
Application Scenarios for Automated Problem Detection
in TOSCA Topologies by Formalized Patterns

Karoline Saatkamp1, Uwe Breitenbücher1, Oliver Kopp2, and Frank Leymann1

The full version of this publication has been presented as a poster at the
Advanced Summer School on Service Oriented Computing (SummerSOC 2018).

http://www.summersoc.eu

© 2018 IBM Research Division

@inproceedings{SaatkampApplicationScenarios2018,
author = {Saatkamp, Karoline and Breitenb\"{u}cher, Uwe and Kopp, Oliver

and Leymann, Frank},
title = {Application Scenarios for Automated Problem Detection in TOSCA

Topologies by Formalized Patterns},
booktitle = {Papers From the 12th Advanced Summer School on Service-Oriented

Computing (SummerSOC’18)},
year = {2018},
pages = {43--53},
publisher = {IBM Research Division}

}

:

Institute of Architecture of Application Systems

1Institute of Architecture of Application Systems, University of Stuttgart, Germany
[firstname.lastname]@iaas.uni-stuttgart.de

2Institute of Parallel and Distributed Systems, University of Stuttgart, Germany
kopp@ipvs.uni-stuttgart.de

Application Scenarios for Automated Problem Detection

in TOSCA Topologies by Formalized Patterns

Karoline Saatkamp1, Uwe Breitenbücher1, Oliver Kopp2, and Frank Leymann1

1 Institute of Architecture of Application Systems, University of Stuttgart
2 Institute for Parallel and Distributed Systems, University of Stuttgart

Universitätsstraße 38, 70569 Stuttgart, Germany

[lastname]@informatik.uni-stuttgart.de

Abstract. There are several reasons why application components are redistrib-

uted to multiple environments: parts of the IT-infrastructure are outsourced or an

application has to be deployed to different customers with different infrastruc-

tures. For an automated deployment, several technologies and standards already

exist. With the TOSCA standard the deployment of an application can be mod-

eled as topology representing the application's components and their relations.

When such a topology-based deployment model is redistributed, problems can

arise that were not present before, such as firewalls that prevent direct access to

a component. Problems can be detected based on problem- and context-formal-

ized patterns. In this paper, we present application scenarios for the pattern for-

malization approach to detect problems in restructured topology-based deploy-

ment models based on selected cloud computing patterns.

Keywords: Cloud Computing Patterns, Formalization, Prolog, TOSCA.

1 Introduction and Background

Over the last years, several technologies for the deployment and management of cloud

applications, such as Docker1, Kubernetes2, or Cloud Foundry3, have been developed.

Besides these vendor-specific technologies, standards, such as the OASIS standard

TOSCA (Topology and Orchestration Specification for Cloud Applications) [24], are

published to describe the deployment and management of cloud applications in a ven-

dor-independent manner. TOSCA enables the description of topology-based deploy-

ment models specifying an application’s structure by its components and their relations

[12]. Such topology-based deployment models are declarative deployment models that

can be interpreted by a runtime that infers the deployment logic from the structural

description [12]. Imperative models, on the other hand, define a process that specifies

the deployment logic explicitly [12].

1 https://www.docker.com/
2 https://kubernetes.io/
3 https://www.cloudfoundry.org/

2

TOSCA topologies are topology-based deployment models, describing the applica-

tion’s components and their relationships. Components can be application-specific

components such as a PHP WebApp as well as middleware components such as a

Tomcat or infrastructure components such as an OpenStack. A component can be, for

example, a PHP WebApp that is hosted on an Apache Web Server, as depicted in Fig.

1. The hostedOn or connectsTo relations describe the relationships between the com-

ponents. Due to several reasons, the components of an application might have to be

redistributed to different environments: parts of the IT are outsourced or an application

has to be deployed for different customers with different environmental conditions.

Based on the Split and Match method introduced in a previous work [27], each appli-

cation-specific component can be annotated with a target label that specifies the in-

tended target location of the component. According to these labels, the topology-based

deployment model is split and matched with the available infrastructure or platform

service in the target location and this results in a restructured deployment model. In the

example depicted in Fig. 1, two components that are formerly hosted on the same vir-

tual machine can be redistributed, for example, to an AWS EC2 and an OpenStack.

