
:

1Institute for Parallel and Distributed Systems, University Stuttgart
2Institute of Architecture of Application Systems, University Stuttgart

TDLIoT: A Topic Description Language for the
Internet of Things

Ana C. Franco da Silva1, Pascal Hirmer1, Uwe Breitenbücher2,
Oliver Kopp1, Bernhard Mitschang

Institute of Architecture of Application Systems

Institute for Parallel and Distributed Systems

These publication and contributions were presented at ICWE 2018
ICWE 2018 Web site: http://icwe2018.webengineering.org

© Springer International Publishing AG, part of Springer Nature 2018
T. Mikkonen et al. (Eds.): ICWE 2018, LNCS 10845, pp. 333–348, 2018.
https://doi.org/10.1007/978-3-319-91662-0_27

@inproceedings {INPROC-2018-18,
author = {Franco da Silva, Ana Cristina and Hirmer, Pascal and Breitenb{\"u}cher,

Uwe and Kopp, Oliver and Mitschang, Bernhard},
title = {{TDLIoT: A Topic Description Language for the Internet of Things}},
booktitle = {ICWE 2018: Web Engineering},
editor = {Tommi Mikkonen and Ralf Klamma and Juan Hern{\'a}ndez},
publisher = {Springer Berlin Heidelberg},
series = {Lecture Notes in Computer Science (LNCS)},
volume = {10845},
pages = {333--348},
month = {Mai},
year = {2018},
doi = {10.1007/978-3-319-91662-0_27},
keywords = {Internet of Things; Publish-subscribe; Description Language},
url = {http://www2.informatik.uni-stuttgart.de/cgi-

bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2018-18&engl=}
}

http://icwe2018.webengineering.org/

TDLIoT: A Topic Description Language for the

Internet of Things

Ana Cristina Franco da Silva1, Pascal Hirmer1, Uwe Breitenbücher2,
Oliver Kopp1, and Bernhard Mitschang1

1 Institute for Parallel and Distributed Systems
2 Institute of Architecture of Application Systems,

University of Stuttgart,

Universitätsstraße 38, 70569 Stuttgart, Germany

[lastname]@informatik.uni-stuttgart.de

Abstract In recent years, the Internet of Things has emerged as an

important paradigm that comes with the digitization within all domains.

Cheap hardware devices and powerful network connections enable the

deployment of a large number of devices equipped with sensors and actu-

ators to enable effective monitoring and management of environments.

Famous examples are smart cities or smart factories. Usually, the access

and control to sensors and actuators in the IoT is conducted through

topics, which originate from the publish-subscribe pattern. Topic con-

sumers can subscribe to these topics or publish information in order to

build IoT applications that monitor sensor values or control actuators.

However, in large environments, such as smart cities, it is usually not

known which topics exist to build applications, and, furthermore, which

functionality they provide. In this paper, we introduce the Topic Descrip-

tion Language for the Internet of Things that enables a description of

topics. Furthermore, we show how they can be accessed and used. We

introduce a real-world scenario in the domain of smart cities to validate

the practical feasibility of our approach.

Keywords: Internet of Things, Publish-subscribe, Description language

1 Introduction

In the last years, advances in the Internet of Things (IoT) [22] have enabled
the deployment of innumerous applications, such as situation recognition in
the IoT [29], smart homes [24], smart factories [30], or smart cities [14]. Those
applications are based on the monitoring of distributed sensors and the control
of actuators to react on occurring situations. For example, the detection of an
unoccupied parking space in a smart city could lead to the notification of drivers
nearby through an application on their smart phone. In order to develop such
IoT applications, it is required to know (i) which sensors and actuators exist in
the context of the application, (ii) what data a sensor provides and in which

2 Franco da Silva et al.

format, (iii) which actions can be triggered for actuators, and (iv) how sensors
and actuators can be accessed to be used.

In the IoT, the access to sensors and actuators is usually realized through
the publish-subscribe communication model [17] based on topics. These topics
are used to provision sensor values or enable access to actuators. In the scope of
this paper, a topic is an entity that allows to receive and send data in a uniform
manner. Topics could be realized through various communication models, such
as publish-subscribe or request-response, using different protocols. In the topic-
based publish-subscribe model, e. g., realized through MQTT [2], subscribers
register on topics relevant for their context to get asynchronously notified when
publishers send messages to these topics [12]. In the request-response model,
instead of getting notified, applications need to request the data, e.g., through
HTTP requests. In this paper, we support both models.

The management of subscriptions and delivery of messages is usually realized
by middlewares, such as FIWARE [28], Mosquitto [23], OpenMTC [31], or
RMP [16]. For example, given that sensor values are provided through topics
hosted in such IoT middlewares, using the publish-subscribe model, a smart city
parking application subscribes to topics of all sensors monitoring parking spots
and gets notified once a parking spot is detected as unoccupied. An overview of
IoT middlewares is provided by Mineraud et al. [25] and Guth et al. [15].

