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Abstract. Many cloud applications are composed of several interacting

components and services. The communication between these components

can be enabled, for example, by using standards such as WSDL and the

workflow technology. In order to wire these components several endpoints

must be exchanged, e. g., the IP addresses of deployed services. However,

this exchange of endpoint information is highly dependent on the (i) mid-

dleware technologies, (ii) programming languages, and (iii) deployment

technology used in a concrete scenario and, thus, increases the complexity

of implementing such interacting applications. In this paper, we propose a

programming model that eases the implementation of interacting compo-

nents of automatically deployed TOSCA-based applications. Furthermore,

we present a method following our programming model, which describes

how such a cloud application can be systematically modeled, developed,

and automatically deployed based on the TOSCA standard and how code

generation capabilities can be utilized for this. The practical feasibility of

the presented approach is validated by a system architecture and a proto-

typical implementation based on the OpenTOSCA ecosystem. This work

is an extension of our previous research we presented at the International

Conference on Enterprise Information Systems (ICEIS).

Keywords: Development Method, Programming Model, Orchestration, Interac-

tion, Communication, Automated Deployment, TOSCA

1 Introduction

Cloud computing is of vital importance for realizing modern IT systems by

enabling automated deployment and management of applications [18]. Cloud

properties, for example, scalability, pay-on-demand pricing, or self-service enables

developers building flexible and automated cloud applications. These cloud

applications typically consists of multiple components, which need to be able

to communicate with each other. Therefore, one of the most important issues

from an application developer’s perspective is to orchestrate and wire these

different components. Also regarding connected sensors and actuators in the field

of Internet of Things (IoT), the services and devices need to be wired—often IoT

integration middleware technologies are used for this purpose [11].
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However, this orchestration and wiring mainly depends on the technologies

used to realize the application as well as its components. Thus, dependent on these

technologies, different information need to be exchanged during the automated

deployment of the overall application in order to enable the communication

between the components. For example, consider a component which is hosted on

a public cloud platform implementing a graphical user interface that presents

data from physical devices, such as measured temperature data. In order to

enable this component presenting any data from a device, it needs to be wired

with this device measuring the data as well as the software running on this

device. Therefore, the endpoint information of the component implementing the

graphical interface needs to be exchanged with the devices during the automated

deployment of the overall application. Such endpoint information required for

the communication between components of such composite applications are, for

example, URLs of services, IP addresses, and required credentials. [37]

Unfortunately, the exchange of these endpoint information mainly depends

on technologies, such as the middleware, the programming languages, and the

deployment technology used to implement and deploy the application and its

components. Therefore, the exchange of these information requires the usage of

custom written code, which limits the portability of the application and increases

the complexity of implementing the components. Although available technologies,

for example, WSDL [32], service buses [9], or orchestration and deployment

technologies such as Docker Compose1 enable to describe and abstract the

communication between different components, the composition of multiple het-

erogeneous technologies is still an open issue. Furthermore, a programming model

easing the implementation of interacting components or a method describing the

systematically development of such applications is missing.

In this paper, we tackle these issues by presenting a TOSCA-based program-

ming model and a corresponding development method that ease the implementa-

tion of interacting components of automatically deployed applications. The main

idea of our approach is to abstract endpoint handling of interacting components

by using the identifiers and interface descriptions from TOSCA models and by

utilizing a service bus, which is integrated in the deployment runtime. This work

is an extension of our previous research [37] presented and published at the

International Conference on Enterprise Information Systems (ICEIS). While our

previous work already covered the TOSCA-based programming model and the

required TOSCA extension, we extend these concepts in this work by a system-

atic development method that supports developers in applying the programming

model. Moreover, we show how code generation capabilities can be used to auto-

mate some steps of the method. The practicable feasibility of our approach is

validated by providing a system architecture and prototypical implementation

following our programming model and supporting the presented method.

Before we present our extension and new contribution in Sect. 7, we first recap

our previous research [37] to provide a comprehensive overview: Section 2 discusses

different state-of-the-art approaches for automating the orchestration and wiring

1 https://docs.docker.com/compose/
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of components and illustrates the existing problems and limitations we tackle

in this work. We introduce the TOSCA standard for modeling and managing

cloud applications in Sect. 3. Section 4 presents our TOSCA-based programming

model, which enables abstracting the communication between components and

the endpoint handling during deployment. Our TOSCA extension to enable the

modeling of operations implementing business operations is presented in Sect. 5,

which we also adapted in this extended version. In Sect. 6 the corresponding

communication concepts implemented as service bus are presented. Section 7

presents the new contribution of this extended paper in the form of a method

for modeling and developing TOSCA-based cloud applications following the

presented programming model. The validation of our approach by implementing

a prototype is presented in Sect. 8. Finally, Sect. 9 discusses related work and

Sect. 10 presents our conclusion as well as planned future work.

2 Problem Statement

In this section, different state-of-the-art approaches for automating the orchestra-

tion and wiring of components using existing technologies are discussed. Moreover,

based on the discussed approaches the problems taking place when utilizing them

are discussed, such as the required exchange of endpoint information.

Of course, the issue of automatically wiring components of applications in

which all components are deployed and operated using only one technology can

be solved by using a single composition technology, such as Docker Compose2 or

Kubernetes3: Typically such technologies provide built-in wiring and orchestration

capabilities that must be considered when implementing a component. For

example, by propagating environment variables to containers or by placing

and sharing configuration files, which are used by a component to connect to

another one [8]. However, in composite cloud applications consisting of multiple

heterogeneous components typically multiple technologies have to be combined,

especially if physical devices are involved in IoT scenarios [7]. Unfortunately, this

also requires to combine multiple invocation mechanisms, protocols, and endpoint

exchange mechanisms. Thus, this leads to custom code binding a component to

an invoked component as well as its implementation if no service bus [9] or—in

case of cyber-physical scenarios—IoT middleware [11] is used for abstraction.

