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Abstract—In recent years, many deployment systems have
been developed that process deployment models to automat-
ically provision applications. The main objective of these
systems is to shorten delivery times and to ensure a proper
execution of the deployment process. However, these systems
mainly focus on the correct technical execution of the de-
ployment, but do not check whether the deployed application
is working properly. Especially in DevOps scenarios where
applications are modified frequently, this can quickly lead
to broken deployments, for example, if a wrong component
version was specified in the deployment model that has not
been adapted to a new database schema. Ironically, even
hardly noticeable errors in deployment models quickly result
in technically successful deployments, which do not work at all.
In this paper, we tackle these issues. We present a modeling
concept that enables developers to define deployment tests
directly along with the deployment model. These tests are then
automatically run by a runtime after deployment to verify that
the application is working properly. To validate the technical
feasibility of the approach, we applied the concept to TOSCA
and extended an existing open source TOSCA runtime.

Keywords-Testing, Declarative Application Deployment, Test
Automation, Model-based Testing, TOSCA

I. INTRODUCTION

Cloud Computing has emerged as a commonly accepted
paradigm to develop, deploy, and operate applications. More-
over, due to market pressure and effects of competition,
more and more companies adopt modern agile software de-
velopment methods in conjunction with Continuous Delivery
in order to shorten their development cycles and deliver
their Cloud applications faster and more frequently [1].
An essential prerequisite for the frequent and fast delivery
of applications is automating their deployment—especially
as manual deployment is error-prone and quickly leads
to severe application failures [2]. This also results from
the high complexity of modern application which often
requires combining several deployment technologies [3]. For
example, often APIs of cloud providers have to be used
to provision virtual machines while deployment automation
systems such as Chef [4] or Ansible [5] install software.
Most of these deployment systems employ deployment
models that describe the desired deployment, which can
be executed automatically [6].

However, deployment systems typically focus on the
correct technical execution of the deployment, i. e., they focus
on installing, configuring, and orchestrating the application’s
components as described by the deployment model, but do
not check if the final deployment works as intended by the
developers. For example, if a distributed application gets
deployed across multiple clouds, components deployed in
different data centers may need to communicate with each
other. However, cloud providers typically apply different
default security settings, for instance, some open common
ports of created virtual machines while others close all
ports by default. Thus, if this is not considered correctly
in the deployment model, the technical deployment may be
successful while the communication between the components
does not work. Ironically, there are many reasons for a
deployment to complete without technical errors while the
application’s functionality is broken—often this is only
detected by a monitoring system or, even worse, users.

In this paper, we tackle these issues. We present a modeling
concept for specifying Application Deployment Tests directly
in deployment models and show how these tests are executed
automatically after the deployment finishes. Thus, while the
technical success of a deployment is already handled by
deployment systems, our approach enables developers to
specify deployment tests that also check the deployment
success from a business perspective. We show that the
approach is completely provider-agnostic and independent
of individual technologies. Thus, we provide an extended
meta-model for declarative application modeling in order to
describe deployment tests as annotations so that they can be
attached to arbitrary application topologies. As TOSCA [7]
enables integrating various deployment systems [8], we show
how our approach can be used to specify deployment tests
for TOSCA topologies. Therefore, we validate the practical
feasibility of the presented approach by an prototype based
on the TOSCA standard and the OpenTOSCA ecosystem.

The remainder of this paper is structured as follows:
Section II motivates the resulting work and highlights the
challenges. Section III describes our approach in detail, while
Section IV and Section V validates our approach. Finally,
Section VI discusses related work whereas Section VII
concludes and discusses future work.



II. MOTIVATION AND FUNDAMENTALS

In this section, we motivate the need for automated
application deployment testing and introduced fundamentals
terms and concept required for understanding this paper.

