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Abstract. There are several reasons why application components are redistrib-

uted to multiple environments: parts of the IT-infrastructure are outsourced or an 

application has to be deployed to different customers with different infrastruc-

tures. For an automated deployment, several technologies and standards already 

exist. With the TOSCA standard the deployment of an application can be mod-

eled as topology representing the application's components and their relations. 

When such a topology-based deployment model is redistributed, problems can 

arise that were not present before, such as firewalls that prevent direct access to 

a component. Problems can be detected based on problem- and context-formal-

ized patterns. In this paper, we present application scenarios for the pattern for-

malization approach to detect problems in restructured topology-based deploy-

ment models based on selected cloud computing patterns. 

Keywords: Cloud Computing Patterns, Formalization, Prolog, TOSCA. 

1 Introduction and Background 

Over the last years, several technologies for the deployment and management of cloud 

applications, such as Docker1, Kubernetes2, or Cloud Foundry3, have been developed. 

Besides these vendor-specific technologies, standards, such as the OASIS standard 

TOSCA (Topology and Orchestration Specification for Cloud Applications) [24], are 

published to describe the deployment and management of cloud applications in a ven-

dor-independent manner. TOSCA enables the description of topology-based deploy-

ment models specifying an application’s structure by its components and their relations 

[12]. Such topology-based deployment models are declarative deployment models that 

can be interpreted by a runtime that infers the deployment logic from the structural 

description [12]. Imperative models, on the other hand, define a process that specifies 

the deployment logic explicitly [12].  

                                                           
1  https://www.docker.com/ 
2  https://kubernetes.io/ 
3  https://www.cloudfoundry.org/ 
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TOSCA topologies are topology-based deployment models, describing the applica-

tion’s components and their relationships. Components can be application-specific 

components such as a PHP WebApp as well as middleware components such as a 

Tomcat or infrastructure components such as an OpenStack. A component can be, for 

example, a PHP WebApp that is hosted on an Apache Web Server, as depicted in Fig. 

1. The hostedOn or connectsTo relations describe the relationships between the com-

ponents. Due to several reasons, the components of an application might have to be 

redistributed to different environments: parts of the IT are outsourced or an application 

has to be deployed for different customers with different environmental conditions. 

Based on the Split and Match method introduced in a previous work [27], each appli-

cation-specific component can be annotated with a target label that specifies the in-

tended target location of the component. According to these labels, the topology-based 

deployment model is split and matched with the available infrastructure or platform 

service in the target location and this results in a restructured deployment model. In the 

example depicted in Fig. 1, two components that are formerly hosted on the same vir-

tual machine can be redistributed, for example, to an AWS EC2 and an OpenStack. 

 

Fig. 1. Example of a restructured topology-based deployment model 

In the initial topology in Fig. 1 the Apache Web Server and the Tomcat are intended 

to be hosted on the same virtual machine Ubuntu, as shown by the dashed greyed out 

components. Based on the attached target labels AWS and Internal, the deployment 

model is split into two separate stacks. For this, the virtual machine is duplicated for 

each target location and the available infrastructure components from the target loca-

tions are selected and injected into the topology-based deployment model. 

The restructuring of such deployment models can result in problems that have not 

existed before. In the example presented in Fig. 1, sensitive data that used to be ex-

changed within a single virtual machine is now exchanged over the internet, which can 

My-EC2
(AWS-EC2)

Ubuntu_AWS
(Ubuntu-14.04-

VM)

Apache Web 
Server

(Apache-2.4)

Tomcat
(Tomcat)

Java-App
(WAR)

PHP-WebApp
(PHP-5- Web 
Application)

ComponentName
(ComponentType)

hostedOn

connectsTo

username: user
password:  *****
Location: aws

sensitiveData: true

HTTPConnection
(connectsTo)

RelationName
(RelationType)

OpenStack
(OpenStack-
Liberty-12)

Ubuntu_internal
(Ubuntu-14.04-

VM)

username: admin
password:  *****
Location: internal

Ubuntu
(Ubuntu-14.04-

VM)

My-vSphere
(vSphere)

AWS

Label

Internal



3 

lead to security issues. Furthermore, communication restrictions or incompatibilities 

can occur. To detect such problems in an automated manner, we presented an approach 

to automatically detect problems in restructured deployment models based on formal-

izing architecture and design patterns [26]. This concept is based on existing design and 

architecture knowledge in the form of patterns that describe best-practice solutions for 

recurring problems in a certain context [1]. Such architecture and design patterns are 

discovered and described in several domains, for example, for general architecture so-

lutions [9], application integration [17], security mechanisms [28], and for cloud com-

puting [13]. Independent of the domain, a pattern describes the problem solved by this 

pattern, the context when the problem occurs, and the solution in a technology-inde-

pendent manner. However, patterns are only captured as textual descriptions.  

To enable an automated problem detection, Saatkamp et al. [26] presented a pattern 

formalization approach to formalize the problem and context description of a pattern. 

In previous work [26], the applicability of the formalization approach has been pre-

sented for two patterns: the Secure Channel pattern which is part of the security pattern 

language by Schumacher et al. [28] and the Application Component Proxy which is part 

of the cloud computing pattern language by Fehling et al. [13]. For a prototypical vali-

dation the TOSCA standard has been chosen, because it is a generic standard and inde-

pendent from a certain technology or provider [4]. A TOSCA topology-based deploy-

ment model is described as Topology Template. The application’s components are spec-

ified as Node Templates and their relations as Relationship Templates. The semantic of 

these elements is specified by their Node Type or Relationship Type respectively. In 

this paper, we extend the validation of the problem detection approach based on for-

malized patterns [26] by further patterns. The TOSCA-based prototype, presented in 

the previous paper is used as basis for the validation. 

The remainder of this paper is structured as follows: Section 2 gives on overview of 

the problem detection approach while Section 3 describes the application scenarios. In 

Section 4 related work is discussed and Section 5 concludes this paper. 

2 Problem Detection Approach Overview 

We presented the approach to automatically detect problems in restructured deployment 

models based on formalizing architecture and design patterns a previous work [26]. 

This is based on the concept of applying architectural and design knowledge in terms 

of patterns to restructured topology-based deployment models. The textual description 

of such patterns is based on a pattern format. Even if pattern formats differ slightly 

between different pattern languages, the essential parts are the same [23,30]: (i) the 

problem section that describes the problem solved by the pattern, (ii) the context section 

that describes the context in which the problem arises, and (iii) the solution section that 

gives a technology-independent description of the best-practice solution. For the detec-

tion of problems occurring in restructured topology-based deployment models, the 

problem as well as context description are of main interest. However, for an automated 

approach each pattern has to be formalized in a machine-readable manner. Thus, the 
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logic programming language Prolog is used to express the problem and context of pat-

terns as rules that can be applied to topologies which are expressed as facts. 

 

Fig. 2. Overview of the Problem Detection Approach Based on Formalized Patterns [26] 

In Fig. 2 an overview of the problem detection approach based on formalized patterns 

is depicted. At the top of the figure the different pattern languages are sketched. Each 

area represents a pattern language, for example, the enterprise integration patterns [17], 

the cloud computing patterns [13], or the security patterns [28] which also include the 

Secure Channel pattern. The Secure Channel pattern addresses the problem to ensure 

that data being passed across a public network is secure in transit. This textual descrip-

tion is formalized as a Prolog rule to enable an automated problem detection process. 

Even if the formalization has to be done manually, the resulting rule expressing the 

problem and context of the pattern can be reused for arbitrary topologies. The rule in-

secure_public_communication(C1, C2) queries a fact base for two com-

ponents C1 and C2 that are connected by a relation R which has a key-value property 

sensitivedata: true attached. This relation R must be of type connectsTo. In addition, 

the two components C1 and C2 must have different locations, indicated by the key-
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value property location, and no security mechanisms are used for the connection be-

tween the components. This rule formalizes the problem and context of the Secure 

Channel pattern and can be applied to facts representing the structure of a topology. 