Accordingly, for the interaction of (micro)services the calling service needs to

know the endpoint of the other service to enable their communication. The service

bus concept solves this issue from a communication layer perspective. However, if

a concrete target service shall be invoked, at least its unique identifier (ID in the

following) is required and must be contained in the message sent to the bus. In

case of an IoT middleware, such as a message broker, typically the ID of the topic

to which a device publishes must be known by sender and receiver. However, the

exchange of such IDs is technically similar to the exchange of endpoints of the

invoked components, for example, URLs of the deployed components. Thus, an

2 https://docs.docker.com/compose/
3 http://kubernetes.io/
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appropriate exchange mechanism is required nevertheless which approach is used.

Typically such information is required during deployment time of a component

to tell it to which other components (or to which service bus) it shall connect4.

However, a standardized approach for (i) automatically exchanging arbitrary kinds

of endpoint information between components which they require to communicate

with each other and (ii) exchanging IDs to enable components to invoke a

certain component via a service bus is missing. Therefore, typically this kind of

information is handled in an application-specific manner during the deployment

time of the overall application by using manually created configuration scripts

and similar approaches. For instance, if a component is implemented as script,

environment variables are typically used to pass this kind of endpoint information.

This kind of exchange is used, e.g., in a work of Wettinger et al. enabling the unified

invocation of scripts implementing management operations [34]. Furthermore,

often configuration files need to be updated, for example, as shown by da Silva et

al. in an IoT deployment scenario [28]. However, all these issues are reflected in

the implementations of components, thus, limiting the application’s portability

since the used technologies and their exchange mechanisms need to be considered.

To sum up, despite service-orientation, standards such as WSDL, service

buses and the workflow technology, providing common means for enabling the

interaction between components, their automated deployment and wiring is still

a technology-dependent issue. Furthermore, this issue itself highly depends on

the used (i) middleware technologies, (ii) programming languages, and (iii)

deployment technologies. Thus, it results in an increase of the complexity of

implementing components as well as orchestrating them leading to custom written

code. The problems occurring when using state-of-the-art wiring approaches,

for instance, establishing a direct communication between two components or

applying a service bus instead, are illustrated by means of an exemplary IoT-Cloud

scenario in the next section.

2.1 Motivating Scenario

In Fig. 1 a typical IoT-Cloud scenario describing the wiring of components is

depicted. In the illustrated scenario, the Python 3 App running on a Raspberry

Pi measures temperature data that shall be sent to the Java 7 App, which is

responsible for storing and displaying this data. To enable the Python 3 App to

send the measured temperature data to the Java 7 App, after the automated

provisioning of all shown components the Python 3 App requires additional

endpoint information. The figure illustrates two possibilities to connect the

components: (i) a direct communication and (ii) a communication via a central

service bus. However, both variants require exchanging endpoint information:

Either the Python 3 App needs to know (i) an endpoint (e.g. an URL) of the

Java 7 App in case of a direct communication, or (ii) some kind of ID specifying

the Java 7 App in case of using the service bus. Furthermore, in case of the

4 This is a general requirement for deploying composite applications. Of course, this

does not apply to hard-wired scenarios, which are not the focus of this work.
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Raspberry Pi 3 Amazon 

Ubuntu 14.04 VM 

Tomcat 8 

       Java 7 App 

Raspbian Jessie 

Python 3 MySQL 5.7 

a) Direct communication 

b) Using a service bus or  
IoT middleware 

Service Bus /  
IoT Middleware 

URL 

ID 

= must be exchanged 

Python 3 App 

Fig. 1. Two state-of-the-art orchestration variants of an IoT-Cloud scenario [37].

service bus, the Java 7 App must be first registered at the bus to make itself

known. Even when using a standard such as WS-Addressing5, some information

requires to be exchanged before a connection can be established initially. Thus,

resulting in custom code written for each component in order to accomplish

the initial exchange of the required endpoint information. However, since this

binds the components to the used orchestration technology, in particular, to

its endpoint exchange mechanism, this limits the portability of components.

Furthermore, because of multiple error sources, additional effort and expertise

is required for implementing and debugging components. In order to address

these issues, we present a standards-based programming model to abstract the

communication between heterogeneous components and proprietary endpoint

exchange mechanisms in this paper.

3 The TOSCA Standard

Because the following concepts are based on TOSCA, we introduce the TOSCA

standard in this section to provide a comprehensive background. The OA-

SIS standard Topology and Orchestration Specification for Cloud Applications

(TOSCA) [3, 22, 23] enables to describe the required infrastructure resources,

the components, as well as the structure of a cloud application in an interopera-

ble and portable manner. Moreover, TOSCA supports to define the operations

required for managing an application. Thus, TOSCA enables the automated

provisioning as well as management of cloud applications. The structure of

a cloud application is defined in a topology template. Figure 2 shows such a

template modeling the motivating scenario described in Sect. 2.1 following the

visual notation Vino4TOSCA [6]. A topology template is a graph consisting

of nodes and directed edges. The nodes of the graph are called node templates

5 https://www.w3.org/TR/ws-addr-core/
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ID: VM
(Ubuntu14.04VM)

Type: t2.small 
User: ubuntu
…

ID: IaaSProvider
(AmazonEC2)

Username: U42a2 
Password: g3jn5v2t
…

ID: Webserver
(Tomcat8)

Port: 8080 
Credentials: […]
…

ID: Database
(MySQL5.7DB)

