the location attribute of the device might be updated by the device itself

using GPS and could be only readable for other components. For a device that does not have GPS, the

location attribute could be set to writable for other components so that the location can be updated

manually. The model could also describe the operations that other components might execute on the

device, how they can be executed, i.e., necessary parameters, and what can be expected as a result, i.e.,

possible return values.

Once a registration process is started, which could either be AUTOMATIC CLIENT-DRIVEN REGISTRATION,

AUTOMATIC SERVER-DRIVEN REGISTRATION, or MANUAL USER-DRIVEN REGISTRATION, the backend

server fetches a matching device model from the device model database, as shown in Step 2 in Figure

11, and assigns it to the device (Step 3). This could either be done based on an assignment made by an

administrator or based on some rules previously defined, which associate some metadata available

about the device with a specific device model. The concrete device model instance assigned to the device

is usually stored in a DEVICE REGISTRY on the backend server, as shown in Step 4. Other components

can query the DEVICE REGISTRY to get an overview of all registered devices or retrieve the metadata of

Solution: Create a device model that describes the device and its functionality. Store it in a model

database on the backend server. Assign a model instance to the device on the backend server during

registration. Store the device’s model instance in a DEVICE REGISTRY.

Problem: Other components need to know the data and functionality which a specific device pro-

vides so that they can interact with it. But not all devices come with the ability to provide or store

this information.

 Internet of Things Patterns for Device Bootstrapping and Registration • 1:21

specific devices they are interested in (Step 5). The devices themselves have no knowledge of the models

at all. As a result, a SERVER-DRIVEN MODEL is the only instance of the device metadata and its single

source of truth. In this case, all components that want to access this data have to go through the DEVICE

REGISTRY.

Figure 11. Sketch of the SERVER-DRIVEN MODEL pattern.

Benefits:

 Compatibility: A Server-Driven Model provides information about what data and functionality

a device provides, so that other components can properly interact with the device.

 Unmodeled Devices: SERVER-DRIVEN MODELS are able to provide device models for devices

which are otherwise not able to provide or store their own device model.

 Flexibility: When a device and therefor its device model changes these changes can be distrib-

uted centrally from the backend server.

 Efficiency: Because SERVER-DRIVEN MODELS are stored at one central place it is usually easy

to make their creation and usage more efficient, for example by providing templates, reusing

existing models, or allowing composition of multiple models.

 Management: Being stored in one central place can make the management of SERVER-DRIVEN

MODELS easier than that of DEVICE-DRIVEN MODELS. The latter ones would have to be changed

on the devices where they originated, while the former ones can all be managed in one place.

This also allows manufacturers to easily provide new device models.

Drawbacks:

 Choice: Device users or developers do not have a choice about which model the server assigns

to the device. The server may assign a wrong model, which may alter or impede functionality.

If more choice is required, PRE-DEFINED DEVICE-DRIVEN MODELS or DEVICE-DRIVEN MODELS

have to be used.

 Diversity: Providing SERVER-DRIVEN MODELS for all kinds of different devices is a lot of work

and may be unrealistic. In situations where the number of device types is small and does not

change often, this may not be a problem. If a lot of devices are involved and the situation changes

frequently, DEVICE-DRIVEN MODELS may be a better choice. They can also be combined with

SERVER-DRIVEN MODELS so that the SERVER-DRIVEN MODELS act as backup for devices without

a DEVICE-DRIVEN MODEL.

 Static Information: A SERVER-DRIVEN MODEL offers only static metadata about the device it

describes. If other components have to interact with offline devices based on dynamic infor-

mation, a DEVICE SHADOW has to be used [Reinfurt et al. 2016].

1:22 • L. Reinfurt et al.

Related Patterns:

 AUTOMATIC DEVICE-DRIVEN REGISTRATION, AUTOMATIC SERVER-DRIVEN REGISTRATION,

and MANUAL USER-DRIVEN REGISTRATION: SERVER-DRIVEN MODELS can be assigned to de-

vices during all of these registration options.

 PRE-DEFINED DEVICE-DRIVEN MODEL: PRE-DEFINED DEVICE-DRIVEN MODELS are similar to

SERVER-DRIVEN MODELS in that they are defined and stored on the backend server. But unlike

SERVER-DRIVEN MODELS, PRE-DEFINED DEVICE-DRIVEN MODELS are selected by the device, or

respectively, its developer. This is useful for situations where device developers or users do not

have access to the backend server.