A. Deployment Models & Deployment Testing

For automating cloud application deployments several
technologies and standards are available. To automate a
deployment the desired result is typically described in the
form of a deployment model, which are developed, tested,
and maintained by development teams. In general, there are
two classes of deployment models: (i) imperative and (ii)
declarative models [9], [10]. Imperative models, such as Shell
scripts or Ansible Playbooks [5], describe the deployment
steps in a procedural manner and are executed exactly as
described. In contrast, declarative deployment models, such
as AWS CloudFormation [11], describe the desired result
and a runtime drives the necessary deployment logic.

However, today’s deployment systems typically verify
only whether the technical execution of the deployment
has been successful, but not if the deployed application
works correctly. Thus, deployment errors that are not of a
technical nature often have to be detected by monitoring
systems, additional automated smoke or functional test
systems, or when customers face problems by using the
application. As a result, to avoid that errors are visible to
users, application deployment testing is just as important as
unit and system testing during development, but interestingly
not well-supported by existing deployment technologies.

In the following, we discuss three main issues we identified
that possibly result in technically successful deployments
which do not function correctly from a business perspective.
Afterwards, we present our approach based on declarative
deployment models in Section III to tackle these issues.

B. Issue 1: Differences in Environments

Deployment models are often used for deploying a
certain kind of application in multiple environments which
slightly differ from each other, for example, different clouds.
Depending on the evolution of the employed technologies
and the infrastructure on which the application needs to be
deployed, failures may lead to an unsuccessful deployment.
For example, a deployment model that creates a virtual
machine using the API of OpenStack and that provisions
a web server may be successful in an environment in
which strict network configurations are not enforced, but
not in another environment where strict network settings
are enforced. This results in the problem that another
virtual machine or service cannot communicate with the
web server. Therefore, a deployment model that expects a
certain combination of resources, settings, and configurations
may run successfully in one environment, but not in another
if not all mandatory requirements are specified by the model.

C. Issue 2: Deployment Model Aging

Deployment models are often built to deploy a certain kind
of application repetitively. For example, a company typically
specifies deployment models for all services they offer to
their customers, e. g., the deployment of a LAMP-based
application, which can then be instantiated automatically
whenever a customer requests it. However, from time to
time new versions of software and hardware components
need to be used due to security fixes or feature roll outs.
A prominent example is the release and the migration to a
new hypervisor version, for example, due to a security issue.
However, exchanging component versions often result in
successfully executed deployment models but on runtime the
component may not work due to the fact that, for example,
the API has not changed syntactically, but semantically [12].
For example, in a previous version all virtual machines—
provisioned within one security group—have been able to
communicate with each other by default, whereas in the
new version it is required to enable this configuration setting
explicitly. Then, a deployment model which worked correctly
in a previous version may be executed successfully as well
on the new version, but the application itself does not work
correctly anymore. Unfortunately, such problems are typically
hard to detect on the model layer as only the execution of the
deployment model shows what works and what fails. On top
of that, cloud deployments often consist of multiple, even
hundreds, deployment models. Therefore, maintaining them
on every single change of a cloud platform version is not
feasible. Thus, we require an deployment testing approach,
which detects outdated deployment models immediately
instead of waiting until problems get reported by users.

D. Issue 3: Complexity of Cloud Applications

Cloud applications typically consist of various different
types of components which have complex relationships to
each other. Nowadays, cloud applications often apply a
microservice architecture, where components are loosely-
coupled and independently deployable, resulting in a more
complex, large-scale, and distributed application system [13].
This makes deployment testing very hard to realize for
operation teams that have not been directly involved in the
development. In addition, modern cloud applications can
be distributed to multiple cloud providers each supporting
different deployment technologies. Thus, deployment testing
often requires understanding each of these technologies to
detect possible problems. As a result, a lot of expertise is
required to (i) implement, (ii) execute, and (iii) orchestrate
automated testing routines. Even if developers provide
automated test routines for their components, these test
routines must be integrated into one overall deployment
test that can be executed automatically after the deployment.
To achieve this, scripts, workflows, or programs must be
implemented that orchestrate the individual tests, which is a
highly non-trivial technical integration challenge.
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Figure 1. Overview of the Automated Deployment Test concept: A deployment model annotated with
Application Deployment Tests is automatically tested once it has been deployed by a deployment system.