Port: 3306 
Credentials: […]
…

ID: App
(Java7App)

ID: TempPublisher
(Python3App)

ID: Runtime
(Python3)

ID: DeviceOS
(RaspbianJessie)

User: jessie
Credentials: […]
…

= hostedOn = connectsTo = sendsTo

ID: Device
(RaspberryPi3)

IP: 192.42.2.42 
MAC: 00:80:42:ae:fd:7e
…

Fig. 2. Exemplary TOSCA Topology Template (Extension of [37]).

and represent components of the application, for example, an Apache Tomcat,

a MySQL-Database, a virtual machine, or a cloud provider. Edges connecting

the nodes are called relationship templates and allow to model the relationships

between the components. For example, “hosted on” is a relation specifying that

a component is hosted on another component, “depends on” specifies that a

component has dependencies to another component, and “connects to” specifies

that a component needs to connect to a database, for instance.

In order to support reusability, TOSCA enables the specification of node

types and relationship types defining the semantics of the node and relationship

templates. For example, properties, such as passwords, user names, or the port of

a web server, as well as available management operations of a modeled component

are defined within the types. Management operations are bundled in interfaces

and enable the management of components. For example, usually a component

node provides an “install” operation in order to install the component, while

a hypervisor or cloud provider node typically provides a “createVM” operation

in order to create a new virtual machine. The artifacts, which implement the

management operations, are called implementation artifacts and are implemented,

for instance, as a web service packaged as a WAR file or just as a simple SH

script. Besides implementation artifacts, additionally TOSCA defines deployment

artifacts representing the artifacts implementing the business logic of the nodes.
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For example, a deployment artifact could be a WAR file implementing the Java

application that should be provisioned on the VM of our motivating scenario.

To create or terminate instances of a topology template and to enable the

automated management of applications, so-called management plans can be

specified in TOSCA models. Management plans are executable workflow models

implementing a certain management functionality. For example, they define which

management operations need to be executed in order to achieve a higher level

management goal, such as to provision a new instance of the entire application

or to scale out a component. TOSCA does not specify a particular process

modeling language for the definition of plans, however, recommends to use a

workflow language such as the standardized Business Process Execution Language

(BPEL) [21] or the Business Process Model and Notation (BPMN) [24]6.

Furthermore, TOSCA also specifies a portable and self-contained packaging

format, which is called Cloud Service Archive (CSAR). All artifacts, type defini-

tions, the topology template, management plans, as well as all additional files

required for automating the provisioning and management are packaged into

the CSAR. Such a CSAR can be processed and executed automatically by all

standard-compliant TOSCA Runtime Environments, such as OpenTOSCA [2],

and thus ensuring the application’s portability as well as interoperability.

4 TOSCA-based Programming Model

In this section, our TOSCA-based programming model is presented as described

in our previous work (Zimmermann et al. [37]). The main goal of the programming

model is to completely abstract (i) the communication between components as

well as (ii) any endpoint handling during deployment. Therefore, it allows to

program the invocation of operations provided by other components in almost

the same manner as they would be available locally.

In Fig. 3 the concept of the programming model is illustrated. The upper

half of the figure shows a simplified deployment model of the motivating scenario

as TOSCA topology template. The left side of the template shows the Java

7 App component with ID App and its underlying stack, which is hosted on

the Amazon cloud. Moreover, the description of the interface TempManagement

and its operation updateTemp to update a temperature value with the input

parameter val is illustrated. The right side of the template shows the stack of the

Python 3 App component with ID TempPublisher, which shall be hosted on a

physical Raspberry Pi 3. The main function of the TempPublisher component is

to send the measured temperature data to the Java 7 App component by invoking

its operation updateTemp. The lower half of the figure illustrates the physical

deployment of this template. For example, the temperature sensor connected to

the Raspberry Pi 3 is depicted in this physical deployment view. The left side

outlines an exemplary pseudo code implementation of the updateTemp operation,

while the right side illustrates the simplified implementation of the TempPublisher.

6 We also developed a TOSCA-specific workflow modeling extension called

BPMN4TOSCA [14, 16] that eases developing management plans.
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Raspberry Pi 3 

ID: IaaSProvider 
(AmazonEC2) 

ID: VM 
(Ubuntu14.04VM) 

ID: Webserver 
(Tomcat8) 

TOSCA Topology Template 

ID: Device 
(RaspberryPi3) 

ID: DeviceOS 
(RaspbianJessie) 

ID: Runtime 
(Python3) 

ID: TempPublisher 
(Python3App) 

Amazon 

Ubuntu 14.04 VM 

Tomcat 8 

       Java 7 App 
updateTemp (val) { 

   list.add (val); 

   … 

} 

Deployment Model 

Physical Deployment 

ID: App 
(Java7App) 

Interface Description 

• Interfaces 

 TempManagement 

• Operations 

 updateTemp 

• Input Parameter 

    val 

Raspbian Jessie 

Python 3 

Python 3 App 29° 

while (running) { 

  sleep(2000);  

  val = read(…); 

  App.updateTemp(val); 

} 

Automated Deployment 

Legend: 

Hosted On 

Sends To 

Fig. 3. TOSCA-based Programming Model based on the simplified motivating sce-

nario [37].

The main idea of our proposed TOSCA-based programming model is to

enable the invocation of operations offered by other components only based on

information contained in the TOSCA topology template. Therefore, to program an

invocation, the TOSCA ID of the component to be invoked is used as object in the

code while the desired operation is called as usual in object-oriented programming.

