
© The Hillside Group 2017
This is the author's version of the work. It is posted here by permission of The
Hillside Group for your personal use. Not for redistribution. The definitive version is
available at ACM: http://dl.acm.org/citation.cfm?id=3290281.3290305

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. 

@inproceedings {Reinfurt.2017,
author = {Reinfurt, Lukas and Breitenb\"{u}cher, Uwe and 

Falkenthal, Michael and Fremantle, Paul and Leymann, Frank},
title = {Internet of Things Security Patterns},
booktitle = {Proceedings of the 24th Conference on Pattern 

Languages of Programs},
year = {2017},
numpages = {28},
url = {http://dl.acm.org/citation.cfm?id=3290281.3290305},
publisher = {The Hillside Group},

} 

:

Reinfurt, L., Breitenbücher, U., Falkenthal, M., Fremantle, P., and Leymann, F. 2017. 

Internet of Things Security Patterns. HILLSIDE Proc. of Conf. on Pattern Lang. of 

Prog. 24 (October 2017), 28 pages.

1Institute of Architecture of Application Systems, 
University of Stuttgart, Germany

{firstname.lastname}@iaas.uni-stuttgart.de

2Daimler AG, Stuttgart, Germany

lukas.reinfurt@daimler.com

3School of Computing, 
University of Portsmouth, UK

paul.fremantle@port.ac.uk

Internet of Things Security Patterns

Lukas Reinfurt1,2, Uwe Breitenbücher1, Michael Falkenthal1, Paul Fremantle3

Frank Leymann1,

Institute of Architecture of Application Systems

http://dl.acm.org/citation.cfm?id=3290281.3290305
mailto:%7Bfirstname.lastname%7D@iaas.uni-stuttgart.de
mailto:Lukas.reinfurt@daimler.com
mailto:%7Bpaul.fremantle@port.ac.uk


Internet of Things Security Patterns
Lukas Reinfurt, Daimler AG
Uwe Breitenbücher, University of Stuttgart
Michael Falkenthal, University of Stuttgart
Paul Fremantle, University of Portsmouth
Frank Leymann, University of Stuttgart

The Internet of Things (IoT) is growing, with new technologies, standards, devices, platforms, and applications being constantly developed. This
has lead to a confusing solution landscape, which makes understanding the various options and choosing a path between them difficult. In order
to help with this problem, we have collected IoT Patterns, which are textual descriptions of common problems and their abstract solutions based
on repeatedly found real life examples. With this work, we add some security related IoT Patterns to complement the already existing catalog of
security patterns that can be applied to IoT systems. The Trusted Communication Partner and Outbound-Only Connection patterns decrease
the attack surface of devices. The Permission Control and Personal Zone Hub patterns give device owners control over what happens with their
devices and data. The Whitelist and Blacklist patterns control access to and prevent abuse of resources.

Categories and Subject Descriptors: [Computer systems organization] Embedded and cyber-physical systems; [Software and its engineering]
Design Patterns; [Security and privacy] Systems security, Network security

Additional Key Words and Phrases: Internet of Things, Design Patterns, Security, Devices, Data

ACM Reference Format:
Reinfurt, L., Breitenbücher, U., Falkenthal, M., Fremantle, P., and Leymann, F. 2017. Internet of Things Security Patterns. HILLSIDE Proc. of Conf.
on Pattern Lang. of Prog. 24 (October 2017), 28 pages.

1. INTRODUCTION
In recent years, the Internet of Things (IoT) has become more and more a reality. It started as a vision of all kinds of
things being equipped with sensing, actuating, processing, storage, and communication capabilities. Such a ubiquitous
layer of cyber-physical devices would then be able to i) measure itself and its environment, ii) combine, process, and
analyze these measurements to gain new insights, and iii) use these insights to optimize itself and the environment [Voas
2016]. Steady progress in the miniaturization of electronics, increased efficiency, and falling prices now make this
vision reachable [Gubbi et al. 2013]. As a result, more and more organizations and individuals, from large businesses, to
startups, to open-source developers are now trying to be part of this vision. This has lead to a large number of new
products, which keeps growing day by day. But since the realization of the IoT is still in early stages, there are also too
many standards and technologies, as well as a lack of common understanding in this area [Atzori et al. 2010; Gubbi et al.
2013; Guth et al. 2016; Ishaq et al. 2013]. In addition, development often happens in silos, as each organization builds
products for a particular domain, such as home automation or health care [Singh et al. 2016]. Thus, there is a large,
confusing IoT market with solutions that fundamentally are often not that different.

We collected frequently re-occurring problems and their proven solutions in an abstract form as IoT Patterns. These

Author’s address: Lukas Reinfurt: Epplestraße 225, 70546 Stuttgart, Germany; email: lukas.reinfurt@daimler.com; Uwe Breitenbücher, Michael
Falkenthal, and Frank Leymann: Universitätsstraße 38, 70569 Stuttgart, Germany; email: [firstname].[lastname]@iaas.uni-stuttgart.de, Paul Fremantle:
Buckingham Building, Lion Terrace, Portsmouth, UK, PO1 3HE; email: paul.fremantle@port.ac.uk
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A pre-
liminary version of this paper was presented in a writers’ workshop at the 24th Conference on Pattern Languages of Programs (PLoP).
PLoP’17, OCTOBER 22-25, Vancouver, Canada. Copyright 2017 is held by the author(s). HILLSIDE 978-1-941652-06-0



patterns should help IoT architects and developers with understanding and building IoT products. They may also be
useful for students and educators as they they provide a high level overview of common parts of IoT systems and their
interactions with each other. In our previous work, we presented IoT Patterns1 for device energy supply and operation
modes [Reinfurt et al. 2017c], communication and management [Reinfurt et al. 2016, 2017a], and bootstrapping and
registration [Reinfurt et al. 2017b], and applied some of them to smart factory systems [Reinfurt et al. 2017d]. These
patterns are mostly not concerned with security, but security is a major problem in the IoT area, which may inhibit
adoption and hamper the full realization of the broad IoT vision [Singh et al. 2016]. In IT systems that are virtual in
their scope, a security breach may lead to loss of data, system outages, or financial damages, but seldom to a safety issue.
In IoT systems, however, where all kinds of machinery may be remotely controlled, a security breach can have real
consequences and cause harm to people and property. Besides, there are a number of issues concerning, for example,
secure data transportation and management, identification and authentication, trust, or compliance, which arise from or
will only increase with the constraints of typical IoT devices, further decentralization into fogs, and the potential scale of
future IoT systems [Singh et al. 2016]. Thus, patterns that can be used to increase security in IoT systems are of vital
importance. Some already exist, as we will show in the related work in Section 2, but we present in this paper a small
selection of additional security patterns for IoT systems.

The remainder of this paper is structured as follows: Section 2 presents work related to IoT security patterns. Section 3
describes the pattern identification process we used for finding the patterns as well as the format used to document the
patterns. Section 4 presents our IoT Security Patterns in detail, while Section 5 summarizes and concludes the paper.

2. RELATED WORK
Christopher Alexander introduced the pattern approach in 1977 in his book A Pattern Language: Towns, Buildings,
Construction [Alexander et al. 1977]. From there the approach spread into other domains, in particular, IT, where
many books and other publications are available on various aspects of the field, such as object-oriented software
design [Gamma et al. 1995], messaging [Hohpe and Woolf 2004], or cloud computing [Fehling et al. 2014; Strauch et al.
2012a,b]. In addition, there has been more work on the pattern authoring process in general [Fehling et al. 2015a, 2014;
Harrison 2006a,b; Meszaros and Doble 1996; Wellhausen and Fießer 2012]. There is also work on making abstract
patterns usable for concrete scenarios by treating the examples present in the pattern description as concrete solutions,
which can be linked to the patterns and be reused for concrete implementations [Falkenthal et al. 2014a,b]. Abstract
patterns can also be linked to other patterns with technology specific explanations [Falkenthal et al. 2016]
In the domain of IoT patterns, we presented four papers with patterns for device energy supplies and operation

modes [Reinfurt et al. 2017c], device communication and management [Reinfurt et al. 2016, 2017a], and device
bootstrapping and registration [Reinfurt et al. 2017b]. These patterns are mostly not concerned with security, apart from
the Remote Lock and Wipe pattern, which allows stolen devices to be remotely locked or wiped to prevent misuse or
data theft. Eloranta et al. presented patterns for building distributed control systems [Eloranta et al. 2014a,b]. These
patterns are more concerned with safety than with security. Qanbari et al. introduced four patterns for provisioning,
deploying, orchestrating, and monitoring edge applications [Qanbari et al. 2016]. These patterns are not concerned with
security aspects. Another paper presents a pattern language for IoT applications [Chandra 2016]. It is largely based on
blog entries of patterns which are not comparable to our patterns, neither in format nor scope. In the case of the security
patterns, they consist of only one sentence per pattern.

In the domain of security patterns there also has been some work which may be relevant to IoT security. Schumacher
et al. published security patterns on various topics, including identification and authentication, access control, and
cryptographic key management [Schumacher et al. 2005]. Several of these patterns are relevant for and used in IoT
solutions, such as Authorization, Role-Based Access Control, Role Rights Definition, Single Access Point,
Limited Access, Packet Filter Firewall, Authenticator, Secure Channels, Known Partners, and Certificate
Revocation. Schumacher also published the Firewall, Packet Filter, and Proxy patterns [Schumacher 2003].