Currently, application developers depend on knowing everything about the
topics they can use to build IoT applications. This information, which includes,
for example, the data structure or how it can be accessed, is usually only known if
the application developers own the involved devices, sensors, and actuators. Other
available topics, which could provide additional information about the environ-
ment, are oftentimes not considered but could lead to a significant improvement
of the application, e. g., through a higher coverage by additional sensors.

The goal of this paper is to provide means to describe topics in the IoT
with all their characteristics. Furthermore, we provide a topic catalog, similar to
UDDI [32] in web services, that enables finding available topics, which can be
used to build specific IoT applications.

To enable this, we propose the Topic Description Language for the Internet
of Things (TDLIoT). The TDLIoT provides a simple means to describe and find
topics of sensors and actuators by (i) a holistic description of the topics, (ii)
a topic catalog to browse the topic descriptions, and (iii) an effective way to
find suitable topics that offer access to sensors and actuators. In this way, IoT
application development can be eased through an abstraction from specific IoT
middlewares. The topics can be found, for example, based on a specific location,
sensor or actuator type, data types, or data units. We derive requirements for
the TDLIoT through expert interviews as well as a scenario in the smart city
domain. These requirements form the basis for our prototypical implementation.

The remainder of this paper is structured as follows: Section 2 introduces a
motivating scenario. Section 3 defines requirements for our approach. Section 4
describes the TDLIoT. Related work is described in Sect. 5. Finally, Sect. 6
concludes the paper.

TDLIoT: A Topic Description Language for the Internet of Things 3

Unoccupied
Parking Space
>> 100 m <<

Gate

Sensor

Figure 1. Motivating scenario: smart parking application

2 Motivating Scenario: Smart Parking

Nowadays, due to a growing amount of vehicles, it is difficult to find a free parking
space in large cities. To cope with this issue, the goal of this scenario is to build
an IoT application that finds available parking spaces in the nearby location of
drivers and to notify them once a parking spot is available. Furthermore, this
application can be used by the city itself, e. g., to find out whether vehicles are
parked for a long time on time-limited parking spots. The scenario is depicted in
Fig. 1 and is inspired by the smart parking application by Communithings [10].

Building such an application requires parking space sensors, which monitor
parking space availability, and a smart phone application, which notifies drivers
or employees of the city about currently used or unoccupied parking spaces. The
sensor data detecting whether a parking space is occupied or available is provided
through topics the smart parking application can subscribe to. We assume that a
large amount of such topics are available that provide information about parking
spaces. Those topics can either be provided as open data, e.g., by the city or by
external providers that sell the data to applications.

In our scenario, it is important to note that the smart parking application
developer is not the owner of the sensors, thus, does not know how to access
them and which data is produced. As soon as drivers enter an area in which they
want to park, the smart phone application can use the current GPS coordinates
to search for available parking space sensors in the area and to check the sensors
for unoccupied parking spaces. Furthermore, the driver can be automatically
notified by a push notification if an unoccupied parking spot appears in the area.
Once a parking spot is available, the driver could trigger actuators through the
smart phone applications, for example, to open gates to the parking space. In
case of the city employees who aim for monitoring of parking spaces, meter maids
could get automatically notified once a car is parked longer than allowed.

As mentioned above, in order to develop such an application, topics are used
for the communication between sensors and actuators. However, if there are many
topics available, it is currently difficult to find the most relevant ones. Furthermore,
heterogeneous sensors could exist for different parking areas. Those sensors might
publish different data formats and structures to the topics. This needs to be known

4 Franco da Silva et al.

by the IoT application developer in order to properly parse the published data.
In a conventional approach to realize such a scenario, usually an IoT middleware
is provided – either through the application developer or through an external
provider. This middleware connects to the sensors and actuators. Furthermore, it
provides access to them through topics. However, a lot of communication effort
is required between the provider of the IoT middleware and, in our scenario,
the smart parking application developer: First, the paths (or identifiers) of the
provided topics need to be known by the application developer, the protocols
used (e. g., MQTT [2] or HTTP) and, furthermore, which sensors and actuators
are represented through the topics. Second, the concrete structure of the message
has to be familiar. This, however, leads to high costs for application development,
and, furthermore, to a potential vendor lock-in regarding the middleware provider.
Moreover, if new sensors or sensor types are available, new topics are required to
be defined, which may lead to changes in the application.

Consequently, building this or similar IoT applications efficiently, requires
means to find suitable topics solely based on sensor or actuator metadata. Through
these means, the communication effort between middleware providers, who make
topics available, and application developers could be significantly reduced. To
enable this, we introduce the Topic Description Language for the IoT. We describe
our concepts and approach based on this scenario throughout the paper.

3 Requirements

In this section, we specify requirements for the TDLIoT. These requirements
originate from experiences with the above described scenario, as well as from
expert interviews in the scope of the German industry projects SmartOrchestra [3]
and IC4F [1]. These projects have many industry partners with expertise in IoT
applications. The goal is the definition of a commonly accepted language that is
applicable for most use cases. The expert interviews and the literature research
resulted into the following five requirements:

(A) Genericness The IoT is very heterogeneous with respect to the existence
of different devices, sensors, and actuators. In order to develop a future-proof
topic description, the TDLIoT is required to be generic in a way that it
supports all kinds of devices, sensors, and actuators, and is not restricted on
specific kind of hardware.

