
© ACM 2017
This is the author's version of the work. It is posted here by permission of ACM for

your personal use. Not for redistribution. The definitive version is available at
ACM: https://doi.org/10.1145/3151759.3151789

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

@inproceedings{Saatkamp2017_Driver,
author = {Saatkamp, Karoline and Breitenb{\"u}cher, Uwe and

Leymann, Frank and Wurster, Michael},
title = {Generic Driver Injection for Automated IoT

Application Deployments},
booktitle = {Proceedings of the 19th

International Conference on Information Integration
and Web-based Applications \& Services},

year = {2017},
pages = {320--329},
publisher = {ACM},
doi = {10.1145/3151759.3151789}

}

Karoline Saatkamp, Uwe Breitenbücher, Frank Leymann, and Michael Wurster.

2017. Generic Driver Injection for Automated IoT Application Deployments. In

Proceedings of the 19th International Conference on Information Integration and

Web-based Applications & Services, Salzburg, Austria, December 4-6, 2017

(iiWAS’17), 320-329. https://doi.org/10.1145/3151759.3151789

Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{saatkamp, breitenbuecher, leymann, wurster}@iaas.uni-stuttgart.de

Generic Driver Injection for
Automated IoT Application Deployments

Karoline Saatkamp, Uwe Breitenbücher, Frank Leymann, and Michael Wurster

Institute of Architecture of Application Systems

https://doi.org/10.1145/3151759.3151789

Generic Driver Injection for
Automated IoT Application Deployments

Karoline Saatkamp, Uwe Breitenbücher, Frank Leymann, and Michael Wurster
Institute of Architecture of Application Systems, University of Stuttgart, Germany

[lastname]@iaas.uni-stuttgart.de

ABSTRACT
In the domain of IoT a major objective is the interconnection of a
variety of devices with higher level applications. Therefore, several
IoT middleware systems have been developed. These IoT integra-
tion middleware systems are heterogeneous, e.g., in terms of the
supported transport protocols. Thus, IoT environments often differ
due to the utilized middleware. As a result, by deploying applica-
tions in different environments the communication clients on the
application side have to be adjustedmanually. This leads to a greater
development effort for each deployment and hampers the applica-
tion’s portability. In this paper, we present a generic driver injection
concept to enable the development of portable IoT applications
and the automated deployment in different environments without
manual adaptation efforts. For this, a programming model and a
deployment modeling concept are introduced. We demonstrate the
feasibility of our approach with a TOSCA-based prototype.

CCS CONCEPTS
• Computer systems organization; • Software and its engi-
neering → Software notations and tools;

KEYWORDS
IoT Application Deployment, Drivers, ProgrammingModel, TOSCA
ACM Reference format:
Karoline Saatkamp, Uwe Breitenbücher, Frank Leymann, andMichaelWurster.
2017. Generic Driver Injection for Automated IoT Application Deployments.
In Proceedings of the 19th International Conference on Information Integration
andWeb-based Applications & Services, Salzburg, Austria, December 4–6, 2017
(iiWAS ’17), 10 pages.
https://doi.org/10.1145/3151759.3151789

1 INTRODUCTION
In the last years, the importance of the Internet of Things (IoT) has
increased significantly enabled by the latest developments in object
identification, sensing, and computation [1, 9]. The main objective
is to gather and process information by a variety of sensors and to
change the physical world by actuators, if necessary [9]. To enable
the interconnection of a large number devices and higher level

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
iiWAS ’17, December 4–6, 2017, Salzburg, Austria
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5299-4/17/12. . . $15.00
https://doi.org/10.1145/3151759.3151789

applications IoT integration middleware is used for establishing
the communication between them. Multiple IoT middleware sys-
tems such as Eclipse Mosquitto1 or FIWARE Orion2 are already
available. Each has its own characteristics, fits for different require-
ments, and is highly heterogeneous in terms of, e.g., the supported
communication protocols [10, 16, 19]. Several components form
the entire IoT environment [10]: The sensors and actuators are
attached to devices, which serve as bridges between hardware and
software components. The IoT integration middleware connects
devices and higher level applications. Because of the heterogeneity
of middleware systems, IoT environments differ greatly from each
other. Therefore, the device software and the higher level applica-
tions have to be tailored to the capabilities of the used middleware
to enable integration [8]. Often a manual adaptation of the source
code is required, which is costly, time-consuming, and error-prone.
Thus, the development of the applications as well as the deployment
are affected if applications are used in different environments.

In this paper, we present a generic driver injection concept to
enable the development of portable IoT applications and the auto-
mated deployment of the entire IoT environment with different IoT
middleware systems. Other approaches address the deployment of
devices [21] or provide modeling approaches based on the TOSCA
standard [8, 15, 22] or self-definedmodels [13] for IoT environments
to enable their automated deployment. However, the integration
with different IoT middleware systems and thus the portability
is not tackled. For this, we introduce a programming model that
facilitates the selection of appropriate drivers for applications de-
pending on the used middleware during deployment time. These
drivers enable the communication between the applications and
the IoT middleware. Based on a middleware-independent modeling
concept deployment scenarios can be defined without a specific
middleware. Depending on the environment the deployment model
is completed and the suitable drivers are selected in an automated
manner. Thus, the adaptation effort for the application deployment
in different IoT environments shifts from a manual application’s im-
plementation adaptation to a model adjustment. This decreases the
development and deployment effort and improves the portability of
IoT applications. Because TOSCA is a widely used standard for de-
scribing application deployments in a portable manner, we validate
the feasibility of our approach with a TOSCA-based prototype [18].

The remainder of this paper is organized as follows: Section 2
introduces fundamentals and motivates our approach. Section 3
describes the general approach in detail, while Section 4 maps the
approach to TOSCA, and Section 5 validates our approach based
on our prototypical implementation. Finally, Section 6 discusses
related work and Section 7 concludes the paper.