For instance, the code of the TempPublisher component contains the invocation

of the operation updateTemp of the TOSCA node template having the ID App

(App.updateTemp(val)). Thus, although the component App is hosted on the

Amazon cloud and the component TempPublisher is hosted on a physical device,

the operation updateTemp can be used within the TempPublisher component

as it would be a locally available method. Therefore, all relevant wiring aspects

are abstracted and no programming for endpoint handling or to connect to a

service bus is required. Moreover, all TOSCA IDs of the components are specified

within the topology template and are, therefore, well-known. Thus, discovering

components and establishing a connection to enable the communication between

components requires no exchange of IDs at all.

5 TOSCA Extension for the Programming Model

In order to realize our programming model, the operations implementing the

business logic of an application must be defined in the corresponding TOSCA

model. However, since this is not supported by TOSCA out of the box, in this
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section, a TOSCA-extension to define business operations of applications modeled

using TOSCA is presented. Thus, we extend TOSCA by an Interface Definition

Language (IDL) for business operations in this section7. We first differentiate

business operations from management operations, which can be already modeled

in TOSCA, in order to ease the understanding.

5.1 Application Interfaces

In Sect. 3 the fundamentals of the TOSCA standard were presented. More-

over, we outlined that management operations provided by node templates are

implemented by implementation artifacts. They can be realized using any ar-

bitrary technology such as a simple shell script, a WAR file exposing a web

service, or more sophisticated technologies such as Chef recipes [30] or Ansible

playbooks [19]. These management operations enable to automate arbitrary man-

agement tasks of cloud applications and are orchestrated by management plans.

However, nodes of course can also have operations implementing the business

logic of the corresponding component. In our motivation scenario, for instance,

the Java component Java 7 App provides the operation updateTemp in order

to update the temperature data to be displayed (cf. Sect. 2.1). However, this

business operation cannot be modeled using standard TOSCA elements. But

since they are required to realize our new programming model, we extend TOSCA

node types by a modeling schema for business operations. Listing 1.1 shows how

application interfaces and business operations can be defined using the extension.

1 <NodeType name="xs:NCName">

2 <ot:ApplicationInterfaces>

3 <Interface name="xs:NCName">

4 <Operation name="xs:NCName">

5 <documentation/> ?

6 <InputParameters>

7 <InputParameter name="xs:string" type="xs:string"

8 required="yes|no"?/> +

9 </InputParameters> ?

10 <OutputParameters>

11 <OutputParameter name="xs:string" type="xs:string"

12 required="yes|no"?/> +

13 </OutputParameters> ?

14 </Operation> +

15 </Interface> +

16 </ot:ApplicationInterfaces> ?

17 </NodeType>

Listing 1.1. TOSCA extension for specifying application interfaces containing

business operations.

7 This section is based on our previous work but extends it by a schematic overview of

the extension and a schematic description of the generated code-skeletons [37].
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We extended the TOSCA metamodel of node types by an ApplicationIn-

terfaces element following the schema of the TOSCA ManagementInterfaces

element [23]. Thus, within the ApplicationInterfaces element, the elements orig-

inally specified for defining management operations can be reused: Operation,

InputParameter, and OutputParameter. However, an Operation contained in an

ApplicationInterfaces element specifies a business operation and not a manage-

ment operation. Our extension enables the communication between components

contained (i) in one topology template as well as the communication between

components contained (ii) in different templates, and thus also enables other

applications to utilize the provided operations.

1 class [interfaceName] {

2

3 /**

4 * [documentation]

5 */

6 static [operationName]([InputParameter1],[InputParameter2],...) {

7 // TODO generated method stub

8 return [OutputParameter]

9 }

10 }

Listing 1.2. Abstract generated code-skeleton.

Based on this extension, a code-skeleton (Listing 1.2) can be generated (We

detail this in Sect. 6.2). Moreover, we show in Sect. 7.3 an example of such a

definition and a generated code-skeleton for the motivation scenario.

5.2 Bindings

In order to technically enable callers, for example a service bus, invoking the

specified business operation, binding information are required. Therefore, these

information, for example, regarding the invocation style or application-specific

invocation properties, need to be specified by the application developer in the

TOSCA model of the corresponding operation so that they are available during

runtime. The following XML listing (Listing 1.3) shows an example of such binding

information based on the motivating scenario, thus, the schema is straight-forward.

1 <ot:ApplicationInterfacesBinding>

2 <ot:Endpoint>/TempApp</ot:Endpoint>

3 <ot:InvocationType>JSON/REST</ot:InvocationType>

4 <ot:ApplicationInterfaceInformations>

5 <ot:ApplicationInterfaceInformation name="TempManagement"

6 class="org.temp.TempManagement"/>

7 </ot:ApplicationInterfaceInformations>

8 </ot:ApplicationInterfacesBinding>

Listing 1.3. Binding information for an application interface [37].
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The presented binding information need to be defined in the artifact template

referenced by the deployment artifact implementing the business operations,

which are defined in an application interface of the corresponding node template.

Again, a node template represents a component of an application within a

TOSCA topology template, whereas a deployment artifact represents an artifact

implementing the business logic of such a component (cf. Sect. 3). For example,

a WAR file, which implements the Java application that should be provisioned

in the cloud. Therefore, these defined binding information together with our

TOSCA extension described in Sect. 5.1 enable specifying the offered business

operations of a component as well as how they have to be invoked in detail.

Of course, instead of using such a custom artifact template for binding business

operations, accepted standards, such as the Web Services Description Language

(WSDL) [32] can also be used to describe the provided functionality of web

services. A WSDL file enables to bind the signature of an operation, i. e., the

name and the input and output parameters, to information about how this

operation can be invoked, such as the endpoint and the supported communication

protocol. However, in [34] Wettinger et al. presented a similar TOSCA-based

approach to define such binding information within an artifact template for

management operations. Thus, for sake of consistency, we decided to additionally

support this custom definitions of binding information within an artifact template,

too. Therefore, our approach supports both, (i) a binding definition as already

used within another TOSCA-based approach as well as (ii) standards such as

WSDL. In case of using WSDL, the interface and operations specified within the

TOSCA model should correspond to the information defined in the WSDL file.