 DEVICE-DRIVEN MODEL: SERVER-DRIVEN MODELS may be used as a backup for situations

where devices do not or are not able to provide a DEVICE-DRIVEN MODEL.

 DEVICE REGISTRY: The actual instances of SERVER-DRIVEN MODELS created during the regis-

tration process are stored in a DEVICE REGISTRY. If other components want to retrieve the static

metadata of a particular device or get an overview of registered devices, they can query the

DEVICE REGISTRY.

 DEVICE SHADOW: A DEVICE SHADOW5 offers other components access to the last known state of

offline devices and allows them to send commands to these devices. The state and commands

will be synced once the offline device reconnects [Reinfurt et al. 2016]. Thus, it can offer more

dynamic information than device models stored in a DEVICE REGISTRY.

Known Uses: IBM's Internet of Things Foundation service stores device models, which describe

metadata and management characteristics of devices, in a device database. This database is the master

source of device information. Device type templates are used to pre-define attributes that can then be

overridden by device-specific attributes later on [IBM 2015b]. These device models and types can be

created using a web dashboard or a REST API [IBM 2015a]. Bosch's IoT Suite has an M2M component

that uses information models to describe devices. Models can be reused for devices of the same type and

can also be combined to describe complex systems [Bosch Software Innovations 2015]. SiteWhere allows

administrators to manage device specification models on the backend using the admin UI or a REST

interface. These specifications contain a list of commands that can be invoked by SiteWhere on the

devices [SiteWhere 2015]. The Ayla IoT Cloud stores virtual device definitions in the cloud [Ayla Net-

works 2015].

 Internet of Things Patterns for Device Bootstrapping and Registration • 1:23

5.3.2 DEVICE-DRIVEN MODEL

Aliases: Client-side Endpoint Profile

Context: You have devices that each offers a specific set of information and operations to other compo-

nents. You have other components, like other devices, a backend server, an application, etc., that need

to interact with these devices. To be able to interact they need to know what functionality each device

offers.

Forces:

 Compatibility: For other components to be able to interact with a device they have to somehow

have a common understanding of the available functionality.

 Flexibility: The abilities of a device might change through firmware updates. Other compo-

nents have to be made aware of and adapt to these changes. This will be hard if changes have

to be made on all other components, especially if changes have to be made by hand.

 Diversity: Many different kinds of device with different functionality exist. Storing and man-

aging descriptions of all of these devices centrally might be very hard.

 Decentralization: Devices may want to communicate in a decentralized fashion, without any

central component involved. Thus, using SERVER-DRIVEN MODELS or PRE-DEFINED DEVICE-

DRIVEN MODELS would not be possible.

Solution Details: A Device Model is a virtual representation of the device, which contains various

metadata about a registered device that allows other components to search for and interact with regis-

tered devices based on this data. A DEVICE-DRIVEN MODEL is usually defined by the developer of the

device as part of the device creation process and stored on the device, as shown in Step 1 in Figure 12.

During this process, the developer adds metadata to the device model that describes the device and its

capabilities. This metadata might include general metadata, like the device name, manufacturer, ver-

Device models, which describe the attributes and functionalities of particular

types of devices, are created and stored on the device itself. The device supplies

this model instance to its communication partners.

Solution: Let the developers of a device themselves define a model of the device. The model contains

the device properties that can be read or written and the device commands that can be executed.

Store the model on the device and make it available to other components that want to interact with

the device.

Problem: Other components need to know the data and functionality which a specific device pro-

vides so that they can interact with it. But some use cases have a high diversity of devices and may

work in a decentralized fashion.

1:24 • L. Reinfurt et al.

sion numbers, manufacturing date, etc. It also includes a description of the properties that other com-

ponents can access on the device. These properties might be readable or writable. Additionally, opera-

tions that can be executed by other components on the device are also described.