1https://mosquitto.org/
2https://fiware-orion.readthedocs.io/en/master/index.html

https://doi.org/10.1145/3151759.3151789
https://doi.org/10.1145/3151759.3151789

iiWAS ’17, December 4–6, 2017, Salzburg, Austria K. Saatkamp et al.

Device-OS

Device Hypervisor

Broker-OS

MQTT
Broker

TopicPublisher
MQTT

Device-OS

Device Hypervisor

Broker-OS

XMPP
Broker

TopicPublisher
XMPP

Device-OS

Device Hypervisor

Broker-OS

AMQP
Broker

TopicPublisher
AMQP

hostedOn connectsTo application code

Figure 1: Impact of different IoT middleware systems on the communication and application’s implementation

2 FUNDAMENTALS AND MOTIVATION
In cloud computing several deployment technologies and standards
are available to ease the deployment of applications in cloud en-
vironments. Well known deployment and configuration technolo-
gies such as Chef3 or Ansible4 and container approaches such as
Docker5 are widely used. A common standard to describe cloud
application deployments in a vendor independent and portable
manner is the Topology and Orchestration Specification for Cloud
Applications (TOSCA), which is an OASIS standard enabling the
automated deployment and management of applications [4, 18]. For
this, cloud applications are described by deployment models con-
taining a topology, which represents the structure of the application.
This topology specifies the components of the application and the
relations between them. Such relations can express, for example,
that a component is hostedOn or connectsTo another component.

Different works demonstrated how TOSCA can be used to auto-
mate the deployment of the entire IoT environment [8, 15]. However,
TOSCA models that describe such deployments typically specify
the used IoT middleware to which devices and the corresponding
applications connect. Thus, (i) the software on the devices as well
as (ii) all applications that interact with these devices are bound to
the used middleware. As a result, when the devices and applications
are used with a different environment and middleware, respectively,
complex code adjustments are required to bound them to an other
middleware [8]. For example, Figure 1 depicts three topologies
presenting the same IoT scenario: an application publishing mes-
sages to a topic. For a better understanding this simplified scenario
with just one publisher is chosen. Everything that applies to the
publisher also applies to subscribers and further publishers.

Each topology consists of two stacks: (i) an IoT middleware
stack and (ii) an IoT device stack. The device stack represents the
device, e.g., a Raspberry Pi, with an operating system and an ap-
plication running on the device. Such an application can be, e.g.,
a Python script which reads and publishes the data from a sensor
connected to the device. The application code snippet added to the

3https://www.chef.io/chef/
4https://www.ansible.com/
5https://www.docker.com/

Publisher component illustrates the application’s implementation.
The middleware stack shows the IoT middleware in form of a mes-
sage broker hosted on a virtual machine. The topic is used by the
application to publish, e.g., sensor data.

The choice of a particular message broker affects the supported
transport protocol, e.g., if MQTT, XMPP, or AMQP messages can
be handled by the broker. This in turn means that the part of the
application code responsible for the communication with the IoT
middleware has to be changed accordingly to use the required
communication client on the application side. This is necessary
to establish a connection and to be able to publish or subscribe to
a topic. The adaptation of the implementation is needed because
the processing of outgoing and incoming messages depends on the
transport protocol. Thus, not only a model but also an implementa-
tion adaptation is required if the IoT middleware changes as not all
IoT middleware systems support the same protocols.

The implementation adaptation effort limits not only the reuse
of applications in other environments but also impedes the change
of the IoT middleware in an existing environment (technology
lock-in). For each deployment of the application with a middle-
ware the application is not designed for, a lot of manual effort is
necessary to adjust the application code. The matching of com-
ponents to a different environments can be already automated by
topology completion algorithms [11, 20]. However, the adaptation
of the communication behavior is still a challenge. To enable an
automated adaptation, we propose to shift the adjustment effort
from an application’s implementation adaptation to a deployment
model adjustment to tackle these issues.

In order to achieve the mentioned objective, we introduce (i) a
programming model to implement the application independently
of the used IoT middleware and to enable the injection of drivers
according to the chosen middleware. Moreover, we present (ii) a
concept for the middleware-independent modeling of the applica-
tion’s deployment and (iii) an approach for the automated model
adjustment depending on the chosen IoTmiddleware. These generic
driver injection concept enables the development and deployment
of IoT applications in a portable manner.

Generic Driver Injection for Automated IoT Application Deployments iiWAS ’17, December 4–6, 2017, Salzburg, Austria

Deployment
System

Development based
on programming model

1

Middleware-
independent modeling

2

Model completion
with middleware stack

3

Driver selection and
injection

4

Automated
Deployment

5

Application
code

Driver
Manager()

Device-
OS

Device

TopicApp

req

Device-
OS

Device

TopicApp

Broker-
OS

Hyper-
visor

req

Broker

cap

Device-
OS

Device

TopicApp

Broker

Broker-
OS

Hyper-
visor

req

cap

Figure 2: Overview of the generic driver injection concept

3 GENERIC DRIVER INJECTION CONCEPT
To deal with the mentioned challenges, we introduce a program-
ming model in Section 3.2 to encapsulate the communication ca-
pability between applications and the different IoT middleware
systems. Furthermore, we present a modeling concept for an auto-
mated deployment in different IoT environments in Section 3.3.

3.1 Overview
An overview of the generic driver injection concept is depicted in
Figure 2. All relevant steps from the development to the deploy-
ment of an application in an IoT environment are covered. Our
concept bases on five steps: First of all, the application is devel-
oped in step 1. The programming model contains predefined Driver
Manager libraries for different programming languages such as
Python or Java. Under use of these libraries for the development
of applications, drivers can be selected and used to establish the
communication with a specific middleware.

In the second step, a middleware-independent model is defined.
As already seen in Figure 1, the application code is part of the model
but the communication specific code is removed. Additionally, the
Topic component is tagged with a requirement req. It indicates that
the model is incomplete and not deployable. Based on the exposed
requirement an available middleware with a suitable capability has
to be attached in step 3. Each broker comes with a set of Drivers in
different programming languages which can be used by the Driver
Manager to establish a connection. In the fourth step, the driver in
the appropriate programming language is selected and linked to
the application code that the deployment works properly. In the
last step, the deployment model is deployed as specified: the appli-
cation code and the driver are deployed at the device. The driver
is used by the Driver Manager of the application to establish the
connection. Thus, IoT applications can be developed in a portable
manner and the deployment model can be tailored middleware-
dependent for an automated deployment. In the following, the
middleware-independent modeling, the model adjustment, as well
as the programming model are presented more detailed.

3.2 Programming Model
The goal of our programming model is to completely encapsulate
the communication between an IoT application and the middleware
and is used for the development of the application in step 1. By using
the predefined Driver Manager library for the implementation of
the application a connection can be established to each middleware
providing a suitable driver. Because this programming model is
intended for the IoT domain, we focus on publishing and subscribing
to topics. Nevertheless, the concept of the programming model is
generic and feasible for other domains as well.

Figure 3 depicts the concept of our programming model. We
distinguish between development time (upper half) and deployment
time (lower half). Starting with the development time, at the very
top of the figure a set of Driver Manager libraries are shown. These
libraries are predefined for different languages and versions, e.g.,
Java 8 or Python 3. For the IoT domain they expose the methods
publish() to publish and subscribe() to subscribe to a topic. However,
the concrete implementation of these methods depends on the bro-
ker and can not be predefined as the supported transport protocol
and other middleware-specific information can vary.

An application developer uses the Driver Manager library to
implement his application. Furthermore, matching drivers for the
middleware systems implementing interfaces of the Driver Man-
ager are implemented, for example, by the middleware provider or
other experts. These drivers are the concrete implementation of the
communication behavior between an application with this specific
middleware. If no middleware driver is present, e.g., during the
development of the application, a stub implementation of the driver
interface is available as a fallback to have a runnable code. For each
middleware, drivers in different programming languages can be
available. For example, a MQTT broker provides drivers in Java 8
and Python 3 implementing the methods required to establish a
MQTT connection to the broker and to publish or subscribe to a
topic. The drivers are created just once for each middleware and
can be reused for each application.

iiWAS ’17, December 4–6, 2017, Salzburg, Austria K. Saatkamp et al.

Python 3
AMQP
Driver

Python 3
MQTT
Driver

3

Topic t

Development Time

Deployment Time

Application

M
et

h
o

d
s

Python 3
Driver
Manager

publish (…)

?

Deployment

Application

M
e

th
o

d
s

publish (t, 3)

Python 3
MQTT
Driver

?

…

…

M
et

h
o

d
s

Java 8
Driver
Manager

?

M
et

h
o

d
s

Python 3
Driver
Manager

?

Driver Manager libraries

MQTT
broker

…

MQTT Messages

Python 3
MQTT
Driver

Figure 3: Programming Model

During deployment time the application and a suitable driver
are provisioned. The selection of the driver is covered in Section 3.3.
For establishing the connection, the correct driver has to deployed
in a way, that the Driver Manager are able to use the driver for
connecting the application to the broker. Depending on the under-
lying programming language, different mechanisms are required
to achieve this. For example, in case of an application as JAR (Java
Archive) file, the dependency to the driver can be solved by referenc-
ing the driver class available on the classpath to run the application.
In case of Python the driver has to be stored in a known directory
at the target host. Other information, like the topic or IP address of
the broker, are provided, e.g., by a configuration file.

Using this programming model the communication behavior
is encapsulated and has not be considered during the application
development. For each broker, drivers implementing the specific
communication behavior can be provided. Depending on the se-
lected middleware, the driver can be injected and a connection can
be established. No more manual adaptations of the application code
are required in case of changing middleware.

3.3 Middleware-Independent Modeling and
Model Adjustment

In this section, we introduce the middleware-independent mod-
eling concept to model deployment models for IoT environments
independently of the IoT middleware. Furthermore, we describe the
adaptation steps duringmodeling and deployment time (steps 2 to 4)
and the deployment in step 5 in detail. For this purpose, we show a
detailed deployment model and its adjustment in Figure 4.

The depicted topology in Figure 4 is more detailed compared to
the topology seen in Figure 1. The types of components and rela-
tions are defined. In this example a Python application Publisher
is used, which requires a Python 3 runtime at the hosting device.
This dependency is modeled by the relation of type dependsOn.
The used device is a Raspberry Pi with a Raspbian Jessie operating
system. Additionally, requirements, capabilities, and executables can
be added to components. In this example, a requirement Message-
Broker is attached to the Topic. A requirement can be fulfilled by
a capability as exposed by the MQTT broker. All executables, e.g.,
JARs or Python scripts are also contained in the topology model.
Figure 4 illustrates the steps 2 to 5 (cf. Figure 2), described more
detailed in the following.

3.3.1 Middleware-independent modeling (step 2). The IoT envi-
ronment is modeled independently of the middleware as shown
at the left side of Figure 4. In this example only one publishing
application connected to a topic is shown to simplify the scenario.
However, multiple applications connected to the topic are feasible,
i.e., also complex deployment models are portable. Each compo-
nent that publishes or subscribes to a topic has a required driver
type as indicator for the required programming language of the
driver assigned. In this example, the Publisher component has a
Python 3 Driver type assigned. The automated driver specification
is achieved by type inheritance explained in step 4.

The Topic component has an open requirement attached. An
open requirement means, that no outgoing relation to a matching
capability is assigned yet. This middleware-independent model is
therefore incomplete and not deployable. It has to be completed
by a specific middleware stack. Depending on the available IoT
middleware in a specific environment the model can be completed.