1More information and excerpts of already published IoT Patterns can be found at http://www.internetofthingspatterns.com

Internet of Things Security Patterns — Page 2

http://www.internetofthingspatterns.com


Fernandez added a more recent publication which adds further patterns that are relevant to IoT security, such as
Authenticator, Credential, Policy-Based Access Control, Access Control List, Asymmetrical Encryption,
Digital Signature with Hashing, and Secure Distributed Publish/Subscribe [Fernandez 2013]. Villarreal et al.
describe a Whitelisting Firewall pattern [Villarreal et al. 2013]. Romanosky lists several security design patterns, of
which Authoritative Source of Data and Fail Securely are relevant to IoT [Romanosky 2001]. Another collection
of patterns by Kienzle et al. includes general security patterns that may be relevant for IoT [Kienzle et al. 2002]. Among
them is the Network Address Blacklist pattern, which can be seen as a variant of our Blacklist pattern. Blakley et
al. present several patterns for building available and protected systems [The Open Group 2014]. Among them are the
Protected System, Policy, Authenticator, Secure Communication, Security Association, and Secure Proxy
patterns, which are applicable to IoT systems. Yoder et al. describe seven architectural patterns for enabling application
security [Yoder and Barcalow Yoder and Barcalow], including Single Access Point, Roles, and Limited View, which
are used in IoT systems as well. All these existing patterns cover many areas of security in IoT systems. Nevertheless,
the IoT presents new features and problems not covered by the more general security patterns for which we present
additional patterns in this paper. These new patterns should be seen as complementary to the existing security pattern
catalog and often have to be used in combination with existing patterns to provide security.

3. PATTERN IDENTIFICATION AND FORMAT
Patterns are not invented, they are found. In our previous work, we described our process for finding patterns in more
detail [Reinfurt et al. 2016, 2017a], which is based on [Coplien 1996; Fehling et al. 2015b]. We start by reading
technical documentation, user manuals, product pages, standards, research papers, and white papers concerned with IoT
products or technologies. During reading, we collect and group reoccurring descriptions of solutions to build a catalog
of potential pattern ideas. Once we have at least three such solution descriptions per pattern idea (Coplien’s Rule of
Three [Coplien 1996]), we combine theses solutions into an abstract description and author a pattern around it.

The pattern format we use for that is based on other existing formats and guides, including [Fehling et al. 2015a,
2014; Harrison 2006a,b; Meszaros and Doble 1996; Wellhausen and Fießer 2012]. It is described in more detail in our
previous work [Reinfurt et al. 2016, 2017a,b]. In short, it contains the following elements: A Name and Icon provide
textual and visual identifiers for the patterns. The icon can also be used in architectural diagrams, drawings, or GUIs to
represent the pattern. A short summary is also added to provide a quick overview of the pattern. If the pattern might
be known under different names, these are listed as Aliases. The Context section details the situation in which the
Problem occurs. To solve the problem, you often have to weigh different aspects against each other, which are listed as
Forces. These lead to a Solution, which is shortly summarized. The Solution Details section goes into more detail on
the solution and provides some benefits and drawbacks that should be considered. Sometimes, there are variations of a
pattern which are then listed in the Variants section. A pattern also often has other Related Patterns, with which it
could be combined or with which it may be incompatible. In the end, the Known Uses of the pattern are listed, which
are the real life examples on which the pattern is based.

4. INTERNET OF THINGS SECURITY PATTERNS
In this section, we present the IoT Security Patterns we collected in the scope of this work. Figure 1 provides an overview
of the patterns and Table I adds short summaries. The following subsections go into more details on these patterns.

Internet of Things Security Patterns — Page 3



Fig. 1. Overview of and connections between the IoT Security Patterns presented in this paper.

Table I. Short summary of the IoT Security Patterns of this paper.

Icon Description

Trusted Communication Partner (p. 5)
IoT environments may contain all sorts of devices and other components that are not under your direct
control. These may pose a security or privacy risk to your devices and data. Limit your devices’ autonomy
and configure them to communicate only with trusted partners. Block and notify connection attempts from
other sources.

Outbound-Only Connection (p. 8)
Attackers may send unsolicited connection requests to devices to get them to connect to an infected
communication partner. To prevent this, configure devices so that only they initiate connections. Block all
incoming connection requests.

Permission Control (p. 11)
Device owners are afraid to completely hand over access to their devices and data to others. Allow device
owners to choose which functionality and data a backend server or other communication partners are allowed
to access when they first connect to the device. Ensure that these choices are respected and updated when
something changes.

Personal Zone Hub (p. 14)
Managing the permissions, data sharing, and control of devices across multiple gateways and clouds is
complex. Create a Personal Zone Hub which handles such settings in a central place under the control of
the device owner or a trusted third party. Allow owners to selectively provide access to their devices and data
through this hub.

Whitelist (p. 17)
Available privileges may be abused, but not all potential abusers are known beforehand. To minimize the risk
of abuse, add identifiers of all trusted communication partners to a Whitelist. Block the privileges controlled
by the Whitelist for those who are not on it.

Blacklist (p. 21)
Available privileges may be abused. To stop this, implement a Blacklist to which identifiers of abusive
communication partners can be added. For each partner that requests a privilege first check this list and deny
it if its identifier is found on it.

Internet of Things Security Patterns — Page 4



4.1 Trusted Communication Partner

IoT environments may contain all sorts of devices and other components that are not
under your direct control. These may pose a security or privacy risk to your devices and

data. Limit your devices’ autonomy and configure them to communicate only with
trusted partners. Block and notify connection attempts from other sources.

Aliases: Well-Known Target

Context: In the IoT, devices may communicate with many other communication partners, such as backend servers,
applications, or other devices. Some of these connections may be used regularly while others are used infrequently.
Besides, the number of available communication partners may be constantly changing as new apps or services are
created and devices change their location.

Problem: In a dynamic environment there may be multiple potential communication partners available for a
device. These may not be known or trusted and may pose a security risk as attackers may try to use them to get
access to devices and their networks.

Forces:

—Threats: Other components may pose a threat by trying to access the device or by launching a denial of service attack.
—Uninvited Communication: Uninvited communication should be blocked where possible.
—Functionality: The security measures should not impede normal operation and communication.
—Flexibility: Some use cases are rather static and do not involve frequently changing communication partners. Others

are the opposite and require interactions with frequently changing communication partners, which increases the risk
of potential attacks.

Solution: Configure the device with a single communication partner or a list of communication partners that you
trust. Only allow incoming or outgoing communication with these Trusted Communication Partners. Block
other communication attempts and notify the person responsible for investigating these attempts.

Solution Details: Each device is configured to only communicate with a limited selection of Trusted Communication
Partners. These Trusted Communication Partners may have been placed on the device during bootstrapping. They
may also be configured and changed later on.

Trusted Communication Partners may be implemented in form of single entries in a configuration file, as shown
in the middle of Figure 2. On the device, a component checks each incoming and outgoing connection. If the connection
source (for incoming) or target (for outgoing) connections matches the entry in the configuration file, as shown for
number 2 and 4 in Figure 2, it is allowed to pass.

Internet of Things Security Patterns — Page 5



Fig. 2. Solution sketch of the Trusted Communication Partner pattern.

Otherwise, the connection is blocked and logged, for example, number 1 and 3 in Figure 2. The logs may be used for
monitoring purposes later on or they may be pushed to another component for live monitoring. They can also be used as
a basis for generating a Blacklist.

For some use cases, it may make sense to only use Trusted Communication Partners for certain functionality. For
example, it may be required that any communication partner can read the sensor values of your device, while only a
selection is allowed to control the actuators. Common examples for Trusted Communication Partners are Device
Gateways, Device Shadows, servers for Remote Device Management, or a Personal Zone Hub.

Benefits:

—Decreased Attack Surface: Communication is restricted to a small number of Trusted Communication Partners,
which decreases the surface for attacks.

—Explicit Allowance: Each allowed communication partner has to be specified, making allowed partners explicit.

Drawbacks:

—Infected Communication Partner: A Trusted Communication Partner on the list may still be infected and pose
a risk. Taking security measurements to limit the likelihood of such infection may help but cannot totally eliminate
the possibility.

—Spoofing: An attacker may be able to imitate a Trusted Communication Partner by taking over its address. This is
known as spoofing. On a local network, a new system can take over the IP address of a Trusted Communication
Partner. On the wider Internet, the attacker may take over the DNS entry. To prevent others from posing as a
Trusted Communication Partner, use Digital Signature with Hashing so that they can prove that they are
legitimate [Fernandez 2013].

—Limited Flexibility: Only allowing communication with Trusted Communication Partners limits flexibility when
communicating with other partners is required. This also applies when you are offering a product or service where
this may block potential customers.

—Effort: Each new communication partner has to be specified before it can communicate with the device. This makes
Trusted Communication Partner impractical for situations where communication partners change frequently.

Internet of Things Security Patterns — Page 6



Factory Bootstrap2, On-Site Bootstrap3, or Remote Bootstrap4 can be used for the initial setup of Trusted
Communication Partners [Reinfurt et al. 2017b]. Remote Device Management5 can be used to change Trusted
Communication Partners later on [Reinfurt et al. 2017a].

Related Patterns:

—Factory Bootstrap, On-Site Bootstrap, or Remote Bootstrap: These patterns may be used to configure
Trusted Communication Partners at the beginning of a device’s lifetime [Reinfurt et al. 2017b].

—Remote Device Management: When a device is already deployed, Remote Device Management may be used
to change Trusted Communication Partners in the field [Reinfurt et al. 2017a]. A Remote Device Management
server is often also a good candidate for a Trusted Communication Partner.

—Whitelist: The representation of Trusted Communication Partners can be implemented with a Whitelist
which could be in the form of a Whitelisting Firewall [Villarreal et al. 2013].

—Outbound-Only Connection: Trusted Communication Partners may be combined with Outbound-Only
Connection to only allow communication which is outgoing and targets a known communication partner.

—Permission Control: A user may be asked with Permission Control to select or agree to Trusted Communica-
tion Partners for communication.

—Device Gateway6 or Device Shadow7: For many devices, Device Gateways or Device Shadows are Trusted
Communication Partners [Reinfurt et al. 2016, 2017a].

—Known Partners: This pattern describes a similar problem, where an organization has to ensure that the entities
they interact with are who they claim they are. The solution is to use certificates to proof identities [Schumacher et al.
2005].

—Firewall: A Firewall is another way to manage and check communication with Trusted Communication
Partners [Schumacher 2003]. It has more sophisticated means for inspecting and blocking communication, but also
requires more resources, which may not be available on constrained devices.

Known Uses: The Microsoft Azure IoT Hub documentation mentions that devices should only communicate with
Trusted services [Microsoft 2015]. Optigo Networks explains that HVAC devices should only communicate with
authorized controllers. Other communication attempts should be blocked and notified [Optigo Networks 2016]. The
device libraries, SDKs, or documentation of some IoT platforms define specific communication targets which a developer
has to use to connect a device to the platform. IBM’s Watson IoT Platform provides a specific MQTT topic format, which
has to be used to connect devices to the platform [IBM 2016]. In a similar fashion, Amazon offers SDKs for its AWS
IoT platform, which connect devices to the platform’s Device Gateway or Device Shadow through MQTT [Amazon
Web Services 2017]. In OAuthing, devices use a Trusted Communication Partner to connect to a device identity
provider over MQTT [Fremantle and Aziz 2016].

2Factory Bootstrap places information required to create an initial connection on a device during the manufacturing process [Reinfurt et al. 2017b].
3On-Site Bootstrap allows placing the information required for initial communication on devices while they are in the field by using removable
storage media [Reinfurt et al. 2017b].
4Remote Bootstrap enables remote distribution of information required for connecting a device to communication partners [Reinfurt et al. 2017b].
5Remote Device Management provides functionality to remotely install and update software, enable or disable functionality, and otherwise manage
devices [Reinfurt et al. 2017a].
6A Device Gateway allows devices which do not support a specific network to participate in this network by acting as a translator [Reinfurt et al.
2016, 2017a].
7A Device Shadow provides a virtual representation of a physical device, which is synchronized with the device whenever it is online. Communication
partners can communicate with the device through its shadow, even if it is offline [Reinfurt et al. 2016, 2017a].

Internet of Things Security Patterns — Page 7



4.2 Outbound-Only Connection

Attackers may send unsolicited connection requests to devices to get them to connect to
an infected communication partner. To prevent this, configure devices so that only they

initiate connections. Block all incoming connection requests.

Context: Devices and other components often have to communicate bidirectionally: Devices send data to other devices
or services for monitoring, processing, analysis, or storage purposes. Devices also receive commands which control
actuators attached to them or trigger functionality built into them. This communication poses a security risk as attackers
might try to gain access to devices to manipulate them.

Problem: Devices are a target for attackers who try to gain access to their network. They may send unsolicited
communication requests to the devices to get them to connect to an infected communication partner or to misuse
them.

Forces:

—Security: Unsolicited request must be ignored.
—Functionality: The original functionality of the devices has to stay intact. They have to be able to send their data and
they also have to be able to receive commands from other communication partners.

—Constraints:Many IoT devices are constrained in their capabilities. This limits the viability of more sophisticated
solutions for controlling communication, such as Firewalls or Packet Filters [Schumacher 2003].

Solution: Program devices so that only they initiate connections. Deny all incoming communication requests
that are not responses to a connection already created by the device.

Solution Details: When using Outbound-Only Connection, devices initiate all connections to other communication
partners as shown in Figure 3 A. This requires that the devices know all the possible communication partners. These
partners could be stored in some kind of list, configuration file, or database, which is stored on the device during
bootstrapping and may be changed later on.

The device may use certain events, such as sensor reading above a threshold, a schedule, or other parameters to work
out when it needs to communicate with others. Then it initiates the connection and sends the messages it wants to
send to the communication partners, as shown at number 1 in Figure 3 B. It may also retrieve messages from these
partners. This may be done in different ways. It may retrieve pending messages each time it creates a connection to send
a message itself. It may also poll for pending messages by periodically creating a connection, even if it does not have
any messages to send.

Internet of Things Security Patterns — Page 8



Fig. 3. Solution sketch of the Outbound-Only Connection pattern.

Another way is creating a long lasting session, which allows its communication partner to send messages as he wants
as long as the connection remains active, as shown at number 3 in Figure 3 B. As such, Outbound-Only Connection
does not restrict bidirectional communication once a connection is established but it does restrict the initial creation of a
connection from the outside.
As all incoming requests that are not an answer to a previously send request are categorically denied, as shown at

number 2 in Figure 3 B, there are fewer vectors of attack. Additionally, no ports have to be opened in firewalls which
further decreases the attack surface. But this also prevents communication partners to contact the device if it has not
already established a connection. They have to wait until the device decides to create a connection which may be too
late for some situations.

Benefits:

—Security: The device ignores all unsolicited incoming traffic. This filters potentially malicious communication.
—No Open Ports:When all communication is initiated from the device outwards, no ports have to be opened. This
simplifies deployment and removes security holes.

—Firewalls: Devices that only communicate outbound can successfully connect through firewalls and Network Address
Translation (NAT).

—Low Energy: The device decides when to establish a connection. This allows the device to optimize communication
for low energy usage, which is useful for Period Energy-Limited Devices, Lifetime Energy-Limited Devices, and
Energy-Harvesting Devices [Reinfurt et al. 2017c].

Drawbacks:

—Reachability: The device may not be connected at the point in time when its communication partner wants to
communicate with it. The partner has to wait until the device decides to connect. A notification mechanism like the
Device Wakeup Trigger8 may be used to tell the device to reconnect.

—Checking: Unless the device has created a session with them, there is no way for other components to check the
device’s status for reliability purposes. The device could send heartbeat messages at regular intervals to inform others
that everything is working normally.

8A Device Wakeup Trigger uses a secondary low-power communication channel to wake up sleeping devices if needed [Reinfurt et al. 2016, 2017a].

Internet of Things Security Patterns — Page 9



—Security: Using Outbound-Only Connection does not protect against a hacked communication partner or a
middleman attack.

Related Patterns:

—Factory Bootstrap, On-Site Bootstrap, or Remote Bootstrap: These patterns may be used to specify
allowed communication partners on the devices [Reinfurt et al. 2017b].

—Remote Device Management:After bootstrapping, communication partners can be changed with Remote Device
Management [Reinfurt et al. 2017a].

—Device Wakeup Trigger: To get a sleeping device to connect when needed, a Device Wakeup Trigger can be
used [Reinfurt et al. 2016, 2017a].

—Period Energy-Limited Devices9, Lifetime Energy-Limited Devices10, or Energy Harvesting De-
vices11: These devices may use Outbound-Only Connection to manage their communication to get the most out
of their limited energy supply [Reinfurt et al. 2017c].

—Trusted Communication Partner: Outbound-Only Connection can be combined with Trusted Commu-
nication Partner for increased security. In this case, devices only communicate with preconfigured Trusted
Communication Partners and they always initiate the communication.

Known Uses: Microsoft’s Azure IoT Hub documentation mentions that devices do not accept unsolicited communication
requests. Rather, they initiate all connections themselves. To receive commands they regularly establish a connection to
the backend [Microsoft 2015]. Devices using the ThingWorx AlwaysOn protocol will initiate all connections. Thus,
opening ports in firewalls to allow them to communicate can be avoided. The established connection is persistent and
allows the platform to send messages to devices [ThingWorx 2016]. The OMA Device Management Protocol sessions
are always initiated by the clients. But servers may trigger clients to initiate a session by sending a notification [Open
Mobile Alliance 2015]. Devices using the MQTT protocol initiate all connections to an MQTT broker [OASIS 2014].

9A Period Energy Limited Device uses replaceable or rechargeable batteries as power source [Reinfurt et al. 2017c].
10A Lifetime Energy-Limited Device uses a build in battery as power source which cannot be renewed once depleted [Reinfurt et al. 2017c].
11An Energy Harvesting Device uses environmental energy sources, such as solar or wind, to power itself [Reinfurt et al. 2017c].

Internet of Things Security Patterns — Page 10



4.3 Permission Control

Device owners are afraid to completely hand over access to their devices and data to
others. Allow device owners to choose which functionality and data a backend server or
other communication partners are allowed to access when they first connect to the

device. Ensure that these choices are respected and updated when something changes.

Aliases: Explicit Choice

Context: In the IoT there are often multiple stakeholders involved, such as device and platform manufacturers, owners,
and users. Building and using IoT solutions often requires communication between the components of these stakeholders,
for example between devices and a backend server, as data and functionality are shared.

Problem: Device owners are afraid to completely hand over access to their devices and data to third parties
without any control. Often, it is unclear what data a device shares with communication partners or what others
can access and control.

Forces:

—Choice: Device owners should have a choice as to what rights they grant a particular communication partner. This
may include scenarios where they do only grant limited rights with which communication partners have to work. The
available choices depend on the use case and its semantics.

—Granularity: Different levels of granularity may be required depending on the use case.
—Enforcement: The mechanism has to protect users’ rights. If a user chooses not to allow something it has to make
sure that this choice is enforced.

—Simplicity: Such a mechanism has to be easy to use for end users. It will not be adopted or it will be wrongly used if
it is too complicated.

—Updates: Capabilities of devices and the communication partners which access them change. In such a case, the user
may change his mind about previous choices or has to make new choices. The backend server and other systems have
to make sure to work with the current set of choices at all times.

Solution: When first connecting a device to a backend server, require an explicit choice from the user regarding
which functionality and data the backend and other communication partners are allowed to use. Build your
backend server so that it adheres to these choices. Require the user to confirm these choices if something on the
device or the backend server changes.

Internet of Things Security Patterns — Page 11



Fig. 4. Solution sketch of the Permission Control pattern.

Solution Details: Implementing Permission Control provides device owners with the means to control what external
communication partners are allowed to do with a device or the data it produces. Before a device is added to the backend
server or before another communication partner is allowed to access the device, the device owner is presented with a
Permission Manager interface where he has to explicitly allow or deny the server or other communication partners
some rights, as shown in Figure 4. This part of Permission Control thus implements the existing Authorization
pattern [Schumacher et al. 2005]. Make these choices granular enough to allow the device owner control, but not so
granular that it is overwhelming.

These granted authorizations are persistently stored for later reference. From then on, they have to be enforced each
time that another component wants to access the functionality of a particular device. This is the job of the Permission
Controller, also shown in Figure 4, which implements the already existing Reference Monitor pattern [Schumacher
et al. 2005].

Devices or components can change, for example, when a device gets new functionality through a firmware update or
when a component is extended in functionality and now needs additional permissions. Thus, every time such a change
occurs, you should require the user to confirm or alter his previously granted permissions. Additionally, allow the user
to get an overview over his granted permissions and change them at any time.

Benefits:

—Explicit Choice: Users have to specifically give allowance to a device or service so that it may be used. Without this
allowance, some or all features will be blocked. This makes it hard for communication partners to do something
which the user does not want.

—Transparency: Since all choice are made explicit, there is more transparency about who has access to what.
—Legal: Communication partners can demonstrate that they are abiding by the user’s expressed consent and therefore
cannot be accused of breaking privacy laws or other regulations.

Drawbacks:

—Transparency: It may not be obvious to the device owner for what exactly a component requires access to some
device functionality. It may also not be obvious which functionality is strictly required for the component to work. If
possible, give the user an explanation why access to a particular function is requested and mark required functionality
as such.

Internet of Things Security Patterns — Page 12



—Agreement Blindness: Users are accustomed to blindly agreeing to terms of services or similar documents without
reading the content. A similar effect could happen when a lot of new communication partners are added all the time.
Users may blindly agree to the choices requested by new communication partners.

—Trust: The user has to trust the backend server that it will respect his choices. This may not be the case for third party
providers which are intransparent about their practices. One option is to store and enforce the permission settings on
the devices themselves. For devices where this is not implemented or not possible, the user could employ a Personal
Zone Hub under his own control instead.

—Scalability: Accepting a choice dialog for each new device may be a lot of work when devices are installed. If these
devices are similar in functionality, they may be grouped and a choice could be presented once for the whole group
instead of every single device. Allowing the user to provide default settings that are applied to every new connection
can also help. Additionally, allowing the user to bulk edit permissions makes handling large amount of devices and
components easier.

—Restricted Functionality: Communication partners may have restricted or no functionality at all if some or all rights
are not allowed. Instead of not just working if one right is not given, communication partners should be designed to
offer some functionality with limited rights.

Related Patterns:

—Authorization: The device owner creates Authorization through the Permission Manager component while
setting up the device [Schumacher et al. 2005].

—Reference Monitor: The Permission Controller component implements the Reference Monitor pattern [Schu-
macher et al. 2005].

—Automatic Client-Driven Registration12, Automatic Server-Driven Registration13, or Manual
User-Driven Registration14: Permission Control may be used during these registration processes.

—Limited Access deals with the other side of Permission Control. When access to functionality is limited by
Permission Control, showing the potentially available functionality to users without access to it may be confusing
or even a security problem. Thus, only show users what they can actually use by modifying the GUI based on their
access rights [Schumacher et al. 2005].

Known Uses: On both Android and iOS, app developers have to use interfaces provided by the operating systems to
access smartphone features. Once a user installs such an app, a screen is shown where all permissions requested by the
app are listed. Here, the user has a choice to grant or deny these permissions to the app. The user may also change
these permissions at a later point in time. When an app is updated and requests new permissions, the screen is shown
again [Apple 2017; Google 2017]. Samsung’s SmartThings Platform has a similar approach as users have to explicitly
select the devices which the platform should be able to control. Devices which are not selected cannot be controlled by
the platform [SmartThings 2015]. In OAuthing, users must explicitly authorize all systems that need to get data from
sensors and send commands to actuators [Fremantle and Aziz 2016].

12Automatic Client-Driven Registration allows devices to register themselves by calling a registration API and providing the required
information [Reinfurt et al. 2017b].
13Automatic Server-Driven Registration uses out-of-band communication mechanisms to inform a backend server of a new device. The server
then contacts the device to initiate the registration process [Reinfurt et al. 2017b].
14Manual User-Driven Registration requires users to register new devices by providing the required information via an API or GUI [Reinfurt
et al. 2017b].

Internet of Things Security Patterns — Page 13



4.4 Personal Zone Hub

Managing the permissions, data sharing, and control of devices across multiple
gateways and clouds is complex. Create a Personal Zone Hub which handles such

settings in a central place under the control of the device owner or a trusted third party.
Allow owners to selectively provide access to their devices and data through this hub.

Context: Devices, services, applications, and the data they produce usually have an owner, such as a person or an
organization. Together, these components create the personal zone of their owner. This personal zone may contain all
kinds of devices, applications, and data that may allow others to identify, track, or gain insights about the owner. Thus,
the owner is usually interested in controlling and restricting access to his personal zone.

Problem: Users have an increasing number of IoT devices. Managing the permissions, data sharing and control
of these devices across multiple gateways and cloud systems is complex.

Forces:

—Ownership: You own all the components and data in your personal zone and thus should be in charge when it comes
to granting access to them.

—Manageability: Handling access to the devices in your personal zone on a per device basis may be cumbersome.
Each device may have a different mechanism for handling access.

—Trust: The user may not trust third parties with the management of his devices, apps, software, and data.
—Decentralization: Having only one party being responsible for matters of authorization may be a disadvantage. It
would concentrate these capabilities in one place and allow this party to take advantage of its position. It may also
lead to vendor lock-in.

Solution: Create a Personal Zone Hub which unifies the management and control of all devices, services,
apps, and data of one user into a single, trusted system. Make the hub permanently addressable. Allow the user
to selectively share access to some or all the data and functionality encompassed by the zone.

Solution Details: A Personal Zone Hub acts as the entry point and coordinating agent of a personal zone. A personal
zone encompasses the pool of digital resources belonging to one person. Conceptually it creates a logical boundary
around a person and all of their devices, apps, services, and data, as shown in Figure 5. Technically, it combines multiple
types of devices and networks, connected or disconnected, as well as cloud providers through a virtual network.
The Personal Zone Hub controls access to the personal zone through a logical Firewall [Schumacher 2003],

where the owner may allow different parties to access some or all components, functionality, or data in the personal
zone. Thus, the Personal Zone Hub may be seen as a digital representation of the owner. As each owner is unique and

Internet of Things Security Patterns — Page 14



Fig. 5. Solution sketch of the Personal Zone Hub pattern.

should be able to be uniquely identified, the Personal Zone Hub needs to be permanently addressable with a unique
routable URI, or via a discovery service. This may be achieved by placing the Personal Zone Hub into a cloud, where
it is accessible for other communication partners. But it may also be hosted locally, if cloud providers are not trusted, as
long as it is web routable.

The Personal Zone Hub may act as a certification authority for devices in the personal zone. This requires a model
of user authorization, where a user can explicitly add local devices. In some cases, devices can use these certificates to
communicate as peers in the case where the Personal Zone Hub is not reachable.

Benefits:

—Distributed Certification Authority: Certification authority is distributed over the Personal Zone Hubs and not
in the control of one single party. This makes it more resilient against failures and prevents vendor lock-in.

—Centralized Access Control: Despite the certification authority being distributed, the control over access to all
devices in a personal zone is centralized into the Personal Zone Hub. This simplifies the management of all
components in a users personal zone, as users no longer have to go to different interfaces to manage access to their
components.

—User Control: A user can run his own Personal Zone Hub to maximize control.
—Trust: Because users have control over the Personal Zone Hub, there can be greater trust. For example, the source
code of the hub may be open, allowing many eyes to validate that it behaves as expected.

Drawbacks:

—Effort: Running once own Personal Zone Hub may be a lot of effort and require technical skills and knowledge.
Using a third party provider would make this easier.

—Trust: Using Personal Zone Hub provided by a third party requires trust in this party.
—Single Point of Failure: As the Personal Zone Hub is the single central point of control of the components in its
personal zone, it is also a single point of failure when it malfunctions. For critical applications, multiple redundant
Personal Zone Hubs with failover could be used.

Internet of Things Security Patterns — Page 15



Variants:

—Anonymizing Personal Zone Hub: Devices may be fingerprinted because they exhibit enough complexity to
differ from other devices. For example, it has been shown that communication behavior, accelerometers, batteries,
microphones, and other sensors can be uniquely fingerprinted. A Personal Zone Hub may implement additional
functionality, such as information hiding strategies, to prevent this. For example, it could only publish averaged data
rather than raw data. Additionally, a Personal Zone Hub may also hide the IP addresses and other metadata of the
devices in its zone. These approaches can prevent fingerprinting and enhance privacy for the owner of the device and
data controlled by an Anonymizing Personal Zone Hub.

Related Patterns:

—Permission Control: A Personal Zone Hub can provide its user with Permission Control over who has access
to his devices and data.

—Trusted Communication Partner: The Personal Zone Hub acts as a Trusted Communication Partner
for the devices in its personal zone. Besides, it may only communicate outwards with Trusted Communication
Partners that were previously allowed by the owner.

—Device Gateway: A Personal Zone Hub may be located on a Device Gateway if all user devices are connected
to this gateway.

—Single Access Point: This is a pattern similar to the Personal Zone Hub but without the aspect of distributed
certification and anonymization. It describes, how a system containing several components can be made accessible to
others while protecting it from misuse and damage. A Single Access Point is used to check incoming request and
blocks them if they are not valid [Schumacher et al. 2005].

—Controlled Virtual Address Space: The Controlled Virtual Address Space pattern describes a related
concept in the domain of operating system processes [Fernandez 2013].

—Façade: A Personal Zone Hub can provide others a high-level interface to all the digital resources in the user’s
personal zone, thus implementing the Façade pattern [Gamma et al. 1995].

Known Uses: The Webinos project describes a personal zone hub as a virtual network and logical firewall which
protects its user’s personal zone. A personal zone encompasses all user devices, service, apps, and data. The hub, which
may be cloud based or installed in your home, allows a user to control access to his devices and data without involving a
central party [Allott 2014]. Fremantle published a similar concept, in which a personal cloud middleware is used to
control the sharing of personal data between devices and the cloud. The user’s identity is handled separately from the
devices, which allows the user to share access to his devices anonymously [Fremantle 2016]. The OAuthing middleware
implements this concept and uses the Docker cloud system to run a Personal Zone Hub for each user in the cloud.
Summarization and filtering are envisioned for this system [Fremantle and Aziz 2016]. The dowse project aims to
replace or supplement ISP provided routers and modems with the dowse hub. The hub is a transparent proxy under full
control of the user and runs applications on behalf of the user, which can interact with and control the local sphere of
devices, thus allowing the user more control over his devices and data [Dyne.org Foundation and Waag Society 2014].

Internet of Things Security Patterns — Page 16



4.5 Whitelist

Available privileges may be abused, but not all potential abusers are known beforehand.
To minimize the risk of abuse, add identifiers of all trusted communication partners to a
Whitelist. Block the privileges controlled by the Whitelist for those who are not on it.

Aliases: Filter

Context: For IoT systems to work, communication partners need privileges to access parts of others. Some examples
include devices that need access privileges on the backend server to send it their data, or applications that need privileges
to access certain functionality or to be executed on a device or a server. Some privileges may be freely available by
default, but others should only be made available to trusted partners. In both cases, abuse is a problem which has to be
handled. This can be done by using the Authenticator pattern [Schumacher et al. 2005], which relies on cryptographic
mechanisms and tokens but requires some processing power. Thus, this may not be applicable everywhere in IoT
systems, where very constrained devices may not have enough resources to execute such a mechanism. Besides, tokens
used by these mechanisms may be stolen and used on other devices, or devices may be stolen and used from other
locations. Denial-of-service attacks might also be a problem. Such illegitimate request should be blocked to not waste
too many resources on them.

Problem: Privileges may be abused and attackers may try to overwhelm a system with requests. Using a
Blacklist to block known abusive communication partners helps, but such a list is never complete. There has to
be a mechanism to limit access to known communication partners to minimize the possible range of attacks.

Forces:

—Prevention: The mechanism has to prevent future abuse where possible.
—Identification: To be able to grant only certain communication partners the controlled privileges, is has to be possible
to identify them reliably.

—Control: The mechanism has to provide control over what communication partners or actions are deemed trustworthy.
It has to allow manual adjustment if these circumstances change.

—Efficiency: The mechanism has to be resource efficient. It should not have a large impact on the normal operation of
an IoT system. Thus, it should be able to run on constrained devices.

Solution: Implement a Whitelist to which identifiers of communication partners may be added with an
administrative interface. Implement checks for every privilege which the Whitelist controls. If such a privilege
is requested and the requester’s identifier is on the Whitelist, allow it to proceed. If not, deny the request.

Internet of Things Security Patterns — Page 17



Fig. 6. Solution sketch of the Whitelist pattern.

Solution Details: A Whitelist is a list of entries which identify communication partners that are allowed to have a
certain privilege. Usually, one Whitelist controls one privilege. Examples of such a privilege are access to a network,
system, or device, or permission to execute an action or read data.

To be able to grant these privileges to a communication partner, someone has to trust this partner and add an identifier
for that partner to the Whitelist, as shown in Step 1 in Figure 6. If a request to access an operation guarded by a
Whitelist is received, as shown in Step 2 in Figure 6, it can now be checked against the list (Step 3). If the requester’s
ID is on the Whitelist, the request is passed on (Step 4), otherwise, it is blocked (Step 5).

This requires two things: An administrative interface which allows Whitelist items to be managed, and an identity
of a trusted partner. The interface may be as simple as a text file which contains identifiers separated by new lines
or other delimiting characters. But some additional elements may be added for better usability and manageability. A
checkmark for each item allows users to quickly enable or disable single entries. The ability to use wildcards to add
ranges of identifiers simplifies the management of large numbers of identities.
Choosing the identifier to be used on the Whitelist is important. It should be an identifier common to all

communication partners that are expected to be checked by the Whitelist. Where this is not possible, multiple
Whitelists or one Whitelist which supports multiple identifier types may be used. Ideally, such an identifier is globally
unique and cannot be spoofed, but this not easy in reality. The exact type of identifier depends on the use case and can
vary from IP Addresses to complex device fingerprints (see the Variants section).

To be effective, the Whitelist has to apply to all connections, irrespective of their protocol. Besides, it has to work
not only on backend servers but also on small devices. Similar to backend servers, these devices are also targets of
abusive behavior. Because of their often limited performance, such behavior may quickly render them unusable.

Benefits:

—Security by Default: A Whitelist is secure by default as all unknown requesters are denied the privilege which the
Whitelist controls.

—Explicit Allowance: The allowance is made explicit. It is clear by looking at the list which communication partners
are trusted.

—Trust: Only trusted communication partners are allowed access, which limits the possible sources of abuse.
—Flexibility: Entries can be changed easily to accommodate changing circumstances.

Internet of Things Security Patterns — Page 18



—Simplicity: A Whitelist is both simple to implement and simple to use.
—Completeness: Each communication partner that has to have a certain privilege has to be put on the Whitelist. Thus
the list always provides a complete view of who is granted the privilege controlled by the Whitelist.

Drawbacks:

—Implicit Blocking: Communication partners not on the list are implicitly blocked which may lead to confusion. Use
a Blacklist to make blocking explicit.

—Identifier Uniqueness: A Whitelist only works reliably if the identifier used is unique to the communication partner
and cannot be changed or spoofed. Depending on the use case, different identifiers are applicable (see the Variants
section). If possible, use an identifier that cannot be easily changed or spoofed.

—Granularity: A whitelist usually only provides a binary choice of either allowing or blocking. For more fine-grained
control, use the Authorization or Role-Based Access Control patterns [Schumacher et al. 2005].

—Manageability: Managing a Whitelist may be difficult for use cases where a lot of communication partners are
present or where they change frequently. This requires a lot of manual labor. This may be simplified by using wildcards
or by subscribing to a trusted third party service which provides managed lists of trusted communication partners.

—False Positive: Depending on the nature of the chosen identifier and the timeliness of the entries on the Whitelist, it
may come to some false positives, where entries exist on the list which should have been removed.

Variants:

—Greylist: A Greylist is a list to which new communication partners are automatically added if they are not yet
on a Whitelist (or Blacklist). It may grant these communication partners some limited privileges, for example,
a subset of privileges granted by a Whitelist that are not risky for unknown communication partners to have. It
may also only be used as an automatically generated list of potential entries that should be added to a Whitelist (or
Blacklist). Adding an entry from the Greylist to another list should automatically remove it from the Greylist.

—Network Address Whitelist: A Network Address Whitelist is a simple Whitelist that uses network
addresses as identifier. As every communication partner has to have at least some kind of network address to be able
to communicate, e.g., an IP or MAC addresses, this is often the easiest way to implement a Whitelist. However,
network addresses can change and can be spoofed, which decreases the reliability of this method.

—Fingerprint Whitelist: A Fingerprint Whitelist relies on fingerprints to identify which communication
partners are granted the privileges controlled by the Fingerprint Whitelist. A fingerprint is a device-specific
signature generated by collecting stable and hard to forge patterns during communication with the device, such as
variations in clock skew, communication sequences, and other network behavior. Such a signature is hard to forge and
provides a more reliable way to identify devices compared to network addresses, which can be changed or spoofed.

—Application Whitelist: An Application Whitelist controls which applications can be executed on a device or
server. For every application that should be whitelisted, a hash of the application code is calculated and stored on the
list as identifier. Before an application is started, the hash of the application code is calculated and compared to the
stored hashes on the list. If it does not match a hash on list, the application is blocked from execution.

Related Patterns:

—Blacklist: A Blacklist is the opposite of a Whitelist, as it blocks all entries on the list. It may be used together
with a Whitelist to explicitly block a communication partner who has behaved badly in the past.

—Trusted Communication Partner: A Whitelist can be used to implement Trusted Communication Partner.
—Fail Securely: A Whitelist is an example of a system that is designed to Fail Securely [Romanosky 2001]. If a

legitimate communication partner is not on the Whitelist, its communication attempts are blocked, which is a failure
but does not negatively impact the security of the system.

Internet of Things Security Patterns — Page 19



—Firewall: A Firewall is another way to control network access to resources [Schumacher 2003]. Compared to a
Whitelist, it offers more sophisticated means for identifying, inspecting, and blocking communication, but it does
not work on the level of single resources or functions and also requires more resources, which may not be available
on constrained devices in the IoT.

—Whitelisting Firewall: A Whitelisting Firewall uses a Whitelist to only allow access to approved web-
sites [Villarreal et al. 2013].

—Factory Bootstrap, On-Site Bootstrap, or Remote Bootstrap: These patterns may be used to initially set
up the entries on the Whitelist [Reinfurt et al. 2017b].

—Remote Device Management: After bootstrapping, entries on the Whitelist can be changed with Remote
Device Management [Reinfurt et al. 2017a].

Known Uses: Many IoT platforms support the concept of whitelisting. AWS IoT by default does not allow any entity to
execute actions. The first have to be whitelisted by generating and applying a policy to them [Amazon Web Services
2015]. Azure IoT Hub supports both whitelisting and blacklisting of individual devices [Microsoft 2015]. Wind
River Helix Device Cloud supports whitelisting on devices [Wind River 2015]. Ayla Networks’ IoT Platform allows
manufacturers to upload serial numbers of modules to effectively whitelist them for being used on the platform [Ayla
Networks 2015]. The Dowse concept envisions owners of the Dowse hub whitelisting guest devices to grant them more
privileges [Dyne.org Foundation and Waag Society 2014].

Device fingerprinting, which can generate device identifiers for whitelisting, has been researched for a while. It can be
done actively or passively without a device knowing about it and on different network layers [Xu et al. 2016]. It can also
be done remotely over large distances, through firewalls, and independent of location and network technology [Kohno
et al. 2005]. Fingerbank is an online service which stores such fingerprints (which can also be created with their collector
tool) and makes them accessible to other services, for example, PacketFence, which can grant network access based on
fingerprints [Inverse 2018].
Linux has a subsystem called Integrity Measurement Architecture (IMA), which calculates hashes of applications

and other files before they are loaded. It can validate if these hashes are present on a predefined list, thus implementing
an Application Whitelist [Gentoo Foundation 2017]. McAfee Embedded Control supports similar functionality on
embedded systems [McAfee 2013].

Internet of Things Security Patterns — Page 20



4.6 Blacklist

Available privileges may be abused. To stop this, implement a Blacklist to which
identifiers of abusive communication partners can be added. For each partner that
requests a privilege first check this list and deny it if its identifier is found on it.

Aliases: Filter

Context: For IoT systems to work, communication partners need privileges to access parts of others. Some examples
include devices that need access privileges on the backend server to send it their data, or applications that need privileges
to access certain functionality or to be executed on a device or a server. Some privileges may have to be explicitly
granted, others may be freely available. In the latter case, abuse is a problem which has to be handled. But even when
privileges are explicitly granted, abuse is still possible, for example if a device is hijacked by a malicious intruder.

Problem: Privileges, no matter if freely available or explicitly granted, may be abused. There has to be a
mechanism to stop existing abuse and to limit potential future abuse.

Forces:

—Intervention: Abuse may already be happening. The mechanism has to be able to intervene and stop existing abuse.
—Prevention: The mechanism has to prevent future abuse where possible.
—Identification: To be able to prevent abuse, it must be possible to identify abusers. But identification may be imprecise
or easy to forge.

—Control: The mechanism has to provide control over what communication partners or actions are deemed abusive. It
has to allow manual adjustment if these circumstances change.

—Simplicity: The mechanism should be easy to understand and easy to use.
—Efficiency: The mechanism has to be resource efficient. It should not have a large impact on the normal operation of
an IoT system. It should be able to run on constrained devices.

Solution: Implement a Blacklist to which identifiers of abusive communication partners can be added with an
administrative interface. Implement checks for every privilege that the Blacklist controls. If such a privilege is
requested and the identifier of the requesting communication partner is on the Blacklist, block it. If not, allow
it to proceed.

Internet of Things Security Patterns — Page 21



Fig. 7. Solution sketch of the Blacklist pattern.

Solution Details: A Blacklist is a list of entries, which identify communication partners that are not allowed to have a
certain privilege. Usually, one Blacklist controls one privilege. Examples of such a privilege are access to a network,
system, or device, or permission to execute an action or read data.

To be able to deny these privileges to an entity, someone has to identify this entity as abusive and add an identifier for
that entity to the Blacklist, as shown in Step 1 in Figure 7. If a request to access an operation guarded by a Blacklist
is received, as shown in Step 2 in Figure 7, it can now be checked against the list (Step 3). If the requester’s ID is not on
the Blacklist, the request is passed on (Step 4), otherwise, it is blocked (Step 5).

This requires two things: An administrative interface which allows Blacklist items to be managed, and an identity
of an abusive entity. The interface may be as simple as a text file which contains identifiers separated by new lines or
other delimiting characters. Some elements may be added for better usability and manageability. A checkmark for each
item allows users to quickly enable and disable single entries. A text field for comments enables user to describe the
entry in more detail, which may be useful if the identifiers themselves do not provide much information. The ability to
use wildcards to add ranges of identifiers simplifies the management of large numbers of identities.

Choosing the identifier to be used on the Blacklist is important. It should be an identifier common to all entities that
are expected to be checked by the Blacklist. Where this is not possible, multiple Blacklists or one Blacklist which
supports multiple identifier types may be used. Ideally, such an identifier is globally unique and cannot be spoofed.
But this is not easy in reality. The exact type of identifier depends on the use case and can vary from IP Addresses to
complex device fingerprints (see the Variants section).
To be effective, the Blacklist has to apply to all connections, irrespective of protocol. Besides, it has to work not

only on backend servers, but also on small devices. Similar to backend servers, these devices are also targets of abusive
behavior. Because of there often limited performance, such behavior may quickly render them unusable.

It usually makes sense to combine multiple Blacklists. A general Blacklist provided and maintained by a platform
provider or other third parties about generally known malicious communication partners may be combined with a
personal Blacklist, which contains additional sources of abuse. This combines the shared knowledge of a general
Blacklist with the possibility to easily add personal entries.

Benefits:

—Security: Adding known malicious communication partners to the Blacklist effectively blocks them.
—Flexibility: Entries can be changed easily to accommodate changing circumstances.

Internet of Things Security Patterns — Page 22



—Simplicity: A Blacklist is both simple to implement and simple to understand for users.
—Explicit Blocking: A Blacklist makes blocking explicit. It is clear by looking at the list which communication
partners are blocked.

—Outdated Entries: Outdated entries produces false positives which might be inconvenient but do not decrease
security.

Drawbacks:

—Implicit Allowance: Entries not on the list are implicitly allowed which may lead to confusion. Use a Whitelist to
make allowance explicit.

—Identifier Uniqueness: A Blacklist only works reliably if the identifier used is unique to the communication partner
and cannot be changed or spoofed. Depending on the use case, different identifiers are applicable (see the Variants
section). If possible, use an identifier that cannot be easily changed or spoofed.

—Manageability: Constantly changing threats means that a Blacklist has to be updated regularly to be effective.
Some threats currently on a Blacklist may also only be temporarily malicious and should be removed after a while.
This requires a lot of manual labor. Subscribing to some kind of service that manages such lists increases the efficiency
of list maintenance, as work and knowledge is shared.

—False Positive: Because it is hard to find unique identifiers it may come to false positives, i.e., something is on the list
which is not (anymore) dangerous.

—Completeness: It is impossible to know all potentially malicious communication partners. A Blacklist will never
be complete, and, thus, does not provide complete protection.

Variants:

—Greylist: A Greylist is a list to which new communication partners are automatically added if they are not yet on
a Blacklist (or Whitelist). It may block some privileges for these communication partners, for example, a subset of
privileges blocked by a Blacklist that are too risky for unknown communication partners to have. It may also only
be used as an automatically generated list of potential entries that should be added to a Blacklist (or Whitelist).
Adding an entry from the Greylist to another list should automatically remove it from the Greylist.

—Network Address Blacklist: A Network Address Blacklist is a simple Blacklist that uses network
addresses as identifier [Kienzle et al. 2002]. As every communication partner has to have at least some kind of
network address to be able to communicate, e.g., an IP or MAC addresses, this is often the easiest way to implement
a Blacklist. However, network addresses can change and can be spoofed, which decreases the reliability of this
method.

—Fingerprint Blacklist:A Fingerprint Blacklist relies on fingerprints to identify which communication partners
should be blocked from the privileges controlled by the Fingerprint Blacklist. A fingerprint is a device-specific
signature generated by collecting stable and hard to forge patterns during communication with the device, such as
variations in clock skew, communication sequences, and other network behavior. Such a signature is hard to forge and
provides a more reliable way to identify devices compared to network addresses, which can be changed or spoofed.

Related Patterns:

—Whitelist: A Whitelist has the inverse functionality of a Blacklist. By default, all privileges are blocked unless
the communication partner is listed on the Whitelist. A Whitelist may be used together with a Blacklist to allow
flexible control.

—Factory Bootstrap, On-Site Bootstrap, or Remote Bootstrap: These patterns may be used to initially set
up the entries on the Blacklist [Reinfurt et al. 2017b].

—Remote Device Management: After bootstrapping, entries on the Blacklist can be changed with Remote
Device Management [Reinfurt et al. 2017a].

Internet of Things Security Patterns — Page 23



Known Uses: GSMA operates a Blacklist service for mobile devices. When a user reports a device as lost or stolen to
his mobile operator, the devices International Mobile Equipment Identity (IMEI) number is added to the Blacklist
and distributed to other operators. This allows such devices to be blocked internationally. Organizations can subscribe
to GSMA’s Device Check service to get access to the Blacklist [GSMA 2014]. Microsoft’s Azure IoT Hub allows
backend services to Blacklist individual devices based on their unique security keys [Microsoft 2015]. Besides, Azure
IoT Hub itself has an IP filter feature which allows blacklisting based on IPv4 addresses [Oltean Beatrice 2016]. Device
Authority’s D-FACTOR Device Authentication Engine supports a blacklisting feature to control device access [Device
Authority 2016].

Device fingerprinting, which can generate device identifiers for blacklisting, has been researched for a while. It can be
done actively or passively without a device knowing about it and on different network layers [Xu et al. 2016]. It can also
be done remotely over large distances, through firewalls, and independent of location and network technology [Kohno
et al. 2005]. Fingerbank is an online service which stores such fingerprints (which can also be created with their collector
tool) and makes them accessible to other services, for example, PacketFence, which can deny network access based on
fingerprints [Inverse 2018].

5. SUMMARY AND CONCLUSION
The IoT is becoming a reality. However, due to a lack of common standards and development in silos, the solution
landscape can be confusing. To help IoT architects, developers, and other interested individuals with understanding this
space and designing and building their own solutions, we collected in our previous work IoT Patterns for devices [Reinfurt
et al. 2017c], device communication and management [Reinfurt et al. 2016, 2017a], and device bootstrapping and
registration [Reinfurt et al. 2017b]. But these patterns are not concerned with security, which is an important aspect in
the IoT. Several security patterns exist in previous work, which can be applied to IoT systems We identified additional
patterns, which we presented in this paper, which supplement the existing patterns. The Trusted Communication
Partner and Outbound-Only Connection patterns help to minimize the attack surface of devices. The Permission
Control and Personal Zone Hub patterns allow device owners some control over who has access to their devices and
data. The Whitelist and Blacklist patterns provide devices, backend servers, and other components with a means to
control access and prevent abuse. We have already collected additional IoT Patterns in several categories. In the future,
we want to create a pattern language for IoT, which connects all of these patterns into a coherent form that can be used
by IoT architects and developers to understand, design, and build IoT systems.

ACKNOWLEDGMENTS

We would like to thank our shepherd, Eduardo Fernandez, for the discussions and comments that helped to improve this
paper. This work was partially funded by the BMWi projects SePiA.Pro (01MD16013F).

REFERENCES
ChristopherAlexander, Sara Ishikawa, andMurray Silverstein. 1977. APattern Language: Towns, Buildings, Construction.
Oxford University Press, New York.

Nick Allott. 2014. Introductory Whitepaper: What is webinos. (2014). http://webinos.org/files/2014/06/
webinos-foundation-whitepaper.pdf

Amazon Web Services. 2015. Authorization - AWS IoT (Beta). (2015). http://docs.aws.amazon.com/iot/
latest/developerguide/authorization.html

Amazon Web Services. 2017. AWS IoT Device SDK - Amazon Web Services. (2017). https://aws.amazon.com/
iot/sdk

Apple. 2017. Requesting Permission - Interaction - iOS Human Interface Guidelines. (2017). https://developer.
apple.com/ios/human-interface-guidelines/interaction/requesting-permission/

Internet of Things Security Patterns — Page 24

http://webinos.org/files/2014/06/webinos-foundation-whitepaper.pdf
http://webinos.org/files/2014/06/webinos-foundation-whitepaper.pdf
http://docs.aws.amazon.com/iot/latest/developerguide/authorization.html
http://docs.aws.amazon.com/iot/latest/developerguide/authorization.html
https://aws.amazon.com/iot/sdk
https://aws.amazon.com/iot/sdk
https://developer.apple.com/ios/human-interface-guidelines/interaction/requesting-permission/
https://developer.apple.com/ios/human-interface-guidelines/interaction/requesting-permission/


Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The internet of things: A survey. Computer networks 54, 15
(2010), 2787–2805.

Ayla Networks. 2015. The Security of Things. Technical Report.
Gullena Satish Chandra. 2016. Pattern language for IoT applications. (2016).
James O. Coplien. 1996. Software Patterns. SIGS, New York, NY.
Device Authority. 2016. Establishing Trust with the Internet of Things. (2016). http://www.deviceauthority.
com/assets/DA-IoT_solution_brief.pdf

Dyne.org Foundation and Waag Society. 2014. Dowse Whitepaper. Technical Report. https://files.dyne.org/
dowse/dowse_whitepaper.pdf

Veli-Pekka Eloranta, Johannes Koskinen, Marko Leppänen, and Ville Reijonen. 2014a. Designing distributed control
systems: A pattern language approach. Wiley, Hoboken, NJ.

Veli-Pekka Eloranta, Johannes Koskinen, Marko Leppänen, and Ville Reijonen. 2014b. Patterns for the Compan-
ion Website. (2014). http://media.wiley.com/product_ancillary/55/11186941/DOWNLOAD/website_
patterns.pdf

Michael Falkenthal, Johanna Barzen, Uwe Breitenbücher, Christoph Fehling, and Frank Leymann. 2014a. Efficient
Pattern Application: Validating the Concept of Solution Implementations in Different Domains. International Journal
on Advances in Software 7, 3&4 (2014), 710–726. http://www2.informatik.uni-stuttgart.de/cgi-bin/
NCSTRL/NCSTRL_view.pl?id=ART-2014-13&engl=0

Michael Falkenthal, Johanna Barzen, Uwe Breitenbücher, Christoph Fehling, and Frank Leymann. 2014b. From
Pattern Languages to Solution Implementations. In Proceedings of the Sixth International Conferences on Pervasive
Patterns and Applications (PATTERNS 2014). IARIA, Wilmington, DE, 12–21. http://www2.informatik.
uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-37&engl=0

Michael Falkenthal, Johanna Barzen, Uwe Breitenbücher, Christoph Fehling, Frank Leymann, Aristotelis Hadjakos,
Frank Hentschel, and Heizo Schulze. 2016. Leveraging Pattern Application via Pattern Refinement. In Proceedings
of the International Conference on Pursuit of Pattern Languages for Societal Change (PURPLSOC).

Christoph Fehling, Johanna Barzen, Uwe Breitenbücher, and Frank Leymann. 2015a. A Process for Pattern Identification,
Authoring, and Application. In Proceedings of the 19th European Conference on Pattern Languages of Programs
(EuroPLoP). ACM, New York, NY. DOI:http://dx.doi.org/10.1145/2721956.2721976

Christoph Fehling, Johanna Barzen, Michael Falkenthal, and Frank Leymann. 2015b. PatternPedia - Collaborative
Pattern Identification and Authoring. In PURPLSOC (In Pursuit of Pattern Languages for Societal Change): The
Workshop 2014. epubli GmbH, Berlin, 252–284.

Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and Peter Arbitter. 2014. Cloud
Computing Patterns: Fundamentals to Design, Build, and Manage Cloud Applications. Springer, Wien.
DOI:http://dx.doi.org/10.1007/978-3-7091-1568-8

Eduardo B. Fernandez. 2013. Security Patterns in Practice: Designing Secure Architectures Using Software Patterns.
Wiley.

Paul Fremantle. 2016. Privacy-enhancing Federated Middleware for the Internet of Things. In Proceedings of the
Doctoral Symposium of the 17th International Middleware Conference. ACM.

Paul Fremantle and Benjamin Aziz. 2016. OAuthing: privacy-enhancing federation for the Internet of Things. (2016).
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, Massachusetts.

Gentoo Foundation. 2017. Integrity Measurement Architecture. (2017). https://wiki.gentoo.org/wiki/
Integrity_Measurement_Architecture

Internet of Things Security Patterns — Page 25

http://www.deviceauthority.com/assets/DA-IoT_solution_brief.pdf
http://www.deviceauthority.com/assets/DA-IoT_solution_brief.pdf
https://files.dyne.org/dowse/dowse_whitepaper.pdf
https://files.dyne.org/dowse/dowse_whitepaper.pdf
http://media.wiley.com/product_ancillary/55/11186941/DOWNLOAD/website_patterns.pdf
http://media.wiley.com/product_ancillary/55/11186941/DOWNLOAD/website_patterns.pdf
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2014-13&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2014-13&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-37&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-37&engl=0
http://dx.doi.org/10.1145/2721956.2721976
http://dx.doi.org/10.1007/978-3-7091-1568-8
https://wiki.gentoo.org/wiki/Integrity_Measurement_Architecture
https://wiki.gentoo.org/wiki/Integrity_Measurement_Architecture


Google. 2017. Control your app permissions on Android 6.0 and up - Google Play Help. (2017). https://support.
google.com/googleplay/answer/6270602?hl=en

GSMA. 2014. Don’t Suspect Device Fraud - Know With Certainty. (2014). http://www.gsma.com/
managedservices/wp-content/uploads/2014/04/Device-Blacklist-Brief.pdf

Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami. 2013. Internet of Things (IoT): A
vision, architectural elements, and future directions. Future Generation Computer Systems 29, 7 (2013), 1645–1660.
DOI:http://dx.doi.org/10.1016/j.future.2013.01.010

Jasmin Guth, Uwe Breitenbücher, Michael Falkenthal, Frank Leymann, and Lukas Reinfurt. 2016. Comparison of
IoT Platform Architectures: A Field Study based on a Reference Architecture. In Proceedings of the International
Conference on Cloudification of the Internet of Things (CIoT). IEEE.

Neil B. Harrison. 2006a. Advanced Pattern Writing: Patterns for Experienced Pattern Authors. In Pattern languages
of program design 5. Software patterns series, Vol. 5. Addison-Wesley, Upper Saddler River, NJ, 433–452. http:
//www.europlop.net/sites/default/files/files/1_2003_Harrison_AdvancedPatternWriting.pdf

Neil B. Harrison. 2006b. The Language of Shepherding: A Pattern Language for Shepherds and Sheep. In Pattern
languages of program design 5. Software patterns series, Vol. 5. Addison-Wesley, Upper Saddler River, NJ, 507–530.
http://www.europlop.net/sites/default/files/files/3_TheLanguageOfShepherding1.pdf

Gregor Hohpe and Bobby Woolf. 2004. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging
Solutions. Addison-Wesley, Boston, Massachusetts.

IBM. 2016. MQTT connectivity for devices. (2016). https://console.ng.bluemix.net/docs/services/IoT/
devices/mqtt.html

Inverse. 2018. Fingerbank: Device Fingerprints. (2018). https://fingerbank.org/
Isam Ishaq, David Carels, Girum Teklemariam, Jeroen Hoebeke, Floris Abeele, Eli Poorter, Ingrid Moerman, and Piet

Demeester. 2013. IETF Standardization in the Field of the Internet of Things (IoT): A Survey. Journal of Sensor and
Actuator Networks 2, 2 (2013), 235–287. DOI:http://dx.doi.org/10.3390/jsan2020235

Darrell M. Kienzle, Matthew C. Elder, David Tyree, and James Edwards-Hewitt. 2002. Security Patterns Repository
Version 1.0. (2002). http://www.scrypt.net/~celer/securitypatterns/repository.pdf

Tadayoshi Kohno, Andre Broido, and Kimberly C. Claffy. 2005. Remote physical device fingerprinting. IEEE
Transactions on Dependable and Secure Computing 2, 2 (2005), 93–108.

McAfee. 2013. McAfee Embedded Control. (2013). https://www.mcafee.com/us/resources/data-sheets/
ds-embedded-control.pdf

GerardMeszaros and JimDoble. 1996. Metapatterns: A Pattern Language for PatternWriting. In Third Pattern Languages
of Programming Conference. Addison-Wesley. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.15.8186&rep=rep1&type=pdf

Microsoft. 2015. What is Azure IoT Hub? (2015). https://azure.microsoft.com/en-us/documentation/
articles/iot-hub-what-is-iot-hub/

OASIS. 2014. MQTT Version 3.1.1. (2014). http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.
1.1-os.pdf

Oltean Beatrice. 2016. IP Filter. (2016). https://docs.microsoft.com/en-us/azure/iot-hub/
iot-hub-ip-filtering

Open Mobile Alliance. 2015. OMA Device Management Protocol. (2015). http://www.openmobilealliance.
org/release/DM/V2_0-20150122-C/OMA-TS-DM_Protocol-V2_0-20150122-C.pdf

Optigo Networks. 2016. Optigo Integrity. (2016). http://www.optigo.net/integrity/

Internet of Things Security Patterns — Page 26

https://support.google.com/googleplay/answer/6270602?hl=en
https://support.google.com/googleplay/answer/6270602?hl=en
http://www.gsma.com/managedservices/wp-content/uploads/2014/04/Device-Blacklist-Brief.pdf
http://www.gsma.com/managedservices/wp-content/uploads/2014/04/Device-Blacklist-Brief.pdf
http://dx.doi.org/10.1016/j.future.2013.01.010
http://www.europlop.net/sites/default/files/files/1_2003_Harrison_AdvancedPatternWriting.pdf
http://www.europlop.net/sites/default/files/files/1_2003_Harrison_AdvancedPatternWriting.pdf
http://www.europlop.net/sites/default/files/files/3_TheLanguageOfShepherding1.pdf
https://console.ng.bluemix.net/docs/services/IoT/devices/mqtt.html
https://console.ng.bluemix.net/docs/services/IoT/devices/mqtt.html
https://fingerbank.org/
http://dx.doi.org/10.3390/jsan2020235
http://www.scrypt.net/~celer/securitypatterns/repository.pdf
https://www.mcafee.com/us/resources/data-sheets/ds-embedded-control.pdf
https://www.mcafee.com/us/resources/data-sheets/ds-embedded-control.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.8186&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.8186&rep=rep1&type=pdf
https://azure.microsoft.com/en-us/documentation/articles/iot-hub-what-is-iot-hub/
https://azure.microsoft.com/en-us/documentation/articles/iot-hub-what-is-iot-hub/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-ip-filtering
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-ip-filtering
http://www.openmobilealliance.org/release/DM/V2_0-20150122-C/OMA-TS-DM_Protocol-V2_0-20150122-C.pdf
http://www.openmobilealliance.org/release/DM/V2_0-20150122-C/OMA-TS-DM_Protocol-V2_0-20150122-C.pdf
http://www.optigo.net/integrity/


Soheil Qanbari, Samim Pezeshki, Rozita Raisi, Samira Mahdizadeh, Rabee Rahimzadeh, Negar Behinaein, Fada Mah-
moudi, Shiva Ayoubzadeh, Parham Fazlali, Keyvan Roshani, Azalia Yaghini, Mozhdeh Amiri, Ashkan Farivarmoheb,
Arash Zamani, and Schahram Dustdar. 2016. IoT Design Patterns: Computational Constructs to Design, Build and
Engineer Edge Applications. In Proceedings of the First International Conference on Internet-of-Things Design and
Implementation (IoTDI). IEEE, 277–282. DOI:http://dx.doi.org/10.1109/IoTDI.2015.18

Lukas Reinfurt, Uwe Breitenbücher, Michael Falkenthal, Frank Leymann, and Andreas Riegg. 2016. Internet of Things
Patterns. In Proceedings of the 21st European Conference on Pattern Languages of Programs (EuroPLoP). ACM.
http://dl.acm.org/citation.cfm?id=3011789

Lukas Reinfurt, Uwe Breitenbücher, Michael Falkenthal, Frank Leymann, and Andreas Riegg. 2017a. Internet of Things
Patterns for Communication and Management. LNCS Transactions on Pattern Languages of Programming (2017).

Lukas Reinfurt, Uwe Breitenbücher, Michael Falkenthal, Frank Leymann, and Andreas Riegg. 2017b. Internet of
Things Patterns for Device Bootstrapping and Registration. In Proceedings of the 22nd European Conference on
Pattern Languages of Programs (EuroPLoP) (EuroPLoP ’17). ACM, New York, NY, USA. https://dl.acm.org/
citation.cfm?doid=3147704.3147721

Lukas Reinfurt, Uwe Breitenbücher, Michael Falkenthal, Frank Leymann, and Andreas Riegg. 2017c. Internet of
Things Patterns for Devices. In Proceedings of the Ninth International Conferences on Pervasive Patterns and
Applications (PATTERNS) 2017. Xpert Publishing Services, 117–126. https://www.thinkmind.org/index.
php?view=article&articleid=patterns_2017_9_10_70019

Lukas Reinfurt, Michael Falkenthal, Uwe Breitenbücher, and Frank Leymann. 2017d. Applying IoT Patterns to Smart
Factory Systems. In Proceedings of the 11th Advanced Summer School on Service Oriented Computing. IBM Research
Division.

Sasha Romanosky. 2001. Security Design Patterns. (2001). http://www.cgisecurity.com/lib/
securityDesignPatterns.html

Markus Schumacher. 2003. Firewall Patterns. In Proceedings of the 8th European Conference on Pattern Languages of
Programms (EuroPLoP ’2003).

Markus Schumacher, Eduardo B. Fernandez, Duane Hybertson, Frank Buschmann, and Peter Sommerlad. 2005. Security
Patterns: Integrating Security and Systems Engineering. Wiley.

Jatinder Singh, Thomas Pasquier, Jean Bacon, Hajoon Ko, and David Eyers. 2016. Twenty Security Consid-
erations for Cloud-Supported Internet of Things. IEEE Internet of Things Journal 3, 3 (2016), 269–284.
DOI:http://dx.doi.org/10.1109/JIOT.2015.2460333

SmartThings. 2015. Writing Your First SmartApp. (2015). http://docs.smartthings.com/en/latest/
getting-started/first-smartapp.html

Steve Strauch, Vasilios Andrikopoulos, Uwe Breitenbuecher, Oliver Kopp, and Frank Leyrnann. 2012a. Non-functional
data layer patterns for Cloud applications. In Proceedings of the 4th IEEE International Conference on Cloud
Computing Technology and Science (CloudCom’12). IEEE Computer Society Press.

Steve Strauch, Uwe Breitenbuecher, Oliver Kopp, Frank Leymann, and Tobias Unger. 2012b. Cloud Data Patterns for
Confidentiality. CLOSER 12 (2012), 387–394.

The Open Group. 2014. Security Design Patterns. Technical Report. http://pubs.opengroup.org/onlinepubs/
9299969899/toc.pdf

ThingWorx. 2016. Features. (2016). http://support.ptc.com/cs/help/thingworx_hc/thingworx_edge/
index.jspx?id=c_twx_emsg_what_is_thingworx_concept&action=show

Isaura N. Bonilla Villarreal, Eduardo B. Fernandez, Maria M. Larrondo-Petrie, and Keiko Hashizume. 2013. A Pattern
for Whitelisting Firewalls (WLF). PLoP 13 (2013).

Jeffrey Voas. 2016. Networks of ‘Things’. NIST Special Publication 800 (2016), 183. http://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-183.pdf

Internet of Things Security Patterns — Page 27

http://dx.doi.org/10.1109/IoTDI.2015.18
http://dl.acm.org/citation.cfm?id=3011789
https://dl.acm.org/citation.cfm?doid=3147704.3147721
https://dl.acm.org/citation.cfm?doid=3147704.3147721
https://www.thinkmind.org/index.php?view=article&articleid=patterns_2017_9_10_70019
https://www.thinkmind.org/index.php?view=article&articleid=patterns_2017_9_10_70019
http://www.cgisecurity.com/lib/securityDesignPatterns.html
http://www.cgisecurity.com/lib/securityDesignPatterns.html
http://dx.doi.org/10.1109/JIOT.2015.2460333
http://docs.smartthings.com/en/latest/getting-started/first-smartapp.html
http://docs.smartthings.com/en/latest/getting-started/first-smartapp.html
http://pubs.opengroup.org/onlinepubs/9299969899/toc.pdf
http://pubs.opengroup.org/onlinepubs/9299969899/toc.pdf
http://support.ptc.com/cs/help/thingworx_hc/thingworx_edge/index.jspx?id=c_twx_emsg_what_is_thingworx_concept&action=show
http://support.ptc.com/cs/help/thingworx_hc/thingworx_edge/index.jspx?id=c_twx_emsg_what_is_thingworx_concept&action=show
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-183.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-183.pdf


Tim Wellhausen and Andreas Fießer. 2012. How to write a pattern? A rough guide for first-time pattern authors. In
Proceedings of the 16th European Conference on Pattern Languages of Programs. ACM, New York, NY.

Wind River. 2015. Wind River Helix Device Cloud. Technical Report. http://www.windriver.com/products/
product-overviews/wr-device-cloud_overview.pdf

Qiang Xu, Rong Zheng, Walid Saad, and Zhu Han. 2016. Device fingerprinting in wireless networks: Challenges and
opportunities. IEEE Communications Surveys & Tutorials 18, 1 (2016), 94–104.

Joseph Yoder and Jeffrey Barcalow. Architectural Patterns for Enabling Application Security. https://www.idi.
ntnu.no/emner/tdt4237/2007/yoder.pdf

PLoP’17, OCTOBER 22-25, Vancouver, Canada. Copyright 2017 is held by the author(s). HILLSIDE 978-1-941652-06-0

Internet of Things Security Patterns — Page 28

http://www.windriver.com/products/product-overviews/wr-device-cloud_overview.pdf
http://www.windriver.com/products/product-overviews/wr-device-cloud_overview.pdf
https://www.idi.ntnu.no/emner/tdt4237/2007/yoder.pdf
https://www.idi.ntnu.no/emner/tdt4237/2007/yoder.pdf