The model then has to be shared with other components that want to interact with the device. This

could be done during the initial registration process, which could either be AUTOMATIC CLIENT-DRIVEN

REGISTRATION, AUTOMATIC SERVER-DRIVEN REGISTRATION, or MANUAL USER-DRIVEN REGISTRATION

(Step 2a). DEVICE-DRIVEN MODELS may also be communicated directly to other device or components if

no central backend server is involved in the system (Step 2b). To be able to understand the format of

the model, both the device and the other components have to use a common model format. This format

could be agreed on beforehand. To allow for more flexibility, the device could offer its model in various

different formats, and components could be able to interpret various different formats. A format nego-

tiation mechanism could then be used to agree on a mutually supported model format. In some cases, it

might be necessary to use an additional model translator to reach a common format. During the regis-

tration process with a central backend server, the model is usually stored in a DEVICE REGISTRY (Step

3), from where it may then be accessed by other components.

Figure 12. Sketch of the DEVICE-DRIVEN MODEL pattern.

Benefits:

 Compatibility: A DEVICE-DRIVEN MODEL provides information about what data and function-

ality a device provides, so that other components can properly interact with the device.

 Flexibility: The device developer has great flexibility in designing the device.

 Diversity: Each device can have its own specific model and does not have to be constricted to

some more generic model that might not fully describe the device.

 Decentralization: No central component has to be involved, as all devices provide their own

device model to other components.

Drawbacks:

 Complexity: A large number of devices, each with their own model, might make implementa-

tion very complex. A selection of PRE-DEFINED DEVICE-DRIVEN MODELS could be offered for com-

mon devices. If none of these fit a particular device, a DEVICE-DRIVEN MODEL could still be used.

 Manageability: The device model is stored on the device. The device has to be accessed each

time a change to the model is made. REMOTE DEVICE MANAGEMENT could be used to make this

process easier [Reinfurt et al. 2017a].

 Availability: Not all devices may be able to offer a DEVICE-DRIVEN MODEL. PRE-DEFINED

DEVICE-DRIVEN MODELS or SERVER-DRIVEN MODELS may be used as backup solutions for these

devices.

 Internet of Things Patterns for Device Bootstrapping and Registration • 1:25

 Static Information: A DEVICE-DRIVEN MODEL offers only static metadata about the device it

describes. If other components have to interact with offline devices based on dynamic infor-

mation, a DEVICE SHADOW has to be used [Reinfurt et al. 2016].

 Unmodeled Devices: There may be some device which are not able to provide or store a

DEVICE-DRIVEN MODEL, for example, because of very limited storage space. PRE-DEFINED

DEVICE-DRIVEN MODELS or SERVER-DRIVEN MODELS have to be used for these devices.

Related Patterns:

 AUTOMATIC DEVICE-DRIVEN REGISTRATION, AUTOMATIC SERVER-DRIVEN REGISTRATION,

and MANUAL USER-DRIVEN REGISTRATION: DEVICE-DRIVEN MODELS can be used in all of these

registration options.

 PRE-DEFINED DEVICE-DRIVEN MODEL: DEVICE-DRIVEN MODELS could be combined with PRE-

DEFINED DEVICE-DRIVEN MODELS to offer developers a basic selection of pre-defined models. If

one of those models already fits the device, a developer could just use the pre-defined model

instead of defining another one. If no pre-defined model satisfies the developer's requirements

he could still define his own model.

 SERVER-DRIVEN MODEL: DEVICE-DRIVEN MODELS could be combined with SERVER-DRIVEN

MODELS for cases where a device does not provide its own model. The service could assign a pre-

defined model to that device.

 DEVICE REGISTRY: The actual instances of DEVICE-DRIVEN MODELS created during the regis-

tration process are stored in a DEVICE REGISTRY. If other components want to retrieve the static

metadata of a particular device or get an overview of registered devices, they can query the

DEVICE REGISTRY.

 DEVICE SHADOW: A DEVICE SHADOW5 offers other components access to the last known state of

offline devices and allows them to send commands to these devices. The state and commands

will be synced once the offline device reconnects [Reinfurt et al. 2016]. Thus, it can offer more

dynamic information than device models stored in a DEVICE REGISTRY.

 REMOTE DEVICE MANAGEMENT: Device models may change from time to time. REMOTE DEVICE

MANAGEMENT can be used to apply these changes remotely to the device [Reinfurt et al. 2017a].

Known Uses: To integrate a device into the Kii IoT Platform, developers have to define a schema which

describes the commands, i.e., actions and action results, and states, i.e. the attributes that define the

device. This schema is not managed by the platform, but registered at the platform and used by other

devices or mobile applications to identify actions they can execute [Kii 2015]. The Kaa IoT middleware

uses client-side endpoint profiles that are created during development to describe device characteristics.