Generic Driver Injection for Automated IoT Application Deployments iiWAS ’17, December 4–6, 2017, Salzburg, Austria

Device-OS
(RaspbianJessie)

Python
(Python_3)

Device
(RaspberryPi3)

Topic
(Topic)

Publisher
(PythonApp)

M
et

h
o

d
s

?

Device-OS
(RaspbianJessie)

Python
(Python_3)

Device
(RaspberryPi3)

Topic
(Topic)

Publisher
(PythonApp)

M
et

h
o

d
s

?

2

Hypervisor
(OpenStack)

Broker-OS
(Ubuntu14.04VM)

MQTTBroker
(Mosquitto_3.1)

3

Java 8
MQTT
Driver

Python 3
MQTT
Driver

Python 3
Driver

4

5

Message
Broker

Message
Broker

Message
Broker

hostedOn connectsTo dependsOn

requirement

capability

deploy

M
o

d
el

in
g

 T
im

e

D
ep

lo
ym

en
t

Ti
m

e

Python 3
Driver

Figure 4: Middleware independent model (left) and model adjustment steps during deployment time (right)

3.3.2 Model completion with middleware stack (step 3). In this
step, a suitable middleware stack has to be selected and added to
the topology. For the open requirementMessage Broker an available
middleware stack with the corresponding capability has to be found.
This can be done either manually by the modeler or automated by,
e.g., a topology completion approach [11, 20]. The relation between
the requirement and the capability is realized as hostedOn relation.
The middleware comes with the specific drivers for the supported
programming languages. The drivers base on the programming
model described in the previous section. This step is executed either
during modeling time in case of a manual completion or during
deployment time in case of an automated completion.

3.3.3 Driver selection and injection (step 4). During deployment
time, a driver is selected in this step. For each component with a
required driver type, the middleware stack the component is con-
nected to is considered. The outgoing relations of the application
component are the indicators to detect the connected middleware
stacks. Based on the required driver type of the application and
the middleware-specific driver types, the right driver is selected.
The middleware-specific drivers implement the driver interface
as necessary for the communication with the middleware. As de-
picted in Figure 4 two driver artifacts are attached to theMQTTBro-
ker: one driver of type Python 3 MQTTDriver and one driver of
type Java 8 MQTTDriver . The first one is a specialized type of the
Python 3 Driver and therefore selected in this example.

The driver is added to the application because the application
code as well as the driver have to be deployed in a way that the
Driver Manager, which is part of the application’s implementation,

can use the driver for establishing the communication with the
middleware. Depending on the language of the application, dif-
ferent mechanisms are used to bind the driver. For example, by
setting Java’s classpath while starting the Java application or using
a specific directory to store the driver artifact, the Driver Manger is
able to reference the driver. Not only one but also multiple drivers
can be bound to the Driver Manager in case an application has
to communicate with multiple middleware systems. That means,
for each IoT middleware the application shall be connected to, a
driver is selected and the mapping between selected driver and
middleware is used to establish the connection by use of the driver.

3.3.4 Deployment (step 5). After the deployment model is com-
pleted and the drivers are selected and injected, the IoT environment
can be finally automatically deployed as defined. For this purpose,
a declarative runtime is used which does not require explicit man-
agement plans for the instantiation but interpret the topology to
infer the deployment logic [5]. A detailed description of a system
architecture is given in Section 4.3. Based on the topology model in
our example the application logic as well as the driver are deployed.
Afterwards, the application can publish data to the topic.

The basis of this presented modeling and model adjustment
concept is an appropriate development of the used applications.
The application has to be designed for the use of drivers to enable
the communication with IoT middleware systems. The application
development must base on the programming model described in
Section 3.2, otherwise the injection of drivers is not possible.

iiWAS ’17, December 4–6, 2017, Salzburg, Austria K. Saatkamp et al.

Device-OS
(RaspbianJessie)

Phyton
(Python_3)

Device
(RaspberryPi3)

Topic
(Topic)

Publisher
(PythonApp)

Hypervisor
(OpenStack)

Broker-OS
(Ubuntu14.04VM)

MQTTBroker
(Mosquitto_3.1)

Message
Broker

DA

DA

DA

DA

…

can substitute

Message
Broker

<ArtifactTemplate
id=„RequiredDriver„
type="DriverPython3„>
…

</ArtifactTemplate>

hostedOn

connectsTo

dependsOn

abstract
DA

concrete
DA

requirement

capability

Legend

<RelationshipTemplate …>
<Properties>

<Driver></Driver>
</Properties>
…

</RelationshipTemplate>

<ArtifactTemplate id="Driver1"
type="MQTTDriver_Python3„>
<Properties>

<Driver>MQTTDriver</Driver>
</Properties>

…
</ArtifactTemplate>

Figure 5: TOSCA-based topology model

3.4 Limitations of the Approach
The presented approach bases on the assumption, that the intro-
duced programming model is used to implement the IoT applica-
tions and the middleware drivers. In case an application does not
fulfill this requirement, the application can either not be used for
the deployment or has to be adapted accordingly. The same ap-
plies to the middleware. However, a subsequent adjustment of an
application or implementation of middleware drivers is required
only once. Afterwards the approach can be used for a recurrent
deployment in different environments.

Furthermore, the approach is valid for all programming lan-
guages for which mechanisms exist to run an application using
external libraries or scripts. Programming languages such as Python,
Java, or C++ enable reflection or dynamic linking at runtime. For
languages that can handle only static linking, such as Go, our con-
cept is not applicable. Nevertheless, there is a workaround to obtain
the same result as with our approach: The drivers are deployed
as independent software components and a communication is es-
tablished through inter-process communication (IPC) techniques
between the IoT application and the driver, which forwards the
received data to the connected middleware. The result is the same
but the solution differs.

4 VALIDATION BASED ON TOSCA
The generic driver injection concept presented in Section 3 can be
applied to TOSCA, a standard to describe cloud application deploy-
ments. In this section, we present (i) a TOSCA-based solution of
our concept and (ii) a system architecture for the automation of
the model adjustment steps. On the one hand, TOSCA is chosen to
demonstrate that our concept can be mapped to an existing stan-
dard, and on the other hand to make use of the existing toolchain
for our prototype: the modeling tool Eclipse Winery™ [14] and
the TOSCA runtime OpenTOSCA container [3]. Our prototypical
implementation is shown in Section 5.

4.1 TOSCA Fundamentals
TOSCA is a standard to describe cloud application deployments by
topologies. A topology specifies the components of an application
and the relationships between them [18]. The components are spec-
ified as Node Templates and the relations as Relationship Templates.
The semantic of Node as well as Relationship Templates are defined
by the used Node Types and Relationship Types, respectively.

For the deployment of the components often executables have
to be installed and operations are executed. All executables, e.g.,
JARs, WARs, and shell scripts, are called artifacts. Two kinds of
artifacts are distinguished: Deployment Artifacts (DA) representing
the application logic and Implementation Artifacts (IA) representing
executables required to deploy the component, e.g., install scripts.
DAs can be attached to Nodes and IAs to Nodes and Relationships,
depending on where the artifact shall be executed. Similar to Node
Types, Artifact Types specify the type of the artifacts. All types in
TOSCA can be declared as abstract. This means, at latest during
the deployment the artifact of an abstract type has to be substi-
tuted by an artifact using a specialized derived Artifact Type. Each
TOSCA type can inherit from another type and, thus, inheritance
hierarchies can be established. Additionally, for each type Properties
can be defined to add additional information to Templates, e.g., the
topic name or IP address.

The basis elements to enable an automated topology completion
are Requirements and Capabilities. Each defined Requirement Type
has a required Capability Type assigned. Based on this, a matching
between Requirements and Capabilities can be realized. After a
matching is found, it can be solved by a Relationship Template.
The type of the Relationship Template depends on the semantic of
the Capability. These are the required TOSCA elements to realize
the presented generic driver injection model. For the automated
deployment a declarative TOSCA runtime is required which derives
the deployment logic from the topology itself and does not need
explicit deployment plans [5].

Generic Driver Injection for Automated IoT Application Deployments iiWAS ’17, December 4–6, 2017, Salzburg, Austria

Middleware
Completion

TOSCA Runtime

DA Specifier
& Injector

Middleware
Stacks

Completed
Topologies

Publisher Topic

Python

Raspberry
Pi

Raspbian
Jessie

DA

DA
Message

Broker

Raspberry Pi OpenStack

Python

MQTT
Driver

Pub-
lisher

RaspbianJessie Brocker-OS

MQTT Brocker

Topic

deployment model (CSAR) real deployment

… Deploy
Manager

CSAR Processor

Artifact
Store

Instance
Data

Figure 6: Simplified system architecture of an extended TOSCA runtime

4.2 TOSCA-Based Realization
The presented middleware-independent modeling as well as the
model adjustment can be realized with TOSCA. In Figure 5 a TOSCA
topology model is depicted. First of all in step 2 (cf. Figure 2), the
device stack (left stack) and the topic connected by a Relationship
Template of type connectsTo or any derived type with the Python
application are modeled. The middleware completion (step 3) can be
donemanually by adding the desiredmiddleware components to the
model or by existing automated matching mechanisms [11, 20]. The
automated completion bases on a matching between Requirements
and Capabilities attached to Node Templates.

Two DAs are attached to the Node Template Publisher : a concrete
DA representing the application logic and an abstract DA repre-
senting the driver. The abstract DA uses an abstract Artifact Type
DriverPython3. The abstract driver DA serves as a placeholder for
the concrete drivers of the connected middleware stacks. As men-
tioned before, at latest during the deployment all DAs referencing
abstract artifacts have to be substituted. For this, all Deployment
Artifacts referencing artifacts of an abstract Artifact Type are recog-
nized in step 4. By analyzing the outgoing relationships of the Node
Templates with attached abstract DAs, the middleware stacks can
be discovered. Based on the mandatory inheritance hierarchy used
for the Artifact Types the suitable concrete DA can be found. The
abstract driver DAs are of an abstract Artifact Type which depends
on the programming language of the application. In the example
in Figure 5, it is a Python 3 application and therefore an artifact of
the abstract Artifact Type DriverPython3 is attached.

The concrete driver DAs use specialized derived Artifact Types,
e.g., MQTTDriver_Python3 or AMQPDriver_Python3. Based on the
underlying type convention that for each programming language
one abstract Artifact Type for drivers exists, the suitable concrete
DAs can be uniquely identified. If an application is connected to
multiple topics of different middleware systems, the abstract DA
can be replaced by multiple concrete DAs. The abstract DA just
serves as placeholder and indicator to start the DA specification
process. Especially for multiple drivers it is important to know
which driver is used for which connection. For this, a property

Driver attached to each connectsTo Relationship Template is used
referencing the driver used to establish this concrete connection
between the application and the topic.

Additionally to the DAs, IAs are required for the deployment in
step 5 to install the application logic and the drivers in a way, the
Driver Manager can use the drivers for establishing the connection
and for the communication itself. Such IAs are required for the
lifecycle operations of an application [18]. They are attached to the
Node Template itself or the Node Type Implementation. These IAs
are needed, e.g., for installing the application logic and drivers and
for establishing the connection to the topic. However, all IAs are
hidden in Figure 5 to reduce complexity.

4.3 System Architecture
As already mentioned in previous sections, a declarative runtime
for the automated deployment is required. To facilitate (i) the model
completion with middleware stacks and (ii) the driver selection and
injection such a declarative runtime has to be extended. There-
fore, in this section, we present a system architecture for a TOSCA
runtime that supports our introduced approach. The system archi-
tecture is depicted in Figure 6 in a simplified manner to focus on
the components important for our approach. Multiple other com-
ponents such as the Artifact Manager or Instance Manager are also
important for the deployment but not depicted for a better clarity.
A detailed view on the components of a TOSCA runtime, required
to instantiate an application are given in the TOSCA Primer [17].

The two main components to realize our approach are the Mid-
dleware Completion and theDA Specifier & Injector component using
two repositories: the Middleware Stack repository provides the pre-
definedmiddleware stacks used for the automated completion based
on open requirements and the Completed Topology repository stores
the completed topologies with the injected drivers.

If an incomplete TOSCA topology is given to the TOSCA runtime
as a Cloud Service Archive (CSAR), the CSAR Processor component
unpacks the CSAR to make the stored files available for the Deploy
Manager and to analyze the contained topology model. In case

iiWAS ’17, December 4–6, 2017, Salzburg, Austria K. Saatkamp et al.

the topology is incomplete, the CSAR is forwarded to the Middle-
ware Completion component that checks the open requirements
and browses the Middleware Stack repository for a matching mid-
dleware stack. When a matching topology fragment is found, the
fragment is attached to the corresponding requirement.

After the completion process, the DA Specifier & Injector com-
ponent identifies all Node Templates with attached abstract DAs.
By analyzing the outgoing relationships the relevant middleware
stacks for each Node Template are discovered. The concrete DAs
supporting the right programming language are chosen and the
abstract DAs are replaced. This completed topology is stored in the
Completed Topologies repository and the Deploy Manager deploys
the topology model accordingly and stores the instance data in the
respective repository. On the right side of Figure 6 the deployed
real IoT environment from the running example are depicted. On a
Raspberry Pi and on an OpenStack the modeled components are
deployed. Additionally, the MQTT Driver provided by the middle-
ware is deployed on the same host as the application. Thus, with
the extended TOSCA runtime the middleware completion as well
as the DA selection and injection can be executed.

5 PROTOTYPE AND APPLICATION
For the concept validation, we prototypically implemented our
approach by extending the existing TOSCA-based ecosystem Open-
TOSCA with the modeling tool Eclipse Winery6 and the TOSCA
runtime OpenTOSCA Container7. The TOSCA modeling tool Win-
ery can be used to model topologies and to export them as CSARs
[14]. The OpenTOSCA Container is a TOSCA-compliant runtime
that can process CSARs and deploy the applications accordingly
[3]. Figure 7 illustrates the enriched OpenTOSCA Container. Com-
ponents, which are not in focus of this work are skipped but can be
6https://github.com/eclipse/winery
7https://github.com/OpenTOSCA

HTTP REST API

OpenTOSCA Container Backend

OpenTOSCA Container UI

HTTP REST API

Container Repository

Middleware Completion DA Specifier & Injector

Middleware
Stacks

Completed
Topologies

Control

CSAR Importer & Exporter

Plan Builder

Instance
Data

Instance
Data

IA &
Plan

Engine

Figure 7: Enriched OpenTOSCA ecosystem

looked up in Binz et al. [3]. The Container Repository extends the
existing Container, whereby its source code bases on the source
code of the Winery. The OpenTOSCA Container uses the Container
Repository for the model adjustment during deployment time.

The middleware-independent model can be modeled with the
Winery and exported as CSAR. This OpenTOSCA Container UI can
be used to upload the CSAR to the Container. The Control compo-
nent interprets the included topology and checks if it contains open
requirements. In case the topology is incomplete, the OpenTOSCA
Container forwards the CSAR to the Container Repository for the
completion. The Middleware Completion component matches, in
the first step, the open requirements of the incomplete topology
to topology fragments from the Middleware Stacks repository. In
the Middleware Stack repository the topology fragments are stored
as TOSCA topology templates in a specific namespace that identi-
fies these topologies as basis for the middleware completion. After
the completion, the DA Specifier & Injector component detects the
abstract DAs and replaces them by concrete DAs as described in pre-
vious sections. This completed and specified topology is exported
from the Container Repository to the OpenTOSCA container, which
starts again the deployment of the topology: the Plan Builder gen-
erates the plans based on the topology and the IA & Plan Engine
processes the plans and required IAs for the instantiation.

This prototype is used to demonstrate how to apply the intro-
duced approach to a concrete use case scenario. We want to show,
that (i) a MQTT broker (Eclipse Mosquitto8) and a AMQP broker
(RabittMQ9) can be used interchangeable based on the generic dri-
ver injection model and that (ii) this can be done for a Python as
well as a Java application. The topology model for this test scenario
is illustrated in Figure 8. A Python application hosted on a Rasp-
berry Pi publishes data to a topic. The Java application running on
a virtual machine subscribes to this topic to process the data. The
marked middleware stack is interchangeable and not part of the
middleware-independent model.

In a first step, the Driver Manager as described in Section 3.2
is implemented in Python and Java. The libraries are used to im-
plement the Python Publisher application and the Java Subscriber
application. The middleware-independent model is described ap-
propriate by adding two DAs to each application Node Template.
For the Python application the DA is of type DriverPython3 and for
the Java application of type DriverJava8. Both are abstract Artifact
Types and required for a later DA specification and injection. Fur-
thermore, the available middleware stacks with the two different
brokers have to be prepared as topology models. For each broker, a
topology is modeled containing the broker itself with its hosting
environment. A Capability is added to the broker Node Template to
enable an automated completion. The broker specific driver inter-
face implementations are added to the Node Template as concrete
DAs: one for Python and one for Java applications. The Artifact
Types are derived from the abstract types attached to the Publisher
and the Subscriber, respectively. These middleware fragments are
stored in the Middleware Stacks repository.