Fig. 1. Example of a restructured topology-based deployment model

In the initial topology in Fig. 1 the Apache Web Server and the Tomcat are intended

to be hosted on the same virtual machine Ubuntu, as shown by the dashed greyed out

components. Based on the attached target labels AWS and Internal, the deployment

model is split into two separate stacks. For this, the virtual machine is duplicated for

each target location and the available infrastructure components from the target loca-

tions are selected and injected into the topology-based deployment model.

The restructuring of such deployment models can result in problems that have not

existed before. In the example presented in Fig. 1, sensitive data that used to be ex-

changed within a single virtual machine is now exchanged over the internet, which can

My-EC2
(AWS-EC2)

Ubuntu_AWS
(Ubuntu-14.04-

VM)

Apache Web
Server

(Apache-2.4)

Tomcat
(Tomcat)

Java-App
(WAR)

PHP-WebApp
(PHP-5- Web
Application)

ComponentName
(ComponentType)

hostedOn

connectsTo

username: user
password: *****
Location: aws

sensitiveData: true

HTTPConnection
(connectsTo)

RelationName
(RelationType)

OpenStack
(OpenStack-
Liberty-12)

Ubuntu_internal
(Ubuntu-14.04-

VM)

username: admin
password: *****
Location: internal

Ubuntu
(Ubuntu-14.04-

VM)

My-vSphere
(vSphere)

AWS

Label

Internal

3

lead to security issues. Furthermore, communication restrictions or incompatibilities

can occur. To detect such problems in an automated manner, we presented an approach

to automatically detect problems in restructured deployment models based on formal-

izing architecture and design patterns [26]. This concept is based on existing design and

architecture knowledge in the form of patterns that describe best-practice solutions for

recurring problems in a certain context [1]. Such architecture and design patterns are

discovered and described in several domains, for example, for general architecture so-

lutions [9], application integration [17], security mechanisms [28], and for cloud com-

puting [13]. Independent of the domain, a pattern describes the problem solved by this

pattern, the context when the problem occurs, and the solution in a technology-inde-

pendent manner. However, patterns are only captured as textual descriptions.

To enable an automated problem detection, Saatkamp et al. [26] presented a pattern

formalization approach to formalize the problem and context description of a pattern.

In previous work [26], the applicability of the formalization approach has been pre-

sented for two patterns: the Secure Channel pattern which is part of the security pattern

language by Schumacher et al. [28] and the Application Component Proxy which is part

of the cloud computing pattern language by Fehling et al. [13]. For a prototypical vali-

dation the TOSCA standard has been chosen, because it is a generic standard and inde-

pendent from a certain technology or provider [4]. A TOSCA topology-based deploy-

ment model is described as Topology Template. The application’s components are spec-

ified as Node Templates and their relations as Relationship Templates. The semantic of

these elements is specified by their Node Type or Relationship Type respectively. In

this paper, we extend the validation of the problem detection approach based on for-

malized patterns [26] by further patterns. The TOSCA-based prototype, presented in

the previous paper is used as basis for the validation.

The remainder of this paper is structured as follows: Section 2 gives on overview of

the problem detection approach while Section 3 describes the application scenarios. In

Section 4 related work is discussed and Section 5 concludes this paper.

2 Problem Detection Approach Overview

We presented the approach to automatically detect problems in restructured deployment

models based on formalizing architecture and design patterns a previous work [26].

This is based on the concept of applying architectural and design knowledge in terms

of patterns to restructured topology-based deployment models. The textual description

of such patterns is based on a pattern format. Even if pattern formats differ slightly

between different pattern languages, the essential parts are the same [23,30]: (i) the

problem section that describes the problem solved by the pattern, (ii) the context section

that describes the context in which the problem arises, and (iii) the solution section that

gives a technology-independent description of the best-practice solution. For the detec-

tion of problems occurring in restructured topology-based deployment models, the

problem as well as context description are of main interest. However, for an automated

approach each pattern has to be formalized in a machine-readable manner. Thus, the

4

logic programming language Prolog is used to express the problem and context of pat-

terns as rules that can be applied to topologies which are expressed as facts.