The procedure to detect problems in a restructured topology-based deployment 

model, for example in a TOSCA topology, starts with modeling the application’s struc-

ture (step 1). The topology is then annotated with target labels that indicate the desired 

distribution of the components to different target locations. In this example, the PHP-

App shall be hosted in an external environment and the Java-App shall be located inter-

nally. In the restructuring step (step 2), the topology is split and matched using the Split 

and Match method by Saatkamp et al. [27]. In a third step, the graph-based description 

of the application’s structure is transformed into Prolog facts. This can be automated 

based on transformation rules, as descripted in [26]. For each element in the topology 

a fact is created. An extract of the facts representing the exemplary topology is shown 

in Fig. 2. By applying all formalized patterns to the topology facts, problems can be 

detected in the restructured topology-based deployment model. As a result, the detected 

problems, the affected components, and the pattern addressing this problem are re-

turned. For the transformation of TOSCA topologies to Prolog facts and the problem 

detection in such topologies the Topology ProDec4 tool can be used [26]. 

3 Application Scenarios Based on Cloud Integration Patterns 

The described approach in Section 2 can be applied to several pattern languages. In [26] 

the approach has been applied to the Secure Channel pattern from the security pat-

terns [28] and to the Application Component Proxy from the cloud computing pat-

terns [1]. In this paper, two additional application scenarios are presented based on two 

cloud integration patterns [1]: Message Mover and Integration Provider. In the follow-

ing, the two patterns are described in more detail and the Prolog rules for formalizing 

these patterns are presented. They are also part of the patterns listed in the Topology 

ProDec tool and can be used for an automated problem detection in TOSCA topologies. 

 

Fig. 3. Required Patterns: Message Mover (left) and Integration Provider (right) 

                                                           
4  https://github.com/saatkamp/topology-prodec 
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3.1 Application Scenario: Message Mover 

The Message Mover is a pattern of the cloud computing pattern language [1]. This pat-

tern is just applicable to a message-based communication. Therefore, in Fig. 3 on the 

left a topology with a message-based communication is depicted. In this example, the 

PHP-WebApp publishes data to a Queue and the Java-App receives data from it. After 

the redistribution the Java-App and the Broker are hosted in the internal datacenter and 

the PHP-WebApp is hosted in a public cloud, for example provided by Amazon. The 

Java-App is located in a restricted environment and thus, the access from outside the 

location is not permitted. To ensure the accessibility to a queue for each component, a 

queue shall be available in each location. The integration problem of these distributed 

queues can be solved by the Message Mover. However, the problem must be detected 

first. In the following the problem and context description of the Message Mover is 

presented [13]: 

Problem:  

How can message queues of different providers be integrated without an impact on 

the application component using them? 

Context:  

The application components comprising a distributed application (160) often ex-

change data using messaging. These messages are stored in message queues. [...] If 

these queues reside in different cloud environments that form a hybrid cloud (75) 

accessibility to queues of one environment may be restricted for application compo-

nents that are deployed in another environment. [...] Therefore, each of the applica-

tion components shall access a message queue hosted in the cloud environment 

where the application component itself is hosted. [...] 

The pattern context is similar to the Application Component Proxy. The Application 

Component Proxy addresses the problem that a component directly accesses a compo-

nent located in a restricted environment. Because direct access is not permitted to re-

stricted environments an Application Component Proxy is required to access this com-

ponent. More details on the formalization of this pattern can be found in [26]. However, 

in this case instead of a proxy an additional queue in the unrestricted environment and 

a message mover integrating the queues are required. The pattern aims to solve the 

accessibility of a more concrete system component, a queue. Based on the knowledge 

from messaging patterns, the problem description is based on the generic Message 

Channel in order to not exclude components, like e.g., topics which are publish-sub-

scribe channels [17]. The resulting distributed_messaging rule for the formal-

ized Message Mover is the following: 

distributed_messaging(C1, C2):- 

 messaging_communication(Channel, C1, C2), 

 components_in_different_locations(C1, C2), 

 hybrid_environment(C1, C2). 

The shown facts serve as conditions for the pattern rule. Each of the facts in turn is a 

rule encapsulating a complex query (not shown for brevity, but can be found in the 
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Topology ProDec tool5). The first condition checks whether messaging is used in the 

topology because the pattern just relates to message-based systems. In addition, the 

problem and context description refers to distributed applications that are used in hybrid 

environments. Therefore, the second condition checks whether the communicating 

components are located in different environments and if they form a hybrid environ-

ment (third condition). 

This rule can be applied to the deployment model depicted in Fig. 3 on the left. Based 

on that, the problem is automatically detected and it can be solved according to the 

descripted solution for the Message Mover pattern. 

3.2 Application Scenario: Integration Provider 

The Integration Provider pattern is another cloud integration pattern from the cloud 

computing patterns [13]. In Fig. 3 on the right a topology with two components (PHP-

App and Java-App) communicate using messaging is shown. In contrast to the topology 

on the left, both components as well as the Channel are located in restricted environ-

ments. Thus, the components as well as the Channel are not accessible from outside the 

location. This problem can be solved by the Integration Provider pattern that describes 

the problem and its context as follows [13]: 

Problem:  

How can components in different environments be integrated through a 3rd-party 

provider? 

Context:  

When companies collaborate or one company has to integrate applications of differ-

ent regional offices, different applications or the components of a distributed appli-

cation are distributed among different hosting environments. Communication be-

tween these environments may be restricted. Especially, hosting environments may 

restrict any incoming communication initiated from the outside. Communication 

leaving the restricted environments is, however, often allowed. Therefore, additional 

integration components are required that have to be accessible from restricted envi-

ronments. […] 

From the above given description of this pattern, the difference to the distrib-

uted_messaging that formalizes the problem and context description of the Mes-

sage Mover pattern can be seen: Instead of a hybrid environment consisting of a re-

stricted and an unrestricted environment, these are two restricted environments that 

must be integrated to enable communication between the components. Besides that, the 

Integration Provider pattern is not limited to deployment models using messaging. In 

the following the integration_of_restricted_environments rule for-

malizing the problem and context of the Integration Provider pattern is shown: 

 

                                                           
5  https://github.com/saatkamp/topology-prodec/blob/master/pattern_prologfiles/helper.pl 
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integration_of_restricted_environments(C1, C2):- 

  components_in_different_locations(C1, C2), 

  component_in_restricted_environment(C1), 

  component_in_restricted_environment(C2), 

  ((messaging_communication(Channel, C1, C2), 

  component_in_restricted_environment(Channel)); 

  direct_communication(C1, C2)). 

The problem only occurs in case the communicating components are located in differ-

ent locations (first condition) and if these locations are restricted. The second condition 

is checked by the component_in_restricted_environment fact, which is in 

turn a rule encapsulating a complex query. Indicator for a restricted environment is the 

key-value property inbound_communication: false. To identify if an integration is re-

quired, the components located in different restricted environments have to communi-

cate. For this, either a message-based or a direct communication must be part of the 

deployment model. In case of messaging the Integration Provider pattern only has to be 

applied in case the Channel, and thus the Message Broker, is also located in a restricted 

environment. Otherwise, an additional integration provider is not required. 

The integration_of_restricted_environments rule can be applied to 

the topology presented in Fig. 3 on the right. In this example, a problem is detected 

because the two communicating components (PHP-App, Java-App) as well as the used 

messaging system are located in different restricted environments. After detecting the 

problem, the solution described by the pattern can be applied. 

The two problem and context formalized patterns, Message Mover and Integration 

Provider, show how the problem detection approach presented by Saatkamp et al. [26] 

can be used for detecting problems in topology models. Relevant patterns for problem 

recognition are not restricted to only one pattern language. They can be found in differ-

ent pattern languages. In application scenarios presented in this work and in [26] pat-

terns from the security [28] and the cloud computing [13] pattern language have been 

selected. Using the Topology ProDec tool the different patterns are validated based on 

TOSCA topologies modeled with the TOSCA modeling tool Winery6 [21]. The appli-

cation of the pattern formalization approach results in reusable rules that serve as con-

ditions to express the actual pattern rules. For example, the rules compo-

nents_in_different_locations and component_in_re-

stricted_environments are used several times. Such reusable condition rules 

ease the formalization of further patterns. 

4 Related Work 

The underlying approach applied in this paper is presented by Saatkamp et al. [26]. We 

applied the approach to further cloud integration patterns and extracted reusable condi-

tion rules that ease the formalization of problem and context descriptions of further 

patterns. The formalization of patterns is already addressed by several other works 

                                                           
6  https://github.com/eclipse/winery 
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[3,10,14,19,22]. However, in contrast to our work the solution provided by a pattern is 

formalized to identify the implemented patterns in a model instead of the problem 

solved by the pattern. In this paper, we present how the context and problem described 

by a specific pattern can be formalized to detect possibly occurring problems that can 

be solved by applying the respective pattern to the topology-based deployment models. 

Kim and Khawand [20] presented an approach to formalize the problem domain of 

design patterns. They specify the problem domain as UML diagrams. Compared to 

logic programming, this approach has the disadvantage that the non-existence of ele-

ments cannot be specified. Furthermore, the context of the pattern is important to iden-

tify if a problem exists, this is not considered in this work. As a result of a formalized 

problem domain of patterns, patterns can be identified that solve the detected problems.  

An approach presented by Haitzer and Zdun [16] is based on predefined architectural 

primitives that represent entities used in several patterns. They can be used to annotate 

software components to identify if a pattern is applicable. This semi-automated ap-

proach focuses on the applicability of patterns in software code. The applicability of 

patterns is also focused by the automated management approach presented by 

Breitenbücher [5] and Breitenbücher et al. [6,7,8]. Based on the cloud computing pat-

terns [13] management idioms are defined that specify the transformation from a target 

topology fragment that represents the current state of an application by its components 

and their relations to a desired state that reflects the applied management pattern. These 

topology fragments are graphs that must be matched to a subgraph in the overall topol-

ogy representing the current state of the application. Based on similar mechanisms, i.e., 

using graph matching, Arnold et al. [2] and Eilam et al. [11] presented concepts to 

facilitate the transformation from abstract topology-based deployment models to con-

crete configurations of the contained components. Also Guth and Leymann [15] use 

graph fragments for rewriting and refining architectural graphs. However, their ap-

proaches are based on subgraph isomorphism to identify the target fragment and thus, 

the non-existence of elements cannot be detected which is important to detect problems 

in topology-based deployment models, as shown in the formalization of the Secure 

Channel pattern in [26]. 

5 Conclusion 

In this work we presented two application scenarios of the problem detection approach 

using formalized patterns by Saatkamp et al. [26]. We applied the approach to the Mes-

sage Mover and the Integration Provider pattern. Both patterns are related to distributed 

applications and, thus, relevant for restructured topology-based deployment models. 

We have demonstrated that the approach is also applicable to message-based systems. 

Furthermore, reusable rules that serve as conditions to express the actual pattern rules 

are defined. In future work, we want to extend the pattern collection and want to im-

prove the tool support to ease the authoring process for new rules. 

This approach is not limited to the presented cloud computing patterns [13] or secu-

rity patterns [28]. The approach could also be extended to other patterns, such as the 
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cloud data patterns [29] or the Internet of Things patterns [25]. Furthermore, the ap-

proach can also be used for a general validation of topology-based deployment models 

and is not limited to the usage in restructured deployment models. The extension to 

further domains will be investigated in future works. 
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