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Abstract. The Internet of Things (IoT) has become an increasingly
important domain, which more and more requires application deployment
automation as manual deployment is time-consuming, error-prone, and
costly. However, the variety of available deployment automation systems
also increases the complexity of selecting the most appropriate technology.
In this paper, we discuss how the deployment of complex composite IoT
applications can be automated and discuss the conceptual strengths and
weaknesses of declarative and imperative deployment modelling.
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1 Introduction

The Internet of Things (IoT) has become an increasingly important domain as
more and more IoT applications influence our life. IoT applications typically
consist of physical devices that are connected to software, which is often deployed
in cloud environments. Thus, IoT applications are cyber-physical systems that
consist of one or more physical parts and virtual parts. However, especially the
combination of physical devices and cloud-based software deployments quickly
leads to complex architectures as multiple physical as well as virtual components
have to be deployed, configured, and wired. As a result, the deployment of
such complex composite IoT applications is a serious challenge that requires
immense technical expertise [28]: Physical devices must be installed, scripts
deployed, sensors configured, and backend software provisioned. Due to this
complexity manually deploying IoT applications is time-consuming, error-prone,
and costly. However, although various deployment approaches exist to automate
the deployment of IoT applications, the variety of available technologies makes it
very di�cult to select the most appropriate technology for a certain use case.

In this paper, we discuss how the deployment of such complex composite
IoT applications can be automated by analyzing the conceptual strengths and
weaknesses of declarative and imperative deployment approaches based on our
experiences we gained in the BMWi project SmartOrchestra1. Thus, we do
not focus on individual technologies but on the general deployment modelling
concepts and discuss their suitability for di↵erent IoT deployment use cases.

1
http://www.smartorchestra.de



2 Fundamentals & Related Work

The declarative deployment modelling approach is based on declarative deploy-
ment models that describe the structure of the application to be deployed including
all components, their configuration, and their relationships. A declarative deploy-
ment model is consumed by a declarative deployment system that interprets the
model, derives all required technical tasks to deploy the described application,
and executes these tasks [11]. Thus, declarative deployment models specify only
what has to be deployed, while the actual deployment logic gets calculated by
the deployment system and is, therefore, not contained in the model. There are
multiple scientific works that support the declarative approach for modelling
the deployment of applications, for example, by Eilam et al. [9], Maghraoui et
al. [10], Hewson et al. [13], and Breitenbücher et al. [6, 5]. Moreover, configuration
management technologies such as Puppet [27] often support declarative deploy-
ment modelling, too. The Topology and Orchestration Specification for Cloud
Applications (TOSCA) [22, 21, 24, 3] is a standard that enables automating the
deployment of cloud applications. TOSCA also supports the declarative approach
as it provides a metamodel for modelling the topology of the application to be
deployed including all components, their configurations, and their relationships.

In contrast, the imperative deployment modelling approach is based on
imperative deployment models that describe the actual deployment logic to be
executed in the form of a process [11]. Thus, imperative deployment models
are process models that explicitly describe all technical deployment tasks to be
executed, their order, and the data flow between these tasks. For application
deployment and management automation, often the workflow technology [18]
is used to describe the corresponding processes in an executable manner. For
example, the approaches presented by Mietzner et al. [20], Bellavista et al. [1],
Keller et al. [14], and Breitenbücher et al. [5, 8] are based on the workflow
technology. Moreover, there are domain-specific extensions for workflow languages
that focus on deployment, for example, BPMN4TOSCA [15, 17] or the approach
presented by Weerasiri et al. [30]. In practice, low-level shell scripts are often used
as well to describe software installation and configuration tasks in an imperative
manner. Imperative deployment models are executed by a corresponding process
engine, for example, a workflow engine, or by an imperative deployment system
such as OpenTOSCA [2], which is an open-source runtime for TOSCA. Thus,
TOSCA also supports the imperative deployment modelling approach by the
concept of Management Plans, which are executable process models that can be
used to automate the deployment of the modelled application.

We documented both deployment modelling approaches in our previous
work [11] in the form of Application Deployment Modelling Patterns. This work
also categorizes some available deployment automation technologies based on the
two modelling approaches. In this paper, we discuss the general suitability of
the two approaches for the deployment of complex composite IoT applications
with respect to requirements of the IoT domain. We first describe the conceptual
strengths and weaknesses of the declarative modelling approach in the next
Section 3, which is followed by the imperative part discussed in Section 4.



3 Declarative IoT Deployment Modelling

In this section, we discuss the strengths and drawbacks of declarative deployment
modelling with respect to the domain of IoT. To provide a conceptual overview,
the discussion does not compare concrete technologies but discusses the general
suitability of declarative IoT deployment modelling. Each following subsection
discusses one certain strength or drawback. To support understanding and to
better illustrate problems, we provide examples based on the TOSCA standard.

3.1 Creation and Comprehensibility of the Deployment Model

Declarative deployment models capture the structure of the system to be de-
ployed as they describe the components that shall be deployed as well as their
relationships, thus, the topology of the application. This directly reflects the ap-
plication’s structure developers have in mind during development, which provides
an intuitive modelling approach and directly shows the final result. Moreover,
especially for IoT deployments directly capturing the involved physical devices
as well as their connections to software components eases the creation and un-
derstanding of the deployment model. In addition, for declarative deployment
languages typically graphical modelling tools are available that enable a fast
creation of the respective models. For example, the open-source TOSCA mod-
elling tool Winery [16] supports graphically modelling TOSCA-based declarative
deployment models based on the visual notation Vino4TOSCA [7].

3.2 Suitability of Declarative Technologies

Many IoT applications are composed of common components such as Raspberry
Pis and IoT middlewares2 such as the Mosquitto message broker. Moreover,
typically standardized communication protocols, such as MQTT [23], are used
that are explicitly defined regarding their technical details. As declarative de-
ployment models are interpreted by the deployment system, the components to
be provisioned and their relationships must be processable by the system. In a
previous work [28], we have shown that automatically deploying IoT applications
that are composed of such common components and protocols is possible based
on declarative TOSCA models. However, if customization and application-specific
deployment logic is required, the declarative approach reaches its limits as the
system needs to interpret the declarative model that specifies only what has
to be provisioned, but not how. To tackle this issue, declarative deployment
technologies typically provide plug-points, which can be used to specify custom
deployment logic for individual components. For example, the TOSCA Lifecycle
Interface [21, 24] enables to provide an own install implementation for a certain
type of component. However, this is typically limited to lifecycle operations and
does not allow to customize the deployment arbitrarily [4]. Thus, the declarative
modelling approach is mainly suited for common and non-complex deployments,
but is limited regarding individual customizations and application-specific details.

2 An overview of di↵erent IoT Integration Middlewares is provided by Guth et al. [12]



3.3 Required Technical Deployment Expertise

Declarative deployment models specify only what has to be deployed, but not how
the deployment shall be executed. Therefore, modellers only need to specify the
application’s structure including the components, their wiring, and the desired
component configurations. Thus, only little or even no technical expertise is
required about the actual deployment execution: Neither scripting languages
have to be understood nor API calls must be orchestrated, which is typically
required for the deployment of complex systems [8]. Especially in the domain of
IoT, this characteristic becomes of vital importance as deploying and configuring
software on (remote) physical IoT devices is typically more complex than solely
deploying software in cloud environments as more technical deployment and
configuration tasks have to be executed [28]. The additional technical tasks range
from, for example, connecting to (remote) physical devices for installing software
to configuring gateways in order to establish the communication between devices
and backend. The immense heterogeneity regarding IoT middleware systems [12]
additionally increases this complexity. Therefore, only modelling the structure of
the system to be deployed requires significantly less technical expertise than the
imperative modelling approach, which has to specify all technical deployment
tasks, remote communications with devices, API calls, script executions, etc.

3.4 Deployment Customization

Declarative deployment models are interpreted by the deployment system, which
derives and executes the technical deployment tasks [11]. This interpretation
is typically based on (i) known types of components and relationships and
(ii) known management interfaces. For example, the OpenTOSCA deployment
system provides a plug-in system for the deployment of di↵erent component
types [5]. Many declarative technologies also support mechanisms to inject custom
deployment logic into the model based on known management interfaces. For
example, TOSCA not only provides a metamodel for declarative deployment
models but also standardizes the TOSCA Lifecycle Interface, which defines the
operations that are called during the deployment of a component, e.g., install
and start. Moreover, TOSCA enables to provide own implementations for these
operations on a per-component basis in the model. Thus, based on such interfaces,
the deployment logic of a component can be influenced even if a declarative
deployment technology is used. However, if more complex tasks must be executed
that do not follow such predefined operations, the declarative approach reaches
its limitations: The deployment can be customized only using such plug-points,
but not in an arbitrary manner. For example, if two di↵erent components must
be installed before both can be started, this cannot be realized using the TOSCA
Lifecycle Interface. Especially in the domain of IoT this is a critical limitation as
the configuration of physical devices often needs a special deployment execution
order. For example, often two devices must be physically connected before software
can be installed. Thus, the relationship between these two components must be
established before software can be deployed on the devices, which breaks the
typical deployment execution order of components and their relationships [5].



3.5 Integration of Human Tasks

IoT applications are cyber-physical systems and, thus, consist of one or more
virtual parts and one or more physical parts. For automating the deployment of
the virtual part, there are many declarative deployment technologies available
that are capable of executing arbitrary deployment tasks, for example, creating
virtual machines, installing Web-based applications, and instantiating a database
on a Storage as a Service o↵ering such as Amazon RDS3. All these deployment
tasks have in common that they can be executed fully automatically without the
need for human intervention as the components that have to be deployed as well
as the components on which they have to be deployed can be accessed by software,
e.g., via HTTP-based APIs of hypervisors and cloud service o↵erings or low-
level communication protocols to access virtual machines. In contrast, deploying
the physical part of IoT applications often requires humans, e.g., for installing
devices, soldering sensors, etc. However, such human tasks are typically not
natively supported by declarative modelling approaches and are, therefore, very
hard to integrate into the available deployment systems and the corresponding
models. For example, in TOSCA it would be possible to implement the install
operation of a physical device component by a script that sends a message to a
human to install the device. This means that typical workflow features such as
sta↵ resolution, work item management, and role management [18] would have to
be re-implemented in such solutions as they are typically not supported natively
by declarative deployment systems. However, the reliability and robustness of
workflow management systems [18] cannot be achieved using such workarounds.

3.6 State-preserving and State-Changing Deployment Tasks

Deployment and management tasks can be abstractly classified into (i) state-
changing tasks and (ii) state-preserving tasks [4]. State-changing task change
the state of one or more components or relationships of the application, for
example, modifying the HTTP port of a Webserver changes the state of the
component. In contrast, state-preserving tasks do not change the state of one or
more components or relationships, for example, exporting data from a database
does not change the state or configuration of the database or of its stored
data. Declarative models support state-changing deployment tasks natively:
Components are transferred from state uninstalled to state installed, for example.
However, this type of deployment models does not support state-preserving tasks
very well as this kind of tasks cannot be modelled by specifying a component, a
relationship, or a configuration [4]. Especially for deploying IoT applications this is
a serious problem as state-preserving tasks are often required. For example, before
connecting a physical device to the backend system, its physical functionality
and also non-functional requirements such as its battery level may have to be
checked. In particular, if a device has an actuator that triggers some physical
action, a declarative model cannot specify that the physical functionality has to
be verified manually after the successful installation of the device or its software.

3
https://aws.amazon.com/rds/



4 Imperative IoT Deployment Modelling

In this section, we discuss the general strengths and drawbacks of imperative
deployment modelling with respect to the domain of IoT. Where possible we refer
to the declarative strengths and drawbacks to compare the both approaches.

4.1 Deployment Customization

Imperative deployment models are process models that specify a set of activities
to be executed as well as their order and the control flow between them. Thus,
they specify exactly how a deployment has to be executed [11]. This enables
influencing the deployment execution arbitrarily as each detail can be described
and customized in the process model, for example, the deployment order of
components can be changed or application-specific customizations can be im-
plemented by additional tasks. Thus, in contrast to the declarative approach,
imperative deployment models support state-preserving as well as state-changing
tasks. In particular, for deploying complex composite IoT applications also tasks
that are hard to describe declaratively can be realized, for example, installing a
physical device at a certain place or testing a device before connecting it to the
backend. TOSCA also supports the imperative deployment modelling approach
in the form of so-called Management Plans, which are executable process models
that automate the execution of a certain management function for the applica-
tion, e.g., its deployment. Thus, the TOSCA standard supports the declarative
as well as the imperative approach for deploying applications, which therefore
provides a suitable basis to choose the right modelling approach for a certain IoT
deployment use case. In particular, there are previous works that show how the
TOSCA standard can be used for IoT deployment automation [19, 28, 29].