Thus, our presented approach enables to use all the proven and established tooling

possibilities for WSDL, for example, automated top-down code generation.

6 System Architecture

Since there was no possibility to define operations implementing business logic

using TOSCA without our extension, no tool support exists enabling the commu-

nication (i) between components within one TOSCA topology template as well

as (ii) between components of different TOSCA topology templates. Thus, in

this section, we present a system architecture for TOSCA runtimes that utilizes

a service bus supporting our extension of the TOSCA standard. We already

presented this system architecture in our previous work [37] and recap it to ease

understanding the method introduced in Sect. 7.

6.1 Overview

Figure 4 illustrates our proposed system architecture in a simplified manner, only

depicting components of TOSCA runtimes that are required for realizing our new

programming model. Of course, several other components are also required, for

instance, a component for interpreting the model, etc. A comprehensive overview

on different TOSCA runtime architectures can be found in [22].
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Fig. 4. Simplified system architecture of a TOSCA runtime supporting the presented

programming model by a service bus [37].

The central component of the concept is a service bus, which is integrated in

the TOSCA runtime8. This service bus provides a unified and generic interface

for incoming invocation requests of business operations provided by components.

This interface can be realized, for instance, as RESTful interface supporting

synchronous operation invocations with a single HTTP request or asynchronous

invocations via resource polling. But also other communication protocols, such as a

SOAP interface supporting WS-Addressing [33] or a plugin-based implementation

are possible. Depending on the implementation of the interface, also a proxy

may be used for the implementation of the component in order to ease the

communication with the service bus, e. g., to handle asynchronous callbacks.

In order to support the invocations of different types, such as SOAP/HTTP,

the service bus also contains a plugin system for executing outgoing invocation

requests. For enabling the invocation of the business operations of components,

the service bus must determine invocation-relevant properties, for example, the

IP address of a deployed component providing the corresponding operation. Thus,

the service bus is integrated with other components of the TOSCA runtime in

order to be able to access such stored information about application instances,

for example, gathered information during the provisioning of the application.

To process incoming messages from the bus, the code implementing the

communication part of the invoked component needs to understand these messages.

This can be achieved by (i) manually programming against a communication

protocol offered by the bus, (ii) using a generic stub for an existing plugin, or

(iii) using a TOSCA Interface Compiler to generate compatible stubs and proxies

out of the TOSCA model. While the first and second possibility require manual

implementation, we introduce TOSCA Interface Compilers in the next subsection.

8 Of course, other kinds of middleware may also be used similarly for realizing our

programming model, e. g., a messaging middleware. This is part of our future work.
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Fig. 5. Overview of the TOSCA Interface Compiler.

6.2 TOSCA Interface Compiler

In order to ease implementing the communication part of a component, our

approach enables the generation of a client-proxy and a server-stub able to com-

municate with the service bus. Since all required information about the business

operations, such as their parameters and binding information are contained in

the TOSCA model, similarly to generating code out of WSDL files, our approach

supports this, too, in order to ease the implementation of interacting components.

The basic architecture of the TOSCA Interface Compiler component is de-

picted in Fig. 5. As input the TOSCA Interface Compiler gets the TOSCA files

defining the operations implementing the business logic of an application. Then,

the Parser component parses the TOSCA definition files and searches them

for containing node types with specified application interfaces and operations.

After that, the Generator component generates a client-proxy, a server-stub, or

a code-skeleton, depending on the users selection. After the generation of the

code, depending on the programming language, for example in case of Java the

generated code needs to be compiled. This is done in the Compiler component.

In the last step, again depending on the programming language, the Builder

component finally builds the artifact to be ready to be provisioned. For example

in case of Java, a JAR file is build based on the compiled *.class-files created by

the Compiler component of the TOSCA Interface Compiler.

As a result, the TOSCA Interface Compiler assists the developer (i) during

the implementation of an application with the generation of code-skeletons of

the specified operations (cf. Sect. 7.4) and (ii) to generate a stub and a proxy

enabling the communication with the service bus, as it is shown in Fig. 4. Before

the generation, the TOSCA Interface Compiler can be customized, for example,

to choose the programming language of the component for including required

libraries, etc. If a separate WSDL file is referenced instead of using our binding

definition (cf. Sect. 5.2), also the top-down approach for code generation using

any WSDL tool can be used. Therefore, our approach complements existing code

generation tools and enables their efficient usage during development.
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7 A Method for Developing and Deploying Interacting

TOSCA-based Cloud and IoT Applications

In this section, we present the major new contribution of this extended paper in

the form of a method for systematically developing and deploying TOSCA-based

applications following the presented programming model. Furthermore, we explain

the general advantages of this new method and show how code generation can

be utilized in order to speed up the development of TOSCA-based applications.

7.1 Motivation for the Method

Model-driven software development (MDSD) is an important factor in software

engineering as it enables, for example, to speed up the development time of an

application by generating code [29]. However, for the modeling of complex and

distributed cloud or IoT applications, several different models are required. For

example, models describing the single components of the application, models

defining the relations and dependencies between different components, as well

as models describing the required infrastructure resources for the application

and its components. Therefore, either the modeler needs to be an expert in

all these different model languages and model types, or several modelers with

diverse expertise are required. Also, an automation of the entire development and

deployment process – from the beginning of the modeling, to the implementation,

to the deployment of the application – would be difficult to realize. Furthermore,

the orchestration of a cloud application consisting of already existing cloud

applications is cumbersome if different model types and languages or no models

at all are used. Therefore, our approach allows to model all of the previously

described aspects combining the development as well as the deployment steps.

7.2 Overview of the Method

As stated in Sect. 3, the TOSCA standard enables the modeling of the com-

ponents, the structure, relations and management operations out of the box.

As a reminder, the management operation are responsible for the management

of a cloud application, for example to install an Apache HTTP Server on a

virtual machine. For our approach, we extended the TOSCA standard by so

called application operations, which are the business operations the cloud appli-

cation itself implements and provides. Thus, the application operations are not

invokable before the cloud application was successfully deployed (with help of

the management operations). Altogether, our extension enables the modeling of

cloud applications, their structure, the required components and infrastructure

nodes, the installation procedure, the offered management as well as application

operations uniformly with TOSCA. Thus, our approach not only enables the au-

tomated provisioning of the cloud application but also increases the development

speed by means of code generation functionalities. Our novel method is composed

of five steps to develop a TOSCA-based application and is illustrated in Fig. 6.
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Fig. 6. Method for the development of a TOSCA-based cloud application.

In the first step, the components of the application as well as the operations

of the application are modeled by the application modeler using TOSCA. In

the second step, the code-skeletons based on the previously modeled application

operations are generated using the code-skeleton generator. In the third step,

the code-skeletons generated in the previous step are completed manually with

business logic by the programmer. In the fourth step, the infrastructure and

platform components required for the execution of the application are modeled

using default TOSCA elements. In the fifth and last step, the modeled and

implemented application is deployed automatically by using a TOSCA runtime.

The single steps of the method are explained in detail in the following.

7.3 Modeling of the Application Components and their Operations

In the first step, the application modeler models the components of the application

as well as the application operations using TOSCA. The components can be

modeled using the default TOSCA constructs. Also, already existing TOSCA-

based topology models can be reused. Additionally, all application operations

implementing business logic, which the application itself should provide, need to

be defined within the new ApplicationInterfaces element introduced in Sect. 5.

Since this is a manual task, using an existing TOSCA modeling tool, like for

example Winery [15], can be very helpful for accomplishing this task.
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Fig. 7. Required steps for modeling an application component.

In this first step of our method, node type definitions are required to model the

topology. For every component of the application, in general the following issues

must be considered regarding existing node type definitions that can be reused

directly and definitions that must be modified or created from scratch: Either (i)

just an existing node type can be reused as it already specifies and implements

all required application interfaces, (ii) an available node type already specifies

everything required for deployment and only missing application interfaces and

binding information must be added, or (iii) the node type needs to be modeled

completely from scratch. All three possibilities are depicted in Fig. 7: If a

suitable node type already exists, these steps can be ignored. If a complete

new node type must be modeled, the modeler first needs to specify the type of

the component, for example, that it is a Java application as well as the name

of the application. Furthermore, all properties, such as port or password and

username needs to be defined for the new component type. Moreover, defining

requirements and provided capabilities enables the automatically completion

of the application topology model in step 4 (cf. Sect. 7.6). Afterwards, the

application interfaces and operations this component should provide are specified

using the ApplicationInterfaces element. If an already available node type – which

is modeled by only using the default TOSCA structures – should be reused in

this method, only the interfaces and operations need to be added to the model.

Thus, existing node types can be easily reused in the presented method by using

the inheritance mechanism of TOSCA that allows to create subtypes of node

types that inherit their semantics but allow to extend them.

Listing 1.4 shows the node type of the Java 7 App component from the

motivation scenario offering the application operation updateTemp in order to

store and display received temperature data. The temperature value is specified

via the input parameter val9. Based on the shown example defining the provided

operation, the input and optional output parameters, as well as documentations,

a code-skeleton can be generated in the next step.

9 Output parameters can be specified the same way
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1 <NodeType name="Java7App">

2 <ot:ApplicationInterfaces xmlns:ot="http://opentosca.org">

3 <Interface name="TempManagement">

4 <Operation name="updateTemp">

5 <documentation>

6 Updates the temperature

7 </documentation>

8 <InputParameters>

9 <InputParameter name="val" type="xs:int"/>

10 </InputParameters>

11 </Operation>

12 </Interface>

13 </ot:ApplicationInterfaces>

14 </NodeType>

Listing 1.4. Example of the TOSCA extension for specifying application

interfaces containing business operations [37].

7.4 Generation of Code-Skeletons of the Modeled Application

Operations

The second step is the generation of code-skeletons based on the previously

modeled topology, which includes all node type definitions as well as their

application interfaces and operations. Depending on the code-skeleton generator

implementation, code for any arbitrary programming language can be generated,

for example, as Java or PHP application. Thus, no restriction regarding the

used programming language are made for the application developer as our

programming model enables an abstract and technology independent modeling

of the application components. Since this step can be automated, the developer

of the application is supported and, therefore, the development time can be

significantly decreased. In Sect. 8, we describe our prototypical implementation

of this step that enables the automated generation of code skeletons.

1 class TempManagement {

2

3 /**

4 * Updates the temperature

5 */

6 static void updateTemp(int val) {

7 // TODO generated method stub

8 }

9 }

Listing 1.5. Generated code-skeleton in Java [37].
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1 procedure GenerateCodeSkeleton(ToscaDefinition)

2 for every NodeType used in the TopologyTemplate

3 for every ApplicationInterface

4 if Code-Skeleton must be generated for this ApplicationInterface

5 createClass(interfaceName)

6 for every ApplicationOperation

7 createMethod(operationName, inputParams, outputParams, doc)

8 end for

9 end if

10 end for

11 end for

12 end procedure

Listing 1.6. Pseudocode algorithm showing the basic functionality for gener-

ating code-skeletons.

Listing 1.5 shows an example of a generated code-skeleton based on the

defined application operations presented in Listing 1.4. The basics of the TOSCA

Interface Compiler component have been discussed already in Sect. 6.2. For

generating the code-skeletons the TOSCA Interface Compiler checks for every

found node type if it has defined application interfaces as well as operations. The

simplified pseudocode-algorithm for this is shown in Listing 1.6.

Of course, the code-skeleton is generated depending on the defined pro-

gramming language. Thus, the TOSCA Interface Compiler is based on a plugin-

mechanism so that it can be easily extended in order to add support for additional

programming languages. Moreover, the TOSCA Interface Compiler also enables

the developer to specify for which application interfaces code-skeletons need to be

generated as possibly code already exists in the form of a deployment artifact that

implements the interface. Especially, if suitable node types are reused without

any change in step 1 of the method, no code-skeletons must be generated for

these node types that already provide complete implementations. We discuss

more details about how this step can be realized in the scope of our prototypical

validation based on the OpenTOSCA ecosystem presented in Sect. 8.

7.5 Code Completion

In the third step, the code-skeletons generated in the previously step need to

be completed with the business logic. Since at this step business knowledge is

needed, this step needs to be done manually by the application developer. However,

because of the generated code-skeletons, the code is already prestructured and only

the pure business logic needs to be implemented. Furthermore, since also stubs

and proxies can be generated abstracting the communication between different

components, the programmer can focus completely on the implementation of the

business logic and does not need to take care of communication or messaging at

all. Of course, this step needs to be repeated for every component a code-skeleton

was generated and, thus, should be implemented.



A Method for Developing Interacting Cloud Applications 19

7.6 Modeling of Infrastructure and Platform Components Required

for Deploying and Executing the Application

In the fourth step, the infrastructure and platform components required for the ex-

ecution of the application need to be modeled using the default TOSCA elements.

Again, already existing TOSCA-based topology models can be reused in this step.

Furthermore, there is other work [35] enabling to generate TOSCA modeling

artifacts from various other existing technologies, such as DevOps artifacts, for

example, Chef cookbooks or Juju charms. Thus, already proven solutions can

be reused in TOSCA again significantly simplifying the development, modelling,

and implementation of the required platform and infrastructure components.

Based on the requirements defined in step 1 (cf. Sect. 7.3) the application

topology model can be automatically completed by finding existing suitable

components providing matching capabilities [13]. For example, a Java applica-

tion packaged as WAR might define that a web server is required in order to

successfully provision it. Thus, if an Apache Tomcat is modeled with defined

capabilities matching this requirement, these both components can be connected

automatically—for example by using the approach presented by Hirmer et al.,

which has been integrated in Winery [13]. Likewise this can be done for other

components too, for example, that a virtual machine node must be hosted on a

infrastructure component such as a hypervisor or a cloud provider. Besides the

fully automated completion, also a semi-automatically completion is possible: If

several components are matching the requirements of a component, the modeler

can decide which one should be used in the model. Also, instead of single com-

ponents, entire topology fragments can be selected for completing the topology.

The topology completion is depicted in Fig. 8. If this modeling task needs to

be done manually – since no suitable components can be found automatically

– existing modeling tools such as the Winery can support the modeler in this

step. However, in this case the modeler needs some domain-specific knowledge

about, for example, which components can and should be hosted on which com-

ponents or what other dependent components are required in the model. Also

the fragment-based completion is supported by Winery [36].

7.7 Provisioning of the Application

The fifth and last step is the provisioning of the modeled application with help of

a TOSCA runtime environment. In this step, first the modeled infrastructure and

platform components, such as virtual machines or web servers, are installed and

configured and afterwards the application itself is installed. Since the correspond-

ing topology model was created beforehand, this step only needs to be triggered

manually but afterwards runs fully automatically. Thus, by using the integrated

service bus, no components need to be configured or connected manually in

order to be able to communicate with each other. In Sect. 8, the modeling tool

Winery [15], the open-source TOSCA runtime environment OpenTOSCA [2], as

well as the self-service portal Vinothek to start the provisioning [5] are introduced,

which provide the basis for our prototype described in the next section.
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Fig. 8. Automatically completion of the application topology based on specified re-

quirements and capabilities.

8 Validation

In order to validate the practical feasibility of the presented concepts we im-

plemented a prototype, which is integrated in the OpenTOSCA open-source

toolchain. Furthermore, in this section, we show how the steps presented in the

previous section can be realized using this toolchain.

In order to implement our prototype, we extended the OpenTOSCA Ecosys-

tem10, which consists of: (i) the graphical TOSCA modeling tool Winery11 [15],

(ii) the OpenTOSCA container12 [2], and (iii) the self-service portal Vinothek [5].

An overview of the ecosystem is depicted in Fig. 9. Using Winery the topology

template of the application can be modeled and all files can be packaged into a

CSAR. The OpenTOSCA container can use the resulting CSAR as input, inter-

prets the containing files, and deploys the modeled application13. The self-service

10 For testing, instructions to automatically deploy the ecosystem can be found at

http://install.opentosca.org
11 https://projects.eclipse.org/projects/soa.winery
12 https://www.github.com/OpenTOSCA
13 Details about this deployment can be found in Breitenbücher et al. [4]
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portal Vinothek is used in order to trigger the provisioning of the application. It

provides a graphical, web-based end user interface. The tools mentioned in this

section are all available as open-source implementations. Therefore, our developed

and integrated prototype provides an open-source end-to-end toolchain, which

supports the modeling, provisioning, management, orchestration, and commu-

nication of TOSCA-based cloud applications. More technical details about the

prototypical implementation of the service bus and how the programming model

has been realized can be found in the original paper [37]. In the following, we

want to focus on how this toolchain supports our new method proposed in this

extended work for modeling and developing TOSCA-based applications.

TOSCA Modeling 
Tool

Winery

Model Deploy & Manage Instantiate

TOSCA Runtime
Environment

OpenTOSCA Container

Self-Service Portal

Vinothek

Fig. 9. Overview of the OpenTOSCA Ecosystem.

The first step of the method presented in the previous section is the modeling

of the application components and their operations. This step can be realized

using Winery, which is a standard-compliant modeling tool for TOSCA. Winery

provides a graphical modeling editor for creating Node Types, Relationship

Types, and other TOSCA-specified artifacts as well as entire topology models.

Furthermore, Winery enables the export of CSARs containing all files required

for deploying and managing the modeled application. Thus, Winery supports the

modeler of the application components by providing a graphical modeling tool.

Therefore, the modeler does not need to write TOSCA definition files in XML

himself. For the second step, the generation of code-skeletons of the previously

modeled application components, the TOSCA Interface Compiler (cf. Sect. 6.2)

can be used. It supports the generation of code-skeletons for different programming

languages. For completing the generated code-skeletons any preferred IDE can

be used. The fourth step of the method – modeling of the infrastructure and

platform components as well as completing the topology – can be realized by using

Winery again. It supports the creation of new infrastructure or platform nodes as

well as the completion of the application topology manually, semi-automatically,

as well as fully automatically based on the concepts of Hirmer et al. [13] and

Zimmermann et al. [36]. After that, the final CSAR containing the complete

topology model as well as all required artifacts and files can be exported. The last

step is the provisioning of the modeled application. Therefore, the exported CSAR

can be consumed by the OpenTOSCA Container. After the CSAR was processed

successfully by the OpenTOSCA Container, the application is available to be
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provisioned. In the Vinothek, all installed applications are offered. Therefore,

using the Vinothek the application can be selected, required information, for

example, credentials for a cloud provider added and the provisioning of a new

instance of the modeled application be started.

9 Related Work

In this section, our discussion about related work, which we already discussed

partially in Sect. 2 is completed. Regarding the dynamic and flexible invocation

of web services, there is different work available [10, 17,20]. However, their works

do not consider topology modeling aspects using standards such as TOSCA.

Regarding TOSCA-related work, a concept as well as a prototype enabling the

invocation of operations through a unified interface was proposed by Wettinger

et al. [34]. However, they only consider the invocation of management operations,

which are already supported by the TOSCA standard, and do not consider the

invocation of operations implementing the business logic of an application.

In [12] Happ et al. present limitations of the publish-subscribe pattern, for

example implemented in the widely accepted IoT protocol MQTT, for the area

of IoT. They argue, for example, that a potential publisher of sensor data

respectively the used topic can not be easily discovered. Moreover, they argue

that the standard is missing details about the messaging reliability. Therefore,

this leads to custom solutions and implementations, which results in incompatible

applications. Thus, in their work they provide a concept improving the discovery

and reliability. However, standards to describe the structure of an application

such as TOSCA are not considered in their work.

Occurring problems when integrating different custom components and tech-

nologies were already discussed in related work. In [7] Breitenbücher et al.

argue, that because most of the available web services and APIs of vendors and

cloud providers are not standardized, existing solutions cannot integrate them.

Therefore, they provide an approach to integrate provisioning and configuration

technologies. However, they do not consider the invocation of business operations

through a unified interface, but only focus on management technologies.

In the field of container-based orchestration, there is related work [1,27,31]

available. They discuss orchestration approaches using containers and advantages

using container technologies such as Docker Compose14, Docker Swarm15 and

Kubernetes16 in the cloud in general. For example, these technologies enable to

transfer and reuse containers between different cloud providers. However, they

do not consider the orchestration of non-containerized components.

The general approach of generating a stub from an interface definition for

enabling the invocation of a remote method as a local invocation is similar to

other approaches such as Java-RMI [26] and CORBA [25]. However, since we use

web service technologies, for example, HTTP and XML our approach is agnostic

14 https://www.docker.com/products/docker-compose
15 https://www.docker.com/products/docker-swarm
16 http://kubernetes.io/
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regarding the underlying technology. Furthermore, since we use HTTP in our

prototype we have no issues with firewalls blocking the traffic.

10 Conclusion

In this paper, we presented a programming model for enabling the unified com-

munication of components of automatically deployed applications (cf. Sect. 4).

Therefore, we extended the Topology and Orchestration Specification for Cloud

Applications (TOSCA) in order to define business operations of components

in a technology-agnostic manner, as presented in (cf. Sect. 5). Moreover, we

described a system architecture of an automated deployment and orchestration

system utilizing an integrated service bus supporting our programming model (cf.

Sect. 6). Furthermore, we presented a generic method for systematically modeling

and developing TOSCA-based applications following our proposed programming

model (cf. Sect. 7). In order to validate our concepts, we implemented a proto-

typical service bus and integrated it in the OpenTOSCA toolchain (cf. Sect. 8).

Based on the motivation scenario illustrated in Sect. 2.1, we also showed how the

proposed method can be applied using the OpenTOSCA toolchain.

In order to support a wider range of IoT scenarios following our programming

model, we plan to integrate other middleware components, such as a message

broker in future work. Furthermore, in order to improve the performance of

our approach, we plan to eliminate the centralized service bus by realizing our

approach in a decentralized manner. We also plan in future work to investigate

other middleware technologies for enabling and coordinating the communication

between components using TOSCA, for example, by utilizing a tuple space.
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