After the development and modeling phase the deployment is ex-
ecuted. First of all, the Middleware Completion component searches

8https://mosquitto.org/
9https://www.rabbitmq.com/

Generic Driver Injection for Automated IoT Application Deployments iiWAS ’17, December 4–6, 2017, Salzburg, Austria

Device-OS
(RaspbianJessie)

Python
(Python_3)

Device
(RaspberryPi3)

Topic
(Topic)

Publisher
(PythonApp)

Hypervisor
(OpenStack)

VM
(Ubuntu14.04VM)

MQTTBroker
(Mosquitto_3.1)

Message
Broker

DA

DA

DA DA

…

Message
Broker

Tomcat
(Tomcat)

Subscriber
(JAR)

DA

DA

Broker-OS
(Ubuntu14.04VM)

can substitutecan substitute

Hypervisor
(OpenStack)

middleware stack

Figure 8: Case study topology model

for a matching topology fragment for the open requirement Mes-
sage Broker in the topology model. For a matching capability, the
correct Relationship Type to connect the requirement with the ca-
pability is determined based on the inheritance hierarchy of the
capability. In our case, a hostedOn relationship is chosen. In the
next step, the DA Specifier & Injector component determines all
abstract DAs contained in the topology model. For the abstract
DAs attached to the Publisher Node Template and Subscriber Node
Template, concrete DAs are detected at the Broker Node Template
which replace the abstract ones on both sides. The deployment of
the use case with the Eclipse Mosquitto as well as the RabbitMQ
middleware stack was successful. This demonstrates the feasibility
of our approach with a common used standard like TOSCA.

6 RELATEDWORK
Although different approaches exist dealing with the automated
deployment of IoT applications [8, 13, 15, 22], the portability be-
tween different IoT environments and the automated deployment
adjustment to enable the integration with the different middle-
ware systems are not tackled. Li et al. [15] show how TOSCA
can be used in general for modeling IoT applications. With the
LEONORE framework an extension of this work is presented to en-
able a large-scale provisioning of IoT applications in a heterogenous
environment [21]. Preinstalled components are required on each
IoT gateway (i.e. device) and the portability as well as integration
with higher level applications is not addressed.

Franco da Silva et al. [8] focus on the deployment of thewhole IoT
environment with TOSCA and on the difference of the deployment
models with different IoT middleware systems. The provisioning
of the same IoT scenario with different middleware is realized by a

remodeling of the TOSCA deployment model and an adjustment of
the application code. The approach implies that (i) the application
code is accessible and (ii) experts familiar with the application code
are available. Both prerequisites are often not met, especially if
software provided by third parties are used. But also if they are
satisfied, it is a great development effort, especially for complex
applications. These are the issues we tackle with our approach.

Hur et al. [13] address the deployment across different IoT plat-
forms by using a semantic service description ontology to get a
common understanding of heterogeneous devices and service de-
ployments. However, the integration of applications and middle-
ware systems is not tackled.

Zimmermann et al. [22] introduce an approach to ease the in-
teraction of components by expressing the application operations
as application interfaces in TOSCA and to enable the communica-
tion via service bus. The use of a service bus always generates an
overhead, which is not practical in many IoT environments.

Well known are the enterprise integration patterns which docu-
ments best practice solution for the integration of applications [12].
The messaging endpoint of an application is responsible to send and
receive messages. Such an endpoint is at least a messaging gateway.
The messaging gateway encapsulates the communication behavior
from the application logic. As presented in Guth et al. [10] such a
gateway is often part of the IoT architecture to enable the commu-
nication between the devices and the IoT integration middleware.
Our driver concept implements this gateway pattern.

Different gateways to transform the transport protocol between
IoT devices, middleware, and higher-level applications are already
introduced [2, 6]. Desai et al. [6] introduce a Semantic Gateway as
a Service for the translation between messaging protocols to enable

iiWAS ’17, December 4–6, 2017, Salzburg, Austria K. Saatkamp et al.

the interoperability and independence between different protocols.
For this, a multi-protocol proxy is developed to bridge between the
communication clients on the device side and the message broker.
However, the broker is part of the proxy and not exchangeable. An
extensible intelligent gateway is presented by A-Fuqaha et al. [2]
able to transform different protocols and to take QoS aspects into
account. Instead of protocol translations for the different protocols,
we provide a programming model to enable the development of
drivers for arbitrary middleware systems.

The technical realization of our approach bases on the Service Lo-
cator Pattern [7]. The Driver Manager is the central entity that deals
with the dependencies to the drivers required to establish the con-
nections between a software component and a specific middleware.
Thus, the dynamical binding of drivers during deployment time is
possible. Compared to the other approaches, our concept enables
not only the interoperability independent of the communication
protocol because of the middleware-dependent driver injection,
but also the portability and automated deployment and integra-
tion of the devices and higher level applications in different IoT
environments with different middleware systems.

7 CONCLUSION
In this paper, we presented our generic driver injection concept
to enable the development of portable IoT applications, which can
be deployed in different IoT environments with different IoT inte-
gration middleware systems. This concept eliminates the manual
adaptation effort to adjust the communication client on the appli-
cation side for the communication with the respective middleware.
For this, we introduced a middleware-independent modeling ap-
proach for deployment models. The IoT scenario with the devices
and applications are modeled independently of the used IoT mid-
dleware. For each IoT environment this middleware-independent
model is completed by the available middleware. Based on the
introduced programming model, the injection of communication
drivers dependent on the selected middleware is facilitated. These
drivers encapsulate the communication between IoT applications
and a specific middleware. Each middleware comes with a set of
drivers, which can be used by the IoT applications to establish the
connection the middleware. Thus, the communication behavior
between applications and message brokers is encapsulated in the
driver which are provided by the middleware itself.

We presented furthermore the execution of the model comple-
tion with a specific middleware, the driver selection and injection,
and the deployment of the IoT environment in an automated man-
ner. We validated this approach with a TOSCA-based prototype
and demonstrated the feasibility by using the prototype for a con-
crete use case scenario. In this paper, we focused on a specific IoT
programming model. However, it is a generic concept which can
be applied to different domains. The extension of the approach to
other domains is part of future works.

ACKNOWLEDGMENTS
This work is partially funded by the BMWi project SmartOrchestra
(01MD16001F) and IC4F (01MA17008G).

REFERENCES
[1] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and

Moussa Ayyash. 2015. Internet of things: A survey on enabling technologies,
protocols, and applications. IEEE Communications Surveys & Tutorials 17, 4 (2015),
2347–2376.

[2] Ala Al-Fuqaha, Abdallah Khreishah, Mohsen Guizani, Ammar Rayes, and Mehdi
Mohammadi. 2015. Toward better horizontal integration among IoT services.
IEEE Communications Magazine 53, 9 (2015), 72–79.

[3] Tobias Binz, Uwe Breitenbücher, Florian Haupt, Oliver Kopp, Frank Leymann,
Alexander Nowak, and Sebastian Wagner. 2013. OpenTOSCA – A Runtime
for TOSCA-based Cloud Applications. In Proceedings of the 11th International
Conference on Service-Oriented Computing (ICSOC 2013). Springer, 692–695.

[4] Tobias Binz, Gerd Breiter, Frank Leymann, and Thomas Spatzier. 2012. Portable
Cloud Services Using TOSCA. IEEE Internet Computing 16, 03 (May 2012), 80–85.

[5] Uwe Breitenbücher, Tobias Binz, Kálmán Képes, Oliver Kopp, Frank Leymann,
and Johannes Wettinger. 2014. Combining Declarative and Imperative Cloud
Application Provisioning based on TOSCA. In International Conference on Cloud
Engineering (IC2E 2014). IEEE, 87–96.

[6] Pratikkumar Desai, Amit Sheth, and Pramod Anantharam. 2015. Semantic Gate-
way as a Service Architecture for IoT Interoperability. In Proceedings of the IEEE
International Conference on Mobile Services (MS). IEEE, 313–319.

[7] Martin Fowler. 2004. Inversion of control containers and the dependency injection
pattern. (Jan. 2004). https://martinfowler.com/articles/injection.html

[8] Ana Cristina Franco da Silva, Uwe Breitenbücher, Pascal Hirmer, Kálmán Képes,
Oliver Kopp, Frank Leymann, Bernhard Mitschang, and Roland Steinke. 2017.
Internet of Things Out of the Box: Using TOSCA for Automating the Deployment
of IoT Environments. In Proceedings of the 7th International Conference on Cloud
Computing and Services Science (CLOSER 2017). SciTePress, 358–367.

[9] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. 2013. Internet of Things (IoT): A vision, architectural elements, and
future directions. Future Generation Computer Systems 29, 7 (2013), 1645–1660.

[10] Jasmin Guth, Uwe Breitenbücher, Michael Falkenthal, Frank Leymann, and Lukas
Reinfurt. 2016. Comparison of IoT Platform Architectures: A Field Study based
on a Reference Architecture. In 2016 Cloudification of the Internet of Things (CIoT).
IEEE, 1–6.

[11] Pascal Hirmer, Uwe Breitenbücher, Tobias Binz, Frank Leymann, et al. 2014.
Automatic Topology Completion of TOSCA-based Cloud Applications. In GI-
Jahrestagung. GI, Vol. P-251. GI, 247–258.

[12] Gregor Hohpe and Bobby Woolf. 2004. Enterprise integration patterns: Designing,
building, and deploying messaging solutions. Addison-Wesley Professional.

[13] Kangho Hur, Sejin Chun, Xiongnan Jin, and Kyong-Ho Lee. 2015. Towards a
Semantic Model for Automated Deployment of IoT Services across Platforms. In
Proceedings of the IEEE World Congress on Services (SERVICES. IEEE, 17–20.

[14] Oliver Kopp, Tobias Binz, Uwe Breitenbücher, and Frank Leymann. 2013. Winery
– AModeling Tool for TOSCA-based Cloud Applications. In Proceedings of the 11th
International Conference on Service-Oriented Computing (ICSOC 2013). Springer,
700–704.

[15] Fei Li, Michael Vögler, Markus Claessens, and Schahram Dustdar. 2013. Towards
Automated IoT Application Deployment by a Cloud-Based Approach. In Pro-
ceedings of the 6th International Conference on Service-Oriented Computing and
Applications (SOCA)). IEEE, 61–68.

[16] Julien Mineraud, Oleksiy Mazhelis, Xiang Su, and Sasu Tarkoma. 2016. A gap
analysis of Internet-of-Things platforms. Computer Communications 89 (2016),
5–16.

[17] OASIS. 2013. Topology and Orchestration Specification for Cloud Applications
(TOSCA) Primer Version 1.0. Organization for the Advancement of Structured
Information Standards (OASIS).

[18] OASIS. 2013. Topology and Orchestration Specification for Cloud Applications
(TOSCA) Version 1.0. Organization for the Advancement of Structured Information
Standards (OASIS).

[19] Mohammad Abdur Razzaque, Marija Milojevic-Jevric, Andrei Palade, and Siobhán
Clarke. 2016. Middleware for internet of things: a survey. IEEE Internet of Things
Journal 3, 1 (2016), 70–95.

[20] Karoline Saatkamp, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. 2017.
Topology Splitting and Matching for Multi-Cloud Deployments. In Proceedings of
the 7th International Conference on Cloud Computing and Services Science (CLOSER
2017). SciTePress, 247–258.

[21] Michael Vögler, Johannes Schleicher, Christian Inzinger, Stefan Nastic, Sanjin
Sehic, and Schahram Dustdar. 2015. LEONORE - Large-Scale Provisioning of
Resource-Constrained IoT Deployments. In IEEE Symposium on Service-Oriented
System Engineering. IEEE, 78–87.

[22] Michael Zimmermann, Uwe Breitenbücher, and Frank Leymann. 2017. A TOSCA-
based Programming Model for Interacting Components of Automatically De-
ployed Cloud and IoT Applications. In Proceedings of the 19th International Con-
ference on Enterprise Information Systems (ICEIS), Vol. 2. SciTePress, 121–131.

https://martinfowler.com/articles/injection.html