4.2 Integration of Human Tasks

The integration of human tasks in the automated declarative deployment of an IoT
application is hard to realize and may misuse concepts provided by the deployment
technology (cf. Section 3.5). Using imperative deployment models this is much
easier as especially many workflow languages and workflow management systems
support the integration of human tasks in automatically executed processes [18].
For example, the Business Process Model and Notation (BPMN) [25] defines a
task type for integrating manual human task executions in an overall automated
workflow. Thus, this kind of deployment model is suited for IoT application
deployments in which manual task executions by humans are required, for example,
to install or configure physical devices at a certain place. However, the available
standards-based domain-specific workflow extensions for application deployment
such as BPMN4TOSCA [15, 17] currently do not support the integration of
human IoT deployment tasks, which is therefore part of our future work.



4.3 Required Technical Deployment Expertise

Imperative deployment models describe each detail about the deployment tasks
to be executed, for example, technical details of script invocations, API calls,
and file transfers to virtual machines. In addition, also the control flow of these
tasks must be specified as well as the data flow between them. Moreover, when
deployment tasks shall be executed in parallel, this quickly leads to complex
process models that must be developed and maintained carefully. Thus, manually
creating imperative deployment models is a complex and technically error-prone
challenge [8]. Especially when multiple deployment technologies must be or-
chestrated, for example, for multi cloud or hybrid cloud deployments, di↵erent
API designs, data formats, invocation mechanisms, and security concepts of the
di↵erent deployment technologies and provider APIs also increase the complexity
of imperative deployment models [8]. IoT applications additionally increase this
complexity as also physical devices must be considered in the deployment process,
which often requires establishing connections to devices, transferring files, and
executing scripts—all these tasks must be reflected in the imperative process
model. As a result, the development and maintenance of complex imperative IoT
deployment models requires immense technical deployment expertise of possibly
multiple di↵erent deployment systems and APIs that have to be combined. There-
fore, the imperative approach is complex, error-prone, and time-consuming [8].
The TOSCA standard enables to reduce the complexity of imperative deployment
models as deployment logic can be hidden by the lifecycle operation implementa-
tions of the components (cf. Section 3.4). Thus, a deployment plan can invoke
these operations, which wrap technical details. Moreover, in previous work [31],
we also developed a TOSCA-based management bus that encapsulates deploy-
ment technologies such as Chef [26] from plans. As a result, plans only invoke
this bus in a standardized manner to execute a deploying task using a certain
technology without the need to care about the technical invocation details.

4.4 Comprehensibility of the Deployment Model

Declarative deployment models specify the structure of the application including
all components and relationships. Especially when graphical, graph-based rep-
resentations are used, declarative models provide a comprehensive overview on
the application to be deployed (cf. Section 3.1). In contrast to this, imperative
deployment models specify the process of the deployment. Thus, the final result
is not immediately visible in these imperative models and must be derived by
analyzing the modelled tasks, their semantics, and their order. This quickly gets
complex if an IoT application is complex and consists of various physical as well
as virtual components. Moreover, in IoT applications often multiple devices of
the same kind are involved, for example, devices with temperature sensors in a
smart home. Thus, in such scenarios not only the deployment tasks and possibly
their labels in the process model must be analyzed, but also their parameters
must be understood to recognize which component is a↵ected by a certain task.



5 Conclusion and Future Work

In this paper, we discussed the suitability of the declarative and the imperative
deployment modelling approaches for automating the deployment of IoT appli-
cations. We analyzed the major conceptual strengths and weaknesses of both
approaches and mainly compared them in terms of complexity for modellers and
the required technical expertise. The paper shows that the major drawbacks of
each approach is solved by the other one, which leads to the conclusion, that a
hybrid IoT deployment modelling approach is required: A declarative deployment
model eases the specification of the desired deployment but is limited to common
and non-complex deployments. Thus, transforming declarative models into im-
perative deployment models enables customizing the IoT application deployment
arbitrarily as any additional task can be added and even human tasks and state-
preserving tasks can be included in the generated process model. It has been
already shown that this transformation is possible for software-based application
deployments [10, 9, 5] and also that simple declarative IoT application deployment
models can be transformed into imperative workflows [29]. Therefore, in future
work, we focus on this transformation—especially on the integration of human
tasks into the automated deployment process. This requires a detailed analysis
of existing imperative deployment modelling languages such as BPMN4TOSCA
and new concepts that support humans in executing such manual IoT deployment
tasks. For example, to install a certain software via USB stick on a device that
cannot be managed remotely due to missing connectivity to the network.
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