These profiles are unidirectionally synchronized with the Kaa cluster. Updated profiles are detected on

the client by comparing hashes and send to the server if necessary [CyberVision 2016a]. Devices regis-

tering at the Oracle IoT Cloud can declare new models during activation. Before being used, these draft

models have to be activated, which will also update them on the device that has declared them [Oracle

2016].

6. SUMMARY AND OUTLOOK

The IoT is growing from a vision to reality and with it, the number of technologies and standards used

and created, as well as the solutions build with them, grow more and more confusing. To bring some

order into this field and to provide IoT architects and developers some guidance, we started collecting

IoT Patterns. In our previous work, we presented patterns for IoT devices [Reinfurt et al. 2017b] and

IoT device communication and management [Reinfurt et al. 2016, 2017a]. In this paper, we added ten

new patterns handling device bootstrapping and registration, of which five where described in detail.

FACTORY BOOTSTRAP describes how initial communication can be set up during device production, while

1:26 • L. Reinfurt et al.

MEDIUM-BASED BOOTSTRAP and REMOTE BOOTSTRAP handle this issue later, either manually in the

field, or remotely. Next follows the device registration process, where devices are made known to their

communication partners. This process may be triggered by the device itself using AUTOMATIC CLIENT-

DRIVEN REGISTRATION, by another component via AUTOMATIC SERVER-DRIVEN REGISTRATION, or manu-

ally via MANUAL USER-DRIVEN REGISTRATION. During this process, a model of the device is created and

stored in a DEVICE REGISTRY. This model may be defined by the device itself as a DEVICE-DRIVEN MODEL,

or it is defined by the server and selected by the device (PRE-DEFINED DEVICE-DRIVEN MODEL) or assign

to the device by the server (SERVER-DEFINED MODEL).

We have already collected more of these patterns and plan to combine them into a pattern language for

IoT systems, which would further elaborate on the interconnections and relationships between these

patterns.

ACKNOWLEDGEMENTS

We would like to thank our shepherd, Uwe van Heesch, for the discussions and comments that helped

to improve this paper. This work was partially funded by the BMWi projects SePiA.Pro (01MD16013F)

and SmartOrchestra (01MD16001F).

REFERENCES

3GGP. 2003. Over-The-Air (OTA) technology. (2003). Retrieved June 20, 2016 from

ftp://www.3gpp.org/tsg_sa/WG3_Security/TSGS3_30_Povoa/Docs/PDF/S3-030534.pdf.

Alexander, C., Ishikawa, S., and Silverstein, M. 1977. A Pattern Language: Towns, Buildings, Construction. Oxford University

Press, New York.

Atzori, L., Iera, A., and Morabito, G. 2010. The internet of things: A survey. Computer networks 54, 15, 2787–2805.

Autodesk. 2016. DEVICES - Autodesk SeeControl. (2016). Retrieved May 2, 2016 from http://www.seecontrol.com/devices/.

Ayla Networks. 2015. Key Capabilities. (2015). Retrieved December 9, 2015 from https://www.aylanetworks.com/platform/key-

capabilities.

Bosch Software Innovations. 2015. The Bosch IoT Suite. Technology for a Connected World. (2015). Retrieved December 3, 2015

from https://www.bosch-si.com/media/en/bosch_software_innovations/documents/brochure/products_2/bosch_iot_suite/bro-

chure.pdf.

Chandra, G.S. 2016. Pattern language for IoT applications. (2016).

Coplien, J.O. 1996. Software Patterns. SIGS management briefings. SIGS, New York, NY.

CyberVision. 2016a. Endpoint profiling - Kaa - Kaa documentation. (2016). Retrieved April 7, 2016 from http://docs.kaapro-

ject.org/display/KAA/Endpoint+profiling.

CyberVision. 2016b. Endpoint registration - Kaa - Kaa documentation. (2016). Retrieved April 7, 2016 from http://docs.kaapro-

ject.org/display/KAA/Endpoint+registration.

Devialet. 2016. How to upgrade the internal firmware of your Devialet. (2016). Retrieved January 16, 2017 from https://help.de-

vialet.com/hc/en-us/articles/203402221-How-to-upgrade-the-internal-firmware-of-your-Devialet.