III. AUTOMATED DEPLOYMENT TEST CONCEPT

To deal with the aforementioned challenges, we introduce
an automated deployment test concept. We first present
an overview of our approach in Section III-A. Afterwards,
we present in Section III-B a general meta-model for
application topologies that uses an Annotation class to
express deployment tests. To conclude this section, we discuss
possible limitations of our approach in Section III-C.

A. Conceptual Overview

Figure 1 shows an overview of the proposed concept.
The idea is that a developer annotates components in the
deployment model that should be tested with Application
Deployment Tests. Application Deployment Tests are declara-
tive by nature. This means that they do not specify a control
flow of steps to be executed to test a component but only
what shall be tested and the expected result. For example,
a developer could annotate a Deployment Test to check if
a certain port of a component is exposed publicly. Another
example is a test case to check if a database schema has
been correctly installed or if a RESTful HTTP API returns
an expected result. Similarly, arbitrary kinds of deployment
tests can be annotated to arbitrary types of components.

Once the used Deployment System has successfully exe-
cuted the deployment, a Test Executor component is triggered.
The Test Executor follows a plugin architecture where
the logic is implemented how to execute certain types of
tests onto the deployed infrastructure. Based on a set of
available plugins and the supplied deployment model, the
Test Executor runs the specified Application Deployment
Tests and reports the results accordingly. In case of failed
tests, a deployment system is able to automatically revert the
deployment completely or to roll-back to a previous version.

B. Meta-Model

To present our concept for declarative deployment models,
we introduce a minimalistic meta-model. We describe the
formal elements of application topologies abstractly in order

to be independent of a concrete definition language and to
enable the adaptation of this approach to different languages.

Figure 2 gives an overview on the meta-model, which is
presented briefly in the following. A Topology is a directed,
weighted, and possibly disconnected graph and describes
the structure of an application. The structure consists of
Components and Relations, whereas Relations are used to
represent the relationship between two components. Relations
and Components are either of type Component Type or
Relation Type. These types describe the semantics for a
Component or Relation having this type. For the management
of Components, various management technologies can be
used, such as executable scripts or declarative tools for
configuration management. To describe that a particular
Component can be managed with such technologies, our meta-
model defines the class Management Operation and can be
defined for Component Types. Moreover, each element class
of the meta-model can define multiple Properties, whereby
these Properties can be in the form of simple key-value pairs
(KVP) or rather complex structures, such as structures defined
with XML or JSON syntax. Besides that, our meta-model
allows to define and attach Annotations to Components. In our
concept, we use the Annotation class to express Deployment
Tests which are automatically executed once the deployment
has been done. Therefore, we define a Deployment Test class
that acts the base type for possible sub classes. Based on
this, arbitrary kinds of specialized Deployment Tests can be
derived and used to be executed.

In the following, we categorize and describe two kinds
of predefined classes: (i) Domain-Specific Test and (ii)
Management Operation Test.

1) Domain-Specific Test: A Domain-Specific Test is a test
for a certain functionality in a specific field. For example,
one can create a test for a Component’s RESTful HTTP API.
A concrete test would check whether a GET on a resource
returns an expected result. Such tests require a specific plugin
in the deployment system for execution and may execute
arbitrary test logic implemented by the plugin. Here, the
functionality and the execution of the test is completely
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Figure 2. Meta-Model: Automated Deployment Tests for Application Topologies

provided by the plugin in the deployment system while the
Deployment Test only specifies the path, the HTTP method to
be executed, as well as the expected result. This configuration
is specified in the form of Properties.

2) Management Operation Test: Besides Domain-Specific
Tests that require a matching plugin in the deployment system,
the second class we predefine is Management Operation
Test. A Management Operation Test executes a specified
Management Operation of the associated Component with
specified input parameters and compares the result with
specified output parameters. Thus, this class of Deployment
Tests enables utilizing the management functionality already
provided by the model. For example, a Component having
the possibility to run executable scripts for management, a
certain test can specify the operation to be executed as well
as the expected result, which provides a powerful and generic
test interface. Hence, only one generic plugin is require being
able to invoke arbitrary Management Operations.