(B) Technology independency The technologies used in the IoT are very
heterogeneous. Many communication protocols, gateways, and middleware
solutions exist to build IoT applications. Therefore, the TDLIoT concepts
need to be technology independent in order to be realized, for example, using
different protocols.

(C) Self-containment A TDLIoT description needs to be self-contained, which
means it contains all required information to describe, find, and access topics
of sensors and actuators. Consequently, it should not be necessary to access
external sources to retrieve additional information about the topics of interest.

TDLIoT: A Topic Description Language for the Internet of Things 5

IoT middleware

Send
data

Send
command

Topic
catalog

Topic consumer Topic provider

1. Publish Topics2. Find Topic

3. Connect to Topic

Topic descriptions

Parking space
sensor

Gate

IoT App

Topic description
Path: /sensor_1
Data type: Boolean
Topic type: Subscription
Location: Stuttgart
…

Topic description
Path: /parking-space-sensor
Data type: Boolean
Topic type: Subscription
Location: Stuttgart
…

Figure 2. Overview of the approach for topic description and retrieval

(D) Lightweightness The TDLIoT needs to be lightweight in order to support
IoT scenarios with limited resources. More precisely, the size of TDLIoT
descriptions should be compact, which requires choosing lightweight data
formats, such as JSON or YAML. Furthermore, the TDLIoT should be kept
as simple as possible to reduce the required effort to get familiar with it.

(E) Extensibility The TDLIoT should be extensible with new attributes in the
future due to the constantly changing IoT resources. Hence, high extensibility
is of vital importance.

4 Topic Description Language for the IoT

In this section, we introduce the Topic Description Language for the IoT and
how it can be employed by IoT applications. Our approach is depicted in Fig. 2.
It is composed of three main roles: the topic provider, the topic consumer, and
the topic catalog. The topic provider creates topic descriptions based on the
TDLIoT and publishes them to the topic catalog. The topic consumer searches
for interesting topic descriptions in the topic catalog, and directly connects to
topic providers to either publish data or receive the data published to subscribed
topics. These roles are described in detail in Sect. 4.2 to 4.4.

This approach is inspired by the Service Oriented Architecture (SOA) Tri-
angle [32], which provides a means to discover and bind services. In Sect. 5,
we explain how we differ from the traditional SOA approach. In the following

6 Franco da Silva et al.

sections, we explain in detail (i) how to describe topics using the TDLIoT, and
(ii) how to publish and retrieve topics from the topic catalog.

4.1 Topic Description

In this section, we describe the content and structure of a topic description using
the TDLIoT. Each topic description contains several attributes. Their values are
represented as strings. We use examples from the motivating scenario described
in Sect. 2 to clarify the TDLIoT attributes:

– data type the data type of the values provided by the topic, e. g., boolean,
which is true if the parking space is occupied or false otherwise

– hardware type (optional) the type of hardware represented by the topic,
i.e., a specific sensor or actuator, e. g., occupation detection sensor

– location the location of the sensor or actuator represented by the topics. It
contains the location type, e. g., GPS or a specific city name, as well as the
location value, e. g., specific GPS coordinates

– message format the format of the message provided by the topic, e. g.,
JSON, YAML, or XML

– message structure the structure of the message defined as metamodel to
understand its content. It contains the metamodel type, e. g., JSON schema
or XML schema and the specific metamodel

– middleware endpoint the endpoint of the IoT middleware hosting the
topic, e. g., the endpoint of a message broker running on a server

– owner the name of the topic provider, e. g., City of Stuttgart
– path path of the topic, e.g., /parking-space-monitor
– protocol the communication protocol being used, e.g., MQTT or HTTP
– topic type the type of the topic, i. e., subscription or command
– unit (optional) the unit of the data provided through the topic, e. g., Celsius

if the topic provides temperature values in degree Celsius

Figure 3 shows the TDLIoT metamodel as entity-relation model in the
notation of Chen [8]. This model describes the relations between the entities of
TDLIoT descriptions. Apart from the hardware type and unit attributes, all of its
entities must only occur once within a single TDLIoT description. However, these
entities could occur in an arbitrary amount of descriptions, hence, they are not
globally unique. In case topics provide aggregated data, originating from different
sensors, or data that does not originate from hardware at all, the hardware type
attribute is not required.