Eloranta, V.-P., Koskinen, J., Leppänen, M., and Reijonen, V. 2014a. Designing distributed control systems. A pattern language

approach. Wiley series in software design patterns. Wiley, Hoboken, NJ.

Eloranta, V.-P., Koskinen, J., Leppänen, M., and Reijonen, V. 2014b. Patterns for the Companion Website. (2014). Retrieved

August 15, 2016 from http://media.wiley.com/product_ancillary/55/11186941/DOWNLOAD/website_patterns.pdf.

Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., and Leymann, F. 2014a. Efficient Pattern Application: Validating

the Concept of Solution Implementations in Different Domains. International Journal on Advances in Software 7, 3&4, 710–

726.

Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., and Leymann, F. 2014b. From Pattern Languages to Solution Imple-

mentations. In Proceedings of the Sixth International Conferences on Pervasive Patterns and Applications (PATTERNS

2014). IARIA, Wilmington, DE, 12–21.

Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., Leymann, F., Hadjakos, A., Hentschel, F., and Schulze, H. 2016. Lev-

eraging Pattern Application via Pattern Refinement. In Proceedings of the International Conference on Pursuit of Pattern

Languages for Societal Change (PURPLSOC).

Falkenthal, M., and Leymann, F. 2017. Easing Pattern Application by Means of Solution Languages. In Proceedings of the

Ninth International Conferences on Pervasive Patterns and Applications (PATTERNS) 2017. Xpert Publishing Services, 58–

64.

Fehling, C., Barzen, J., Breitenbücher, U., and Leymann, F. 2015a. A Process for Pattern Identification, Authoring, and Appli-

cation. In Proceedings of the 19th European Conference on Pattern Languages of Programs (EuroPLoP). ACM, New York, NY.

DOI:http://dx.doi.org/10.1145/2721956.2721976.

 Internet of Things Patterns for Device Bootstrapping and Registration • 1:27

Fehling, C., Barzen, J., Falkenthal, M., and Leymann, F. 2015b. PatternPedia - Collaborative Pattern Identification and Au-

thoring. In PURPLSOC (In Pursuit of Pattern Languages for Societal Change): The Workshop 2014. epubli GmbH, Berlin,

252–284.

Fehling, C., Leymann, F., Retter, R., Schupeck, W., and Arbitter, P. 2014. Cloud Computing Patterns. Fundamentals to Design,

Build, and Manage Cloud Applications. Springer, Wien.

Fernandez, E.B. 2013. Security Patterns in Practice. Designing Secure Architectures Using Software Patterns. Wiley.

Gemalto. 2016a. LinqUs On-Demand Provisioning Service. (2016).

Gemalto. 2016b. On-Demand Provisioning Service. (2016).

Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M. 2013. Internet of Things (IoT). A vision, architectural elements, and

future directions. Future Generation Computer Systems 29, 7, 1645–1660. DOI:http://dx.doi.org/10.1016/j.future.2013.01.010.

Harrison, N.B. 2006a. Advanced Pattern Writing. Patterns for Experienced Pattern Authors. In Pattern languages of program

design 5. Addison-Wesley, Upper Saddler River, NJ, 433–452.

Harrison, N.B. 2006b. The Language of Shepherding. A Pattern Language for Shepherds and Sheep. In Pattern languages of

program design 5. Addison-Wesley, Upper Saddler River, NJ, 507–530.

Heer, T., Garcia-Morchon, O., Hummen, R., Loong Keoh, S., Kumar, S.S., and Wehrle, K. 2011. Security Challenges in the IP-

based Internet of Things. Wireless Personal Communications 61, 3, 527–542. DOI:http://dx.doi.org/10.1007/s11277-011-0385-

5.

Hohpe, G., and Woolf, B. 2004. Enterprise Integration Patterns. Designing, Building, and Deploying Messaging Solutions. Addi-

son-Wesley, Boston, Massachusetts.

IBM. 2015a. Device Management. (2015). Retrieved December 14, 2015 from https://docs.internetofthings.ibmcloud.com/refer-

ence/device_mgmt.html.

IBM. 2015b. Device Model. (2015). Retrieved December 14, 2015 from https://docs.internetofthings.ibmcloud.com/reference/de-

vice_model.html.