C. Limitations of the Approach

To check if a certain application port is publicly available or
whether a HTTP endpoint returns a certain payload, specific
plugins have to be developed and registered in the deployment
system. The presented approach bases on the assumption,
that a deployment system provides a set of plugins that
understand how to interpret and execute attached deployment
test annotations; and is therefore declarative by default. Thus,
a deployment system has to provide a basic set of practically
relevant plugins as well as has to be designed to be extensible
with custom plugins from arbitrary sources. It is left for
future work to incorporate an imperative approach in order to
mitigate this limitation, for example, to specify an execution

flow for test cases or to define that the output of one test
case serves as the input for another one.

Integrating test execution into a deployment system adds
additional overhead in time of execution. However, even very
small differences in environments may hinder the successful
deployment of applications and services (cf. Section II-B).
Furthermore, deployment models should work with different
kinds of cloud platform versions and therefore have to
be forward and backward compatible (cf. Section II-C).
Therefore, we argue that it is worth having an integrated
system that detects errors in deployment models quickly and
immediately after deployments.

IV. VALIDATION BASED ON TOSCA

In this section, we explain how this approach can be
applied to TOSCA, a standard to describe cloud application
deployments [7]. However, the conceptual idea could be
similarly applied to other deployment technologies that
are based on declarative deployment modeling languages
which are similar to TOSCA [6]. We chose TOSCA since
it can not only be used to model and deploy cloud native
applications [14], but also be used to model arbitrary kinds of
IoT deployments including different kinds of IoT messaging
middlewares [15], [16]. On top of that, it was shown that
TOSCA can be used for DevOps automation [17], [18].

In the following, we show a TOSCA-based modeling
approach for specifying Application Deployment Tests in
Section IV-A while we explain thoroughly how to map our
meta-model to TOSCA. Usage examples are presented in
Section IV-B and we present the serialization in TOSCA in
Section IV-C. Finally, we explain in Section IV-D how the
modeled Deployment Tests can be executed automatically.
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A. Application Deployment Test Modeling

In this section, we briefly introduce TOSCA and show
how we can map our meta-model (cf. Section III-B) to
TOSCA’s meta-model. We present the mapping along with
the description of the specific TOSCA element, whereby we
use the following notation: Meta-Model Element ⇒ TOSCA
Element. We simplify and skip all TOSCA details that are
not important in our context.

Topology ⇒ Topology Template: TOSCA specifies a
meta-model that enables describing the deployment of an
application in a declarative manner by specifying the structure
of the application to be deployed, i. e., their components as
well as their relationships. This structure can be modeled
as a directed graph consisting of nodes and edges and is
defined in a Topology Template.

Component ⇒ Node Template: The nodes are called Node
Templates and represent the components of an application,
for example, a web server or a virtual machine.

Relation ⇒ Relationship Template: The edges are called
Relationship Templates and represent the relations between
nodes, e.g., that a certain software component is “hosted on”
another one.

Component Type ⇒ Node Type and Relation Type ⇒ Re-
lationship Type: For reusability purposes, the semantics of
Node Templates and Relationship Templates are specified
by defining Node Types and Relationship Types. For exam-
ple, a Node Template can be of Node Type “WebServer”
whereas a Relationship Template can be of Relationship
Type “hostedOn”.

Property ⇒ Properties Definition: Node Types as well as
Relationship Types define Properties, enabling the configura-
tion of instances of these types.

Management Operation ⇒ Interface, Operation: Further,
Node Types define Management Interfaces and Operations for
managing the instances of these types. For example, a Node
Type representing an OpenStack computing environment may
define both “startVM” and “stopVM” operations to start and
stop a virtual machine.