Fig. 2. Overview of the Problem Detection Approach Based on Formalized Patterns [26]

In Fig. 2 an overview of the problem detection approach based on formalized patterns

is depicted. At the top of the figure the different pattern languages are sketched. Each

area represents a pattern language, for example, the enterprise integration patterns [17],

the cloud computing patterns [13], or the security patterns [28] which also include the

Secure Channel pattern. The Secure Channel pattern addresses the problem to ensure

that data being passed across a public network is secure in transit. This textual descrip-

tion is formalized as a Prolog rule to enable an automated problem detection process.

Even if the formalization has to be done manually, the resulting rule expressing the

problem and context of the pattern can be reused for arbitrary topologies. The rule in-

secure_public_communication(C1, C2) queries a fact base for two com-

ponents C1 and C2 that are connected by a relation R which has a key-value property

sensitivedata: true attached. This relation R must be of type connectsTo. In addition,

the two components C1 and C2 must have different locations, indicated by the key-

Model

1
Restructure

2
Transform

3
Detect

4

App-OS

Hyper-
visor

Java-
App

PHP-
App

External Internal

sensitiveData:
true

PHP-
App-OS

Java-
App

PHP-
App

sensitiveData:
true

Java-
App-OS

IaaS

location: ex location: in

Hyper-
visor

% extract of facts

component(php-app).

component(java-app).

relation(php-app,

java-app, httpcon).

relationOfType(httpcon,

connectsTo).

property(httpcon,

sensitivedata, true).

Architecture & Design Patterns

insecure_

public_communication(C1,C2) :-

property(R, sensitivedata, true),

relationOfType(R, connectsTo),

relation(C1, C2, R),

differentLocation(C1, C2),

not(poperty(R, security, true)).

apply

formalize

P1

P3

Pn

P1’

P2’

Pm’

… P2

SECURE
CHANNEL

Problem:
How do we ensure that data being
passed across public or semi-public
space is secure in transit?

Context:
The system delivers functionality […] to
clients across the public Internet. […] The
application must exchange data with the
client. […] This data will be sensitive in
nature.

Insecure
Public Communication:
PHP-App, Java-App
 Secure Channel

5

value property location, and no security mechanisms are used for the connection be-

tween the components. This rule formalizes the problem and context of the Secure

Channel pattern and can be applied to facts representing the structure of a topology.

The procedure to detect problems in a restructured topology-based deployment

model, for example in a TOSCA topology, starts with modeling the application’s struc-

ture (step 1). The topology is then annotated with target labels that indicate the desired

distribution of the components to different target locations. In this example, the PHP-

App shall be hosted in an external environment and the Java-App shall be located inter-

nally. In the restructuring step (step 2), the topology is split and matched using the Split

and Match method by Saatkamp et al. [27]. In a third step, the graph-based description

of the application’s structure is transformed into Prolog facts. This can be automated

based on transformation rules, as descripted in [26]. For each element in the topology

a fact is created. An extract of the facts representing the exemplary topology is shown

in Fig. 2. By applying all formalized patterns to the topology facts, problems can be

detected in the restructured topology-based deployment model. As a result, the detected

problems, the affected components, and the pattern addressing this problem are re-

turned. For the transformation of TOSCA topologies to Prolog facts and the problem

detection in such topologies the Topology ProDec4 tool can be used [26].

3 Application Scenarios Based on Cloud Integration Patterns

The described approach in Section 2 can be applied to several pattern languages. In [26]

the approach has been applied to the Secure Channel pattern from the security pat-

terns [28] and to the Application Component Proxy from the cloud computing pat-

terns [1]. In this paper, two additional application scenarios are presented based on two

cloud integration patterns [1]: Message Mover and Integration Provider. In the follow-

ing, the two patterns are described in more detail and the Prolog rules for formalizing

these patterns are presented. They are also part of the patterns listed in the Topology

ProDec tool and can be used for an automated problem detection in TOSCA topologies.

Fig. 3. Required Patterns: Message Mover (left) and Integration Provider (right)

4 https://github.com/saatkamp/topology-prodec

IAAS

Java-AppPHP-App

location: external

Hypervisor

location: internal

Channel

Frontend-
OS

location: internal

Broker

IAAS

Java-AppPHP-App

location: external

Hypervisor

location: internal

Channel

Frontend-
OS

inbound: false inbound: false
location: internal

Broker

inbound: false

Backend-
OS

inbound: false

Backend-
OS

6

3.1 Application Scenario: Message Mover

The Message Mover is a pattern of the cloud computing pattern language [1]. This pat-

tern is just applicable to a message-based communication. Therefore, in Fig. 3 on the

left a topology with a message-based communication is depicted. In this example, the

PHP-WebApp publishes data to a Queue and the Java-App receives data from it. After

the redistribution the Java-App and the Broker are hosted in the internal datacenter and

the PHP-WebApp is hosted in a public cloud, for example provided by Amazon. The

Java-App is located in a restricted environment and thus, the access from outside the

location is not permitted. To ensure the accessibility to a queue for each component, a

queue shall be available in each location. The integration problem of these distributed

queues can be solved by the Message Mover. However, the problem must be detected

first. In the following the problem and context description of the Message Mover is

presented [13]:

Problem:

How can message queues of different providers be integrated without an impact on

the application component using them?

Context:

The application components comprising a distributed application (160) often ex-

change data using messaging. These messages are stored in message queues. [...] If

these queues reside in different cloud environments that form a hybrid cloud (75)

accessibility to queues of one environment may be restricted for application compo-

nents that are deployed in another environment. [...] Therefore, each of the applica-

tion components shall access a message queue hosted in the cloud environment

where the application component itself is hosted. [...]

The pattern context is similar to the Application Component Proxy. The Application

Component Proxy addresses the problem that a component directly accesses a compo-

nent located in a restricted environment. Because direct access is not permitted to re-

stricted environments an Application Component Proxy is required to access this com-

ponent. More details on the formalization of this pattern can be found in [26]. However,

in this case instead of a proxy an additional queue in the unrestricted environment and

a message mover integrating the queues are required. The pattern aims to solve the

accessibility of a more concrete system component, a queue. Based on the knowledge

from messaging patterns, the problem description is based on the generic Message

Channel in order to not exclude components, like e.g., topics which are publish-sub-

scribe channels [17]. The resulting distributed_messaging rule for the formal-

ized Message Mover is the following:

distributed_messaging(C1, C2):-

 messaging_communication(Channel, C1, C2),

 components_in_different_locations(C1, C2),

 hybrid_environment(C1, C2).

The shown facts serve as conditions for the pattern rule. Each of the facts in turn is a

rule encapsulating a complex query (not shown for brevity, but can be found in the

7

Topology ProDec tool5). The first condition checks whether messaging is used in the

topology because the pattern just relates to message-based systems. In addition, the

problem and context description refers to distributed applications that are used in hybrid

environments. Therefore, the second condition checks whether the communicating

components are located in different environments and if they form a hybrid environ-

ment (third condition).

This rule can be applied to the deployment model depicted in Fig. 3 on the left. Based

on that, the problem is automatically detected and it can be solved according to the

descripted solution for the Message Mover pattern.

3.2 Application Scenario: Integration Provider

The Integration Provider pattern is another cloud integration pattern from the cloud

computing patterns [13]. In Fig. 3 on the right a topology with two components (PHP-

App and Java-App) communicate using messaging is shown. In contrast to the topology

on the left, both components as well as the Channel are located in restricted environ-

ments. Thus, the components as well as the Channel are not accessible from outside the

location. This problem can be solved by the Integration Provider pattern that describes

the problem and its context as follows [13]:

Problem:

How can components in different environments be integrated through a 3rd-party

provider?

Context:

When companies collaborate or one company has to integrate applications of differ-

ent regional offices, different applications or the components of a distributed appli-

cation are distributed among different hosting environments. Communication be-

tween these environments may be restricted. Especially, hosting environments may

restrict any incoming communication initiated from the outside. Communication

leaving the restricted environments is, however, often allowed. Therefore, additional

integration components are required that have to be accessible from restricted envi-

ronments. […]

From the above given description of this pattern, the difference to the distrib-

uted_messaging that formalizes the problem and context description of the Mes-

sage Mover pattern can be seen: Instead of a hybrid environment consisting of a re-

stricted and an unrestricted environment, these are two restricted environments that

must be integrated to enable communication between the components. Besides that, the

Integration Provider pattern is not limited to deployment models using messaging. In

the following the integration_of_restricted_environments rule for-

malizing the problem and context of the Integration Provider pattern is shown:

5 https://github.com/saatkamp/topology-prodec/blob/master/pattern_prologfiles/helper.pl

8

integration_of_restricted_environments(C1, C2):-

 components_in_different_locations(C1, C2),

 component_in_restricted_environment(C1),

 component_in_restricted_environment(C2),

 ((messaging_communication(Channel, C1, C2),

 component_in_restricted_environment(Channel));

 direct_communication(C1, C2)).

The problem only occurs in case the communicating components are located in differ-

ent locations (first condition) and if these locations are restricted. The second condition

is checked by the component_in_restricted_environment fact, which is in

turn a rule encapsulating a complex query. Indicator for a restricted environment is the

key-value property inbound_communication: false. To identify if an integration is re-

quired, the components located in different restricted environments have to communi-

cate. For this, either a message-based or a direct communication must be part of the

deployment model. In case of messaging the Integration Provider pattern only has to be

applied in case the Channel, and thus the Message Broker, is also located in a restricted

environment. Otherwise, an additional integration provider is not required.

The integration_of_restricted_environments rule can be applied to

the topology presented in Fig. 3 on the right. In this example, a problem is detected

because the two communicating components (PHP-App, Java-App) as well as the used

messaging system are located in different restricted environments. After detecting the

problem, the solution described by the pattern can be applied.

The two problem and context formalized patterns, Message Mover and Integration

Provider, show how the problem detection approach presented by Saatkamp et al. [26]

can be used for detecting problems in topology models. Relevant patterns for problem

recognition are not restricted to only one pattern language. They can be found in differ-

ent pattern languages. In application scenarios presented in this work and in [26] pat-

terns from the security [28] and the cloud computing [13] pattern language have been

selected. Using the Topology ProDec tool the different patterns are validated based on

TOSCA topologies modeled with the TOSCA modeling tool Winery6 [21]. The appli-

cation of the pattern formalization approach results in reusable rules that serve as con-

ditions to express the actual pattern rules. For example, the rules compo-

nents_in_different_locations and component_in_re-

stricted_environments are used several times. Such reusable condition rules

ease the formalization of further patterns.

4 Related Work

The underlying approach applied in this paper is presented by Saatkamp et al. [26]. We

applied the approach to further cloud integration patterns and extracted reusable condi-

tion rules that ease the formalization of problem and context descriptions of further

patterns. The formalization of patterns is already addressed by several other works

6 https://github.com/eclipse/winery

9

[3,10,14,19,22]. However, in contrast to our work the solution provided by a pattern is

formalized to identify the implemented patterns in a model instead of the problem

solved by the pattern. In this paper, we present how the context and problem described

by a specific pattern can be formalized to detect possibly occurring problems that can

be solved by applying the respective pattern to the topology-based deployment models.

Kim and Khawand [20] presented an approach to formalize the problem domain of

design patterns. They specify the problem domain as UML diagrams. Compared to

logic programming, this approach has the disadvantage that the non-existence of ele-

ments cannot be specified. Furthermore, the context of the pattern is important to iden-

tify if a problem exists, this is not considered in this work. As a result of a formalized

problem domain of patterns, patterns can be identified that solve the detected problems.

An approach presented by Haitzer and Zdun [16] is based on predefined architectural

primitives that represent entities used in several patterns. They can be used to annotate

software components to identify if a pattern is applicable. This semi-automated ap-

proach focuses on the applicability of patterns in software code. The applicability of

patterns is also focused by the automated management approach presented by

Breitenbücher [5] and Breitenbücher et al. [6,7,8]. Based on the cloud computing pat-

terns [13] management idioms are defined that specify the transformation from a target

topology fragment that represents the current state of an application by its components

and their relations to a desired state that reflects the applied management pattern. These

topology fragments are graphs that must be matched to a subgraph in the overall topol-

ogy representing the current state of the application. Based on similar mechanisms, i.e.,

using graph matching, Arnold et al. [2] and Eilam et al. [11] presented concepts to

facilitate the transformation from abstract topology-based deployment models to con-

crete configurations of the contained components. Also Guth and Leymann [15] use

graph fragments for rewriting and refining architectural graphs. However, their ap-

proaches are based on subgraph isomorphism to identify the target fragment and thus,

the non-existence of elements cannot be detected which is important to detect problems

in topology-based deployment models, as shown in the formalization of the Secure

Channel pattern in [26].

5 Conclusion

In this work we presented two application scenarios of the problem detection approach

using formalized patterns by Saatkamp et al. [26]. We applied the approach to the Mes-

sage Mover and the Integration Provider pattern. Both patterns are related to distributed

applications and, thus, relevant for restructured topology-based deployment models.

We have demonstrated that the approach is also applicable to message-based systems.

Furthermore, reusable rules that serve as conditions to express the actual pattern rules

are defined. In future work, we want to extend the pattern collection and want to im-

prove the tool support to ease the authoring process for new rules.

This approach is not limited to the presented cloud computing patterns [13] or secu-

rity patterns [28]. The approach could also be extended to other patterns, such as the

10

cloud data patterns [29] or the Internet of Things patterns [25]. Furthermore, the ap-

proach can also be used for a general validation of topology-based deployment models

and is not limited to the usage in restructured deployment models. The extension to

further domains will be investigated in future works.

Acknowledgements. This work was partially funded by the BMWi projects

IC4F (01MA17008G) and SmartOrchestra (01MD16001F), and the German Research

Foundation (DFG) project ADDCompliance (636503).

References

1. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings, Con-

struction, Oxford University Press (1977).

2. Arnold, W., Eilam, T., Kalantar, M., Konstantinou, A.V., Totak, A.A.: Pattern Based SOA

Deployment. In: Proceedings of the 5th International Conference on Service-Oriented Com-

puting, pp. 1-12. Springer (2007).

3. Bergenti, F., Poggi, A.: Improving UML Designs Using Automatic Design Pattern Detec-

tion. Handbook of Software Engineering and Knowledge Engineering, 771-784 (2002).

4. Bergmayr, A., Breitenbücher, U., Ferry, N., Rossini, A., Solberg, A., Wimmer, M., Kappel,

G., Leymann, F.: A Systematic Review of Cloud Modeling Languages. ACM Computing

Surveys 51(1), Article 22, 38 pages (2018).

5. Breitenbücher, U.: Eine musterbasierte Methode zur Automatisierung des Anwendungsma-

nagements. Dissertation, University of Stuttgart, Faculty of Computer Science, Electrical

Engineering, and Information Technology (2016).

6. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Pattern-based Runtime Management of

Composite Cloud Applications. In: Proceedings of the 3rd International Conference on Cloud

Computing and Service Science, pp. 475-482. SciTePress (2013).

7. Breitenbücher, U., Binz T., Kopp, O., Leymann, F.: Automating Cloud Application Man-

agement Using Management Idioms. In: Proceedings of the 6th International Conference on

Pervasive Patterns and Applications, pp. 60-69. Xpert Publishing Services (2014).

8. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Wieland, M.: Context-Aware Cloud

Application Management. In: Proceedings of the 4th International Conference on Cloud

Computing and Services Science, pp. 499-509. SciTePress (2014).

9. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Soft-

ware Architecture, Volume 1 – A System of Patterns. Wiley (1996).

10. Di Martino, B., Esposito, A.: A rule-based procedure for automatic recognition of design

patterns in uml diagrams. Software: Practice and Experience 46(7), 983-1007 (2016).

11. Eilam, T., Kalantar, M., Konstantinou, A., Pacifici, G., Pershing, J., Agrawal, A.: Managing

the configuration complexity of distributed applications in Internet data centers. Communi-

cations Magazine 44(3), 166-177 (2006).

12. Endres, C., Breitenbücher, U., Falkenthal, M., Kopp, O., Leymann, L., Wettinger, J.: De-

clarative vs. Imperative: Two Modeling Patterns for the Automated Deployment of Appli-

cations. In Proceedings of the 9th International Conference on Pervasive Patterns and Appli-

cations, pp. 22-27. Xpert Publishing Services (2017).

13. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing Patterns

– Fundamentals to Design, Build, and Manage Cloud Applications. Springer (2004).

https://www.worldscientific.com/worldscibooks/10.1142/4603-vol2

11

14. Fontana, F.A., Zanoni, M.: A tool for design pattern detection and software architecture

reconstruction. Information sciences 181(7), 1306-1324 (2011).

15. Guth, J., Leymann, F.: Towards Pattern-based Rewrite and Refinement of Application Ar-

chitectures. In: Proceedings of the 12th Advanced Summer School on Service Oriented Com-

puting. IBM Research Division (2018).

16. Haitzer, T., Zdun, U.: Semi-automatic architectural pattern identification and documentation

using architectural primitives. Journal if Systems and Software 102, 35-57 (2015).

17. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Design, Building, and Deploying

Messaging Solutions. Addison-Wesley Professional (2004).

18. Jamshidi, P. Pahl, C., Chinenyeze, S., Liu X.: Cloud Migration Patterns: A Multi-Cloud

Service Architecture Perspective. In: Service-Oriented Computing – ICSOC 2014 Work-

shop, pp. 6-19. Springer (2014).

19. Kampffmeyer, H., Zschaler, S.: Finding the pattern you need: The design pattern intent on-

tology. In: International Conference on Model Driven Engineering Languages and Systems,

pp. 211-225. Springer (2007).

20. Kim, D.K., Khawand, C.E.: An approach to precisely specifying the problem domain of

design patterns. Journal of Visual Languages and Computing 18(6), 560-591 (2007).

21. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – A Modeling Tool for

TOSCA-based Cloud Applications. In: Processing of the 11th International Conference on

Service-Oriented Computing, pp. 700-704. Springer (2013).

22. Lim, D.K., Lu, L.: Inference of design pattern instances in uml models via logic program-

ming. In: 11th IEEE International Conference on Engineering of Complex Computer Sys-

tems, pp. 10-29. IEEE (2006).

23. Meszaros, G., Doble, J.: MetaPatterns: A Pattern Language for Pattern Writing. In: Proceed-

ings of International Conference on Pattern Languages of Program Design, pp. 164-200.

ACM (1997).

24. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA) Ver-

sion 1.0 (2013).

25. Reinfurt, L., Breitenbücher, U., Falkenthal, M., Leymann, F., Riegg, A.: Internet of Things

Patterns. In: Proceedings of the 21th European Conference on Pattern Languages of Pro-

grams, Article Nr. 5. ACM (2016).

26. Saatkamp, K., Breitenbücher, U., Kopp, O., Leymann, F.: An Approach to Automatically

Detect Problems in Restructured Deployment Models Based on Formalizing Architecture

and Design Patterns. Computer Science – Research and Development (2018).

27. Saatkamp, K., Breitenbücher, U., Kopp, O., Leymann, F.: Topology Splitting and Matching

for Multi-Cloud Deployments. In: Proceedings of the 7th International Conference on Cloud

Computing and Services Science, pp. 247-258. ScitePress (2017).

28. Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., Sommerlad, P.:

Security Patterns – Integration Security and System Engineering. John Wiley & Sons (2006).

29. Strauch, S., Andrikopolous, V., Breitenbücher, U. Sáez, S.G., Kopp, O., Leymann, F.: Using

Patterns to Move the Application Data Layer to the Cloud. In: Proceedings of the 5th Inter-

national Conference on Pervasive Patterns and Applications, pp. 26-33. Xpert Publishing

Services (2013).

30. Wellhausen, T., Fiesser, A.: How to Write a Pattern? A Rough Guide for First-time Pattern

Authors. In: Proceedings of the 16th European Conference on Pattern Languages of Pro-

grams. ACM (2012).