IETF. 2012. Security Bootstrapping Solution for Resource-Constrained Devices. (2012). Retrieved January 16, 2017 from

https://tools.ietf.org/id/draft-sarikaya-core-sbootstrapping-04.txt.

Intel. 2017. Step 1: Make a bootable micro SD card. (2017). Retrieved January 16, 2017 from https://software.intel.com/en-

us/get-started-galileo-windows-step1.

Ishaq, I., Carels, D., Teklemariam, G., Hoebeke, J., Abeele, F., Poorter, E., Moerman, I., and Demeester, P. 2013. IETF Stand-

ardization in the Field of the Internet of Things (IoT). A Survey. JSAN 2, 2, 235–287.

DOI:http://dx.doi.org/10.3390/jsan2020235.

Kii. 2015. Schema. (2015). Retrieved December 18, 2015 from http://documentation.kii.com/en/starts/thingifsdk/schema/.

Kumar, A., Saxena, N., Tsudik, G., and Uzun, E. 2009. Caveat eptor: A comparative study of secure device pairing methods. In

2009 IEEE International Conference on Pervasive Computing and Communications. Institute of Electrical and Electronics

Engineers (IEEE). DOI:http://dx.doi.org/10.1109/percom.2009.4912753.

Meszaros, G., and Doble, J. 1996. Metapatterns: A Pattern Language for Pattern Writing. In Third Pattern Languages of Pro-

gramming Conference. Addison-Wesley.

Open Mobile Alliance. 2015. Lightweight Machine to Machine Technical Specification. (2015). Retrieved December 4, 2015 from

http://technical.openmobilealliance.org/Technical/Release_Program/docs/LightweightM2M/V1_0-20151030-C/OMA-TS-

LightweightM2M-V1_0-20151030-C.pd.

Oracle. 2016. Using Oracle Internet of Things Cloud Service. (2016). Retrieved May 2, 2016 from http://docs.oracle.com/cloud/lat-

est/iot/IOTGS/IOTGS.pdf.

Qanbari, S., Pezeshki, S., Raisi, R., Mahdizadeh, S., Rahimzadeh, R., Behinaein, N., Mahmoudi, F., Ayoubzadeh, S., Fazlali, P.,

Roshani, K., Yaghini, A., Amiri, M., Farivarmoheb, A., Zamani, A., and Dustdar, S. 2016. IoT Design Patterns: Computa-

tional Constructs to Design, Build and Engineer Edge Applications. In Proceedings of the First International Conference on

Internet-of-Things Design and Implementation (IoTDI). IEEE, 277–282. DOI:http://dx.doi.org/10.1109/IoTDI.2015.18.

Raspberry Pi Foundation. 2017. Installing operating system images. (2017). Retrieved January 16, 2017 from https://www.rasp-

berrypi.org/documentation/installation/installing-images/README.md.

Reinfurt, L., Breitenbücher, U., Falkenthal, M., Leymann, F., and Riegg, A. 2016. Internet of Things Patterns. In Proceedings of

the 21st European Conference on Pattern Languages of Programs (EuroPLoP). ACM.

Reinfurt, L., Breitenbücher, U., Falkenthal, M., Leymann, F., and Riegg, A. 2017a. Internet of Things Patterns for Communica-

tion and Management. LNCS Transactions on Pattern Languages of Programming.

Reinfurt, L., Breitenbücher, U., Falkenthal, M., Leymann, F., and Riegg, A. 2017b. Internet of Things Patterns for Devices. In

Proceedings of the Ninth International Conferences on Pervasive Patterns and Applications (PATTERNS) 2017. Xpert Pub-

lishing Services, 117–126.

Singh, J., Pasquier, T., Bacon, J., Ko, H., and Eyers, D. 2016. Twenty Security Considerations for Cloud-Supported Internet of

Things. IEEE Internet Things J. 3, 3, 269–284. DOI:http://dx.doi.org/10.1109/JIOT.2015.2460333.

SiteWhere. 2015. System Architecture. (2015). Retrieved December 8, 2015 from http://documentation.sitewhere.org/architec-

ture.html.

Voas, J. 2016. Networks of ‘Things’. NIST Special Publication 800, 183.

Wellhausen, T., and Fießer, A. 2012. How to write a pattern? A rough guide for first-time pattern authors. In Proceedings of the

16th European Conference on Pattern Languages of Programs. ACM, New York, NY.