Annotation ⇒ Policy (Template): To express non-functional
requirements on deployment and runtime, TOSCA employs
Policies. A TOSCA Policy can be attached to a Node
Template and is used to specify a non-functional requirement
for the associated component. Fig. 3 shows the simplified
TOSCA meta-model including these relations on the left side.
For example, security aspects such as that a virtual machine
must be created in a data center in a certain country can
be specified using such a Policy. For configuration, Policies
also provide properties that can be specified by the modeler,
e. g., the aforementioned region. Policies are then enforced
during the deployment of the application, which depends on
the kind of Policy [19], [20].

Deployment Test ⇒ Policy Type: To provide the semantics
and schema of a Policy, a Policy Type can be created and
referenced similarly to Node Templates that reference a
certain Node Type. TOSCA also enables to create sub types
of Policy Types to refine their semantics.

For specifying Application Deployment Tests accordingly
to the previous section, we use this Policy modeling construct.
A specific test is modeled as a TOSCA Policy attached to
a Node Template. To indicate that the Policy specifies a
Deployment Test, a special Deployment Test Policy Type is
defined. We call this TOSCA extension TEST4TOSCA which
is shown on the right of Fig. 3. However, the Deployment
Test Policy Type itself is specified as abstract, which means
that it cannot be used directly as type of a Policy. Thus, each
non-abstract sub type of this abstract Policy Type can be
used to specify a Deployment Test to be executed. Based
on this Deployment Test Policy Type, arbitrary kinds of
specialized Deployment Tests can be derived as sub types,
for example, Deployment Tests that check if a certain HTTP
request is responded with the correct status as indicated
in Fig. 3 on the right bottom. Furthermore, a Management
Operation Test is defined being able to execute a specified
Management Operation of the associated Node Template
with specified input parameters and to compare the result
with specified output parameters. This class of Deployment
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Tests enables utilizing the management functionality already
provided by TOSCA for testing. Moreover, also application-
specific tests can be implemented individually and stored
along with the application topology: If a certain complex
test needs to be executed after deployment, this test can
be implemented in a custom management operation and an
appropriate Deployment Test Policy refers to this operation,
as show in Fig. 4. All elements, artifacts, and files can then be
bundled in a Cloud Service Archive (CSAR) which enables
shipping self-contained archives that also contain their own
test logic.

B. Deployment Test Examples

Figure 5 shows a simplified application topology that is
used as use case scenario. For our scenario, we choose a
Java web application representing an arbitrary web shop
application. The shop application is packaged as web appli-
cation archive (WAR)—indicated as a Deployment Artifact
on the Shop Application Node Template—and is hosted on
Apache Tomcat. An instance of Apache Tomcat is installed
and configured on an Ubuntu virtual machine. For the sake
of brevity, we omitted the infrastructure layer. Anyhow,
the Ubuntu virtual machine can be hosted on a elastic
infrastructure layer, such as OpenStack, on a cloud provider,
such as Amazon Web Services, or on a bare metal server.
We annotated this example with four test cases. First of all,
we want to test the Shop Application if the connectTo
operation of the Node Type JavaWebApplication works based
on the given input parameters and returns the expected result.
Furthermore, we want to test if the path /shop of the Shop
Application can be successfully reached using a HTTP GET.
For the Apache Tomcat instance, we specified a test to check
if port 8080 is publicly available. On the operating system
level, we specified a test to check if port 22 is bound. The
differences between those two tests is that the PortBindingTest
checks if a port is bound but not necessarily available from
the public, e.g., through a firewall. Whereas, the TcpPingTest
checks if the port is reachable from the public, also through
firewalls. However, in case of the PortBindingTest, the Test
Executor can utilize a test operation exposed by the Ubuntu
Node Type, as indicated by Fig. 4.
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Figure 5. Excerpt of a simplified Topology Template
decorated with Deployment Test Annotations.

C. Serialization of Application Deployment Tests in TOSCA

Based on the introduced example from the previous
subsection, we show how deployment tests can be serialized
using TOSCA. We base this work on TOSCA’s XML
version [7], but it could also be used with the later version
TOSCA Simple Profile, which uses YAML [21].