A special case for the TDLIoT is a sensor that measures different values at
once and sends them within a single message, i. e., a multisensor. An example
is the sensor ZigBee ZBS-1213, which measures temperature, brightness, and
detects motion. Consequently, the attributes data type and unit would have to
occur multiple times, i. e., for each measured value of the multisensor. In order
3 ZigBee ZBS-121: http://www.pikkerton.de/_objects/1/26.htm

http://www.pikkerton.de/_objects/1/26.htm

TDLIoT: A Topic Description Language for the Internet of Things 7

unit

location

message
structure

hardware
type

data type

message
format

owner
middleware

endpoint

protocol

path

topic type
has

has has

has

0..1

n

1

nn

0..1

1

n

n

1

n1

n n n

1 1 1

n

n

1

1topic
description

metamodel
metamodel

type
has

11

n

location
type

n

1

has

n

location
value

1

Figure 3. Data model associated with the TDLIoT

to avoid matching issues, the data type attribute should, for example, have the
value MultiSensorDataType. Note that the data type attribute can be useful in
the TDLIoT, even though this information is redundant in the message structure
attribute. When searching for suitable topic descriptions, the data type of the (e. g.,
sensor) values could be an important criteria. This attribute directly provides the
underlying data type and omits a message parsing overhead. Furthermore, the
topic type attribute indicates whether this topic can be subscribed to or whether
it is used to publish command messages, e. g., to actuators.

To prevent conflicts or confusion regarding the values of the TDLIoT attributes,
ontologies can be used to detail the semantic description of these values, such
as a specific hardware type having more than one name. For example, the type
occupation detection sensor could also be named parking sensor or PSensor
in different topic descriptions. Grangel-Gonzalez et al. [13] introduce such a
ontology-based vocabulary for the IoT based on ontologies, which can be used as
foundation for this work. Furthermore, other semantic relations can be expressed
through the ontology, for example, whether the represented hardware is a sensor
or actuator. Using such a vocabulary enhances the TDL with semantics, i.e., the
meaning of attribute values can be understood through reasoning approaches.
Without this semantic information, finding topic descriptions for specific use
cases can become difficult.

{ " data_type " : " boolean " ,

" hardware_type " : " occupat ion d e t e c t i o n senso r " ,

" l o c a t i o n " : {

" locat ion_type " : " c i t y name " ,

8 Franco da Silva et al.

" l ocat ion_va lue " : " S tu t tga r t "

} ,

" message_format " : "JSON" ,

" message_structure " : {

" metamodel_type " : "JSON schema " ,

" metamodel " : " { " t i t l e " : " provider_schema " ,

" type " : " o b j e c t " ,

" p r o p e r t i e s " : {

" va lue " : {" type " : " boolean "} ,

" timestamp " : {" type " : " i n t e g e r "} ,

" time_up " : {" type " : " s t r i n g "} } ,

" r equ i r ed " : [" va lue " , " timestamp "] } "

} ,

" middleware_endpoint " : " http :// example . com " ,

" owner " : " c i t y - o f - s t u t t g a r t " ,

" path " : "/ parking - space - monitor " ,

" p r o t o c o l " : "MQTT" ,

" topic_type " : " s u b s c r i p t i o n "

}

Listing 1.1. Example of a topic description based on JSON

When creating topic descriptions, topic providers can query such an ontology
in order to find out the specific attribute values they can use, e. g., the type name
of the hardware represented by the topic. Only names appearing in the ontology
vocabulary should be used in the topic descriptions. New names, for example,
of a new type of sensor, should be added to the vocabulary first. The goal of
Grangel-Gonzalez et al. [13] is to accomplish a common vocabulary for the IoT,
which all involved partners (e. g., sensor manufacturers) agree on. In their case,
they specifically focus on the domain Industrie 4.0. However, such a vocabulary
could be provided for a wide range of domains. We do not focus on the specific
characteristics of such ontologies since it has already been intensively discussed
by Grangel-Gonzalez et al [13].

As an example for the TDLIoT, we show a topic description for the motivating
scenario based on the JavaScript Object Notation (JSON) in Listing 1.1. We
choose this format because it is lightweight and established in the IoT domain. In
this example, a topic description based on the TDLIoT is shown for an occupation
detection sensor. This description contains all the information necessary to connect
and subscribe to the represented topic. Through the endpoint attribute value,
the topic can be reached using the defined protocol, in this case MQTT. This
information is sufficient to subscribe to this topic and receive messages. To
develop IoT applications that can automatically process these messages, the
message structure is described inside the topic description using JSON schema.
This metamodel contains information about the data structure and the data
types. The JSON schema can be used to derive or implement parsers for the
messages received from the topic. The other attributes of the description, such
as location, path, hardware type, or owner, can be used to search for the topic
description in the topic catalog. For example, an IoT application developer aiming

TDLIoT: A Topic Description Language for the Internet of Things 9

to implement the smart parking application of our scenario might search for all
topics representing sensors of type occupation detection sensor in Stuttgart.

4.2 Topic Provider

In our approach, the topic provider can be any entity that owns hardware
that either produces data (e. g., sensors) or that allows to perform certain
activities (e. g., actuators), and wants to make this hardware available to further
applications. In our motivating scenario, a topic provider is a parking area owner
that deployed several sensors in parking spaces to monitor the current occupancy
state. Providing access to these sensor data allows application developers to create
applications to, for example, dynamically detect unoccupied parking spaces.

The topic provider usually provides an IoT middleware, which hosts and
manages topics for sensors and actuators. This is depicted in Fig. 2 at the
bottom right. Furthermore, the topic provider knows specific information about
their sensors and actuators (e. g., hardware type) and how to access them (e. g.,
endpoint, protocol). In order to enable sensors and actuators to be discovered as
topics, the topic provider creates topic descriptions for them using the TDLIoT.
An example of a topic description for an occupancy detection sensor can be seen
in Listing 1.1. This description contains all information necessary to find topics
and bind to a selected topic.

The topic descriptions can be published to the topic catalog and are retrievable
by topic consumers. Furthermore, once a topic is published, the topic providers can
either update a topic description, e. g., when the endpoint to the IoT middleware
changes, or delete a topic, for example, when the topic owner does not want to
allow access to its hardware anymore.

4.3 Topic Consumer

In our approach, the topic consumer can be any entity that wants to receive
sensor data or send commands to actuators. For example, sensor data could
be used to build IoT applications, such as a monitoring dashboard [18]. In our
motivating scenario, a topic consumer is an application developer aiming to
develop a GPS-based smart phone application to detect unoccupied parking
spaces near to the current location of the drivers.

To do so, the developer requires access to sensors detecting parking space
occupancy, and actuators that can be controlled, for example, gates that enable
access to parking spaces and that can be automatically opened. Imaging multiple
parking spot providers that have different sensors and actuators deployed and
require different access protocols. Topic consumers need to find the most suitable
topics for their applications, which could depend on the location of the parking
spot, the data types of the sensor values, or the protocol used. In order to develop
such applications, the topic consumer searches for interesting topic descriptions
in the topic catalog, for example, for topic descriptions of occupancy detection
sensors at the location Stuttgart. An example for such a search can be seen
in Listing 1.4. Once topic consumers find relevant topic descriptions, they can

10 Franco da Silva et al.

POST / t o p i c s HTTP/ 1 . 1

Content - Type : a p p l i c a t i o n / j son

{ " data_type " : " boolean " ,

" hardware_type " : " occupat ion d e t e c t i o n senso r " , . . . }

HTTP/ 1 . 1 201 CREATED

topic_id : 7321

Listing 1.2. Example of publishing a new topic to the catalog based on JSON

directly bind to the corresponding topics. The necessary binding information,
i. e., the endpoint, the topic names, the required message structure, and protocol,
is contained in the topic description.

It is also possible that two different topics exist that represent the same
sensor or actuator. For example, one topic could provide the sensor data in the
JSON format, the other one in an XML representation. The topic consumer can
then choose the most fitting topic description to build the desired application.
Furthermore, based on the topic descriptions, topic consumers could automatically
generate code stubs for the binding to the corresponding topics through parsing
the message structure from the corresponding catalog entry.

4.4 Topic Catalog and REST API

The topic catalog contains a data store for topics described in TDLIoT notation.
It provides a REST API to enable topic providers to publish topic descriptions
and topic consumers to retrieve those descriptions. To publish a topic to the
topic catalog, topic providers first need to model their topics in the description
structure presented in Sect. 4.1 and exemplified in Listing 1.1 and then submit
these descriptions to the topic catalog through its REST API.

An example of how to use the API to submit a new topic to the catalog is
shown in Listing 1.2. In this example, the topic depicted in Listing 1.1 should
be added to the topic catalog. To do so, a HTTP POST request is sent to the
topic catalog, in this example, being available through the resource URI /topics.
The header of this request contains the data format of the TDLIoT description,
in this case JSON. In the body, the TDLIoT description itself is provided. The
response of the request contains a unique id for the created topic, topic_id, which
is generated by the topic catalog. With the topic id, topic providers can either
change a topic description or remove it.

However, changes in the topic descriptions could lead to issues by topic
consumers that are currently using the topics, for example, when the endpoint or
message structure changes. This also concerns deletion of topic descriptions. To
cope with these issues, the topic catalog provides a means to register on changes
in the topic descriptions. For that, the topic consumer needs to provide a callback
endpoint to which notifications about changes are send to. When using NoSQL

TDLIoT: A Topic Description Language for the Internet of Things 11

GET / t o p i c s HTTP/ 1 . 1

Accept : a p p l i c a t i o n / j son

HTTP/ 1 . 1 200 OK

[{ " data_type " : " boolean " , . . . } ,

{ " data_type " : " f l o a t " , . . . } , . . .]

Listing 1.3. Requesting all registered topics from the catalog

POST / t o p i c s HTTP/ 1 . 1

Accept : a p p l i c a t i o n / j son Content - Type : a p p l i c a t i o n / j son

{ " f i l t e r s " : {

" l o c a t i o n " : {

" locat ion_type " : " c i t y name " ,

" l ocat ion_va lue " : " S tu t tga r t "

} ,

" hardware_type " : " occupat ion d e t e c t i o n senso r "

} }

HTTP/ 1 . 1 200 OK

[{ " data_type " : " boolean " , . . . } ,

{ " data_type " : " f l o a t " , . . . } , . . .]

Listing 1.4. Requesting occupation detection topics located in Stuttgart

databases to store topic descriptions, such notification functionality is usually
provided natively, for example, in CouchDB [6]. However, this requires versioning
of the topic descriptions. This is not yet considered in our approach, however, it
can be achieved by adding an additional version attribute to the TDLIoT.

The topic catalog allows topic consumers to search for interesting topics
through the provided API. For that, topic consumers either request a list of all
published topics and browse this list manually or conduct a refined search by
specifying filters for the topics. Listing 1.3 shows how to use the API to list all
registered topics in the catalog. To realize this, a HTTP GET request is sent to
the topic catalog URI. The type of the description can be defined by the Accept
header attribute of the HTTP request. This is especially important if TDLIoT
descriptions exist in several data formats (e. g., JSON, XML, etc.). If no accept
header is specified, the JSON representation is returned by the catalog.

To realize a refined search, topic consumers specify filters based on the
attributes defined in Sect. 4.1. For example, if a topic consumer is interested in
all registered occupation detection topics located in Stuttgart, a refined search
by hardware type and location can be used, as shown in Listing 1.4. Based on
the specified filter, the topic catalog generates queries that are executed by the
data store of TDLIoT descriptions. Finally, the found descriptions are returned
to the topic consumers. When querying the TDLIoT descriptions based on its

12 Franco da Silva et al.

attributes, the catalog can check the aforementioned ontology (cf. Sect. 4.1) for
synonyms of the values in order to query for all suitable topics, even though their
attributes are named differently. In this way, topic consumers can also retrieve
related topics that fulfill their requirements.

When providing the topic catalog in a centralized manner, this could lead to
scalability issues and become a single point of failure. Consequently, a distributed,
replicated data store, such as CouchDB, should be used in combination with cloud
computing capabilities. In this way, the topic catalog can be scaled throughout a
large number of instances (even automatically) and, thus, scalability issues can
be reduced significantly.

Similar to web services, after finding suitable topics in the topic catalog, topic
consumers still need to negotiate the specific usage terms with the topic providers.
For example, access control mechanisms could be in place, which requires a
generation of access tokens in order to connect to the topics. Such tokens need
to be exchanged directly between topic providers and consumers. Consequently,
access control and other specific usage terms need to be handled by the topic
consumers and providers themselves. This is not in the scope of the topic catalog.

4.5 Prototypical Implementation

We implemented an open-source prototype available on github under the Apache
2.0 license4. The prototype is also available in Docker hub5. The topic catalog was
implemented using MongoDB6 to store and manage the topic descriptions, which
are in JSON notation. Moreover, we created the proposed REST API to access
the topic catalog. The used REST framework is Java Spring7. A documentation of
the API is provided using Swagger8. We provide a Java-based client application
to access the topic catalog and subscribe to and publish to topics using the
MQTT protocol. Finally, we provide a web user interface, in which the current
topic descriptions are visualized and can be edited through the REST API.

5 Related Work

Grangel-González et al. [13] introduce a vocabulary for the Internet of Things,
especially for the domains Industrie 4.0 and smart cities. This vocabulary is
based on ontologies, thus, defining semantic relations between entities in the IoT,
e. g., devices, sensors, and actuators. In our approach, we use this vocabulary as
basis for the attribute values that can be used in the TDLIoT descriptions. By
doing so, we can avoid confusion or conflicts when creating such descriptions.

A common API for publish-subscribe was proposed by Pietzuch et al. [27],
which supports three levels of compliance: (i) the lowest level, specifying abstract
4 Github repository: https://github.com/IPVS-AS/TDLIoT
5 Dockerhub repository: https://hub.docker.com/r/ipvs/tdl-catalogue/
6 MongoDB: https://www.mongodb.com/
7 Java Spring: https://spring.io/
8 Swagger: https://swagger.io/

https://github.com/IPVS-AS/TDLIoT
https://hub.docker.com/r/ipvs/tdl-catalogue/
https://www.mongodb.com/
https://spring.io/
https://swagger.io/

TDLIoT: A Topic Description Language for the Internet of Things 13

operations, (ii) the middle level, describing interactions using a light-weighted
XML-RPC mechanism, and (iii) the highest level, enforcing a XML-RPC data
model. In our approach, we provide an API as well, however, we aim at facil-
itating the description and querying of topics. The specific realization of the
communication between topic providers and topic consumers is out of scope.

Dai et al. [11] argue that WSDL does not enable the description of an IoT
object with all its information, since WSDL does not provide methods to represent
non-functional aspects of services. Therefore, they propose a flexible extension
of WSDL to describe non-functional attributes, so that it enables the complete
description of a physical IoT object, including what it is and what it can do. In
our approach, we aim at the description of an IoT object in the form of topics. In
addition, we provide means to search for interesting topics based on IoT object
attribute values, such as unit (e. g., Celsius) or location (e. g., Stuttgart).

In service-oriented architectures (SOA) [32,26], similar roles exist to enable
building applications based on services. The roles Service Provider, Service
Consumer, and Universal Description, Discovery and Integration (UDDI), also
referred as SOA Triangle, match the described roles topic provider, topic consumer,
and topic catalog. The SOA Triangle is an approved means to find services,
therefore, we build on these concepts and apply them to topics in the IoT.
In the UDDI, different so-called pages exist. In the white pages, information
about the service provider are stored, including how they can be contacted. In
the yellow pages, services are being classified based on their attributes. This
is necessary to find them effectively. Finally, in the green pages, the concrete
interface specification of the services are contained, i. e., how to access them. In
contrast to the UDDI, our approach does not differentiate among these pages.
All information contained in these pages is integrated within a single TDLIoT
description. Due to the fact that this information is very lightweight, it does not
need to be split up onto several pages. The overview can still be kept clear.

The Web Service Description Language (WSDL) [9] is an approved means to
describe web services [32]. When using messaging, there is usually a SOAP/JMS
binding available [4]. In our approach, we aim for a lightweight, easy to use way
to describe topics. The TDLIoT is tailored for topics in the IoT and uses terms
specific to it. Realizing these concepts using WSDL is possible, as shown by Dai
et al. [11]. However, an approach specialized to the needs of the IoT (see Sect. 3)
could lead to simplified and more intuitive application development.

Jimenez et al. [20] introduce IPSO Smart Objects, an abstraction of com-
munication protocols, such as HTTP or the Constrained Application Protocol
(CoAP) [7]. The goal is to provide high level interoperability between devices
and connected software applications. Furthermore, the Open Mobile Alliance
Lightweight Specification (OMA LWM2M) [5] is used, which provides a set of
management interfaces based on CoAP.

However, even though the IPSO Smart Objects provide a good abstraction to
access devices in the IoT, there are no means to browse available devices and to
find the most suitable one to develop a specific IoT application. Combining the
TDLIoT with resource description standards, such as IPSO, OMA LWM2M, or

14 Franco da Silva et al.

early approaches, such as UPnP, is currently not considered in our first approach
but will be part of our future work.

In summary, we enabled a SOA-inspired approach to describe topics in the
IoT. Current approaches extend WSDL in order to achieve this goal. However,
in our approach, we aim for a low complexity and a very lightweight description
of topics tailor-made for the IoT. This can be achieved through the TDLIoT.

6 Summary and Future Work

In this paper, we introduce the Topic Description Language for the Internet
of Things (TDLIoT). It enables a simple means to describe and find topics of
sensors and actuators by providing (i) a description of the topics, (ii) a catalog
to browse the topic descriptions, and (iii) an effective way to query and find
suitable topics. In this way, IoT application development can be eased through
an appropriate abstraction from specific IoT middlewares. The topics can be
found, for example, based on a specific location, sensor or actuator type. The
TDLIoT descriptions build on a data model that defines their content.

Our approach defines three roles. The topic provider, which creates topic
descriptions representing their sensor and actuator and publishes them to the
topic catalog. The topic catalog, storing the topic descriptions, and enabling
effective means to query them. Finally, the topic consumer, searching for suitable
topics to build IoT applications. How the topic catalog can be queried is simplified
by a REST-based API, which abstracts from the specific query languages.

To show the applicability of our approach, we present a motivating scenario
in the domain smart cities, which describes a smart parking application based on
topic descriptions. In this application, occupation sensors and actuators to open
gates to the parking spaces are represented by corresponding topics described
using the TDLIoT. Furthermore, we provide an open-source prototype of our
concepts that is available online9.

In future work, we plan to describe non-functional properties of the topics,
such as availability, costs, or quality of service, e.g., the accuracy of a provided
sensor value. This can be achieved by extending the TDLIoT with new attributes.

Furthermore, we plan to integrate service level agreements (SLA) [21] so that
topic providers and consumers can agree on specific usage conditions. Moreover,
through the integration of the introduced topic descriptions into access control
frameworks [19], security mechanisms can be provided.

Acknowledgments

This work is funded by the BMWi project SmartOrchestra (01MD16001F).

9 https://github.com/IPVS-AS/TDLIoT

https://github.com/IPVS-AS/TDLIoT

TDLIoT: A Topic Description Language for the Internet of Things 15

References

1. IC4F Research Project. online, https://www.ic4f.de/

2. MQTT V3.1 Protocol Specification. online, http://public.dhe.ibm.

com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html

3. SmartOrchestra Research Project. online, http://smartorchestra.de/en/

4. Adams, P., Easton, P., Johnson, E., Merrick, R., Philips, M.: SOAP over Java

Message Service 1.0 (2012)

5. Alliance, O.M.: Lightweight machine to machine technical specification. Technical

Specification OMA-TS-LightweightM2M-V1 (2013)

6. Apache: CouchDB NoSQL Database. online, http://couchdb.apache.org/

7. Bormann, C., Castellani, A.P., Shelby, Z.: CoAP: An Application Protocol for

Billions of Tiny Internet Nodes. IEEE Internet Computing 16(2), 62–67 (March

2012)

8. Chen, P.P.S.: The Entity-Relationship Model – Toward a Unified View of Data.

ACM Trans. Database Syst. 1(1), 9–36 (1976)

9. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Descrip-

tion Language (WSDL) 1.1 (2001)

10. CommuniThings: Smart Parking Application. online,

http://www.communithings.com/smartparking/

11. Dai, C., Wang, Z.: A Flexible Extension of WSDL to Describe Non-Functional

Attributes. In: 2nd International Conference on E-business and Information System

Security. pp. 1–4 (2010)

12. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The Many Faces of

Publish/Subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

13. Grangel-González, I., Halilaj, L., Coskun, G., Auer, S., Collarana, D., Hoffmeister,

M.: Towards a Semantic Administrative Shell for Industry 4.0 Components. In:

Proceding of the 10th International Conference on Semantic Computing (ICSC).

pp. 230–237. IEEE (2016)

14. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): A

vision, architectural elements, and future directions. Future Generation Computer

Systems 29(7), 1645–1660 (2013)

15. Guth, J., Breitenbücher, U., Falkenthal, M., Leymann, F., Reinfurt, L.: Comparison

of IoT Platform Architectures: A Field Study based on a Reference Architecture.

In: Cloudification of the Internet of Things (CIoT). pp. 1–6. IEEE (2016)

16. Hirmer, P., Breitenbücher, U., Franco da Silva, A.C., Képes, K., Mitschang, B.,

Wieland, M.: Automating the Provisioning and Configuration of Devices in the

Internet of Things. Complex Systems Informatics and Modeling Quarterly (CSIMQ)

9, 28–43 (2016)

17. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc.

(2003)

18. HomeAssistant: Home Assistant. online, https://home-assistant.io/

19. Hüffmeyer, M., Hirmer, P., Mitschang, B., Schreier, U., Wieland, M.: SitAC – A

System for Situation-aware Access Control - Controlling Access to Sensor Data. In:

Proceedings of the 3rd International Conference on Information Systems Security

and Privacy. vol. 1. SciTePress (2017)

20. Jimenez, J., Koster, M., Tschofenig, H.: IPSO Smart Objects. In: Proceedings of

the IOT Semantic Interoperability Workshop (2016)

21. Kearney, K.T., Torelli, F.: The SLA Model, pp. 43–67. Springer New York (2011)

http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
http://couchdb.apache.org/
https://home-assistant.io/

16 Franco da Silva et al.

22. Lee, I., Lee, K.: The Internet of Things (IoT): Applications, investments, and

challenges for enterprises. Business Horizons 58(4), 431–440 (2015)

23. Light, R.A.: Mosquitto: server and client implementation of the MQTT protocol.

The Journal of Open Source Software 2(13), 265 (2017)

24. McDonald, H., Nugent, C., Hallberg, J., Finlay, D., Moore, G., Synnes, K.: The

homeML suite: shareable datasets for smart home environments. Health and Tech-

nology 3(2), 177–193 (2013)

25. Mineraud, J., Mazhelis, O., Su, X., Tarkoma, S.: A gap analysis of Internet-of-Things

platforms. Computer Communications 89 - 90, 5–16 (2016)

26. Papazoglou, M.P.: Service-oriented computing: concepts, characteristics and di-

rections. In: Proceedings of the 4th International Conference on Web Information

Systems Engineering (WISE). pp. 3–12 (2003)

27. Pietzuch, P., Eyers, D., Kounev, S., Shand, B.: Towards a Common API for

Publish/Subscribe. In: Proceedings of the 2007 inaugural international conference

on Distributed event-based systems (DEBS). pp. 152–157. ACM (2007)

28. Ramparany, F., Marquez, F.G., Soriano, J., Elsaleh, T.: Handling smart environment

devices, data and services at the semantic level with the FI-WARE core platform.

In: IEEE International Conference on Big Data (Big Data). pp. 14–20 (2014)

29. Franco da Silva, A.C., Hirmer, P., Wieland, M., Mitschang, B.: SitRS XT – To-

wards Near Real Time Situation Recognition. Journal of Information and Data

Management 7(1), 4–17 (Apr 2016)

30. Tao, F., Cheng, Y., Zhang, L., Nee, A.Y.C.: Advanced manufacturing systems:

socialization characteristics and trends. Journal of Intelligent Manufacturing pp.

1–16 (2015)

31. Wahle, S., Magedanz, T., Schulze, F.: The OpenMTC framework – M2M solutions

for smart cities and the internet of things. In: IEEE International Symposium on a

World of Wireless, Mobile and Multimedia Networks (WoWMoM). pp. 1–3 (June

2012)

32. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web

Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-

BPEL, WS-Reliable Messaging and More. Prentice Hall PTR (2005)

	cover-TDLIoT
	Foliennummer 1

	paper68_CR-Version