In Listing 1 we show an excerpt of the resulting XML1.
The listing shows the serialization result of the four test
cases from Fig. 5. In each Policy, properties can be specified
as a list of key-value pairs (KVP). The possible set of
properties are defined by the respective Policy Types. As also
explained in previous sections, the ManagementOperationTest
can be used to invoke arbitrary Management Operations of
respective Node Types in order to check the result against
an expectation. Therefore, after specifying an interface and
operation name, a developer can name input parameters that
should be used in the generated test case by using the property
TestInputParameters. Furthermore, to specify the
expectation, the property ExpectedOutputParameters
can be used. In TEST4TOSCA we define that such properties
are either primitive types, such as integers or strings, or
complex ones containing JSON syntax. A respective TOSCA-
runtime, enabled to run the specified deployment tests,
must be capable of interpreting the properties accordingly.
Moreover, for the HttpTest certain HTTP related properties,

1For reasons of clarity, we do not present the TOSCA indirection of
Policy Templates in this paper.



1 <tosca:Policy
2 type="tests:ManagementOperationTest"
3 xmlns:tests="annotations/tests">
4 <Properties>
5 <InterfaceName>
6 interfaces/database
7 </InterfaceName>
8 <OperationName>
9 connectTo

10 </OperationName>
11 <TestInputParameters>
12 {
13 "DBName": "shop",
14 "DBUser": "app",
15 ...
16 }
17 </TestInputParameters>
18 <ExpectedOutputParameters>
19 { "Result": "SUCCESS" }
20 </ExpectedOutputParameters>
21 </Properties>
22 </tosca:Policy>
23

24 <tosca:Policy
25 type="tests:HttpTest"
26 xmlns:tests="annotations/tests">
27 <Properties>
28 <Method>GET</Method>
29 <Path>/shop</Path>
30 <ExpectedStatus>200</ExpectedStatus>
31 <!-- ... -->
32 </Properties>
33 </tosca:Policy>
34

35 <tosca:Policy
36 type="tests:TcpPingTest"
37 xmlns:tests="annotations/tests">
38 <Properties>
39 <Port/>
40 <PortPropertyName>
41 Port
42 </PortPropertyName>
43 </Properties>
44 </tosca:Policy>
45

46 <tosca:Policy
47 type="tests:PortBindingTest"
48 xmlns:tests="annotations/tests">
49 <Properties>
50 <Port>22</Port>
51 <PortPropertyName/>
52 </Properties>
53 </tosca:Policy>

Listing 1. Application Deployment Tests modeled as TOSCA Policies.

such as the method and the expected status code, can
be specified. In fact, there are more properties available
but for the sake of simplification we omitted them in the
example. For the TcpPingTest as well as the PortBindingTest,
a specific port number can be specified. In turn, by using
the PortPropertyName property, the name of a TOSCA
property can be specified. The generated test case will then
use the respective value during execution.
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Figure 6. Architecture of an extended TOSCA runtime that supports
executing TEST4TOSCA Application Deployment Tests.

D. Application Deployment Test Execution

In this section, we present how a TOSCA runtime needs
to be extended to automatically execute modeled tests.

Figure 6 shows a simplified conceptual deployment system
architecture for TOSCA. To execute the specified deployment
tests after an application deployment job finished, we intro-
duce a Test Executor component as part of a TOSCA runtime,
similarly as described in Section III. The Test Executor
component is triggered by the Deployment Manager directly
after a deployment finished. This Deployment Manager
is responsible for retrieving the TOSCA models, deriving
the deployment tasks to be executed, and to execute these
tasks—for example, the approach presented by Breitenbücher
et al. [10] describes how such a component can be imple-
mented. Once invoked, the Test Executer determines for each
modeled Application Deployment Test Policy a plugin that
is registered in a local plugin registry. Each plugin specifies
which types of Deployment Test it can execute. When a
matching plugin has been found, a method of the plugin
gets invoked which determines if the plugin can execute
the test for the associated Node Template. If the plugin
can execute the test, it gets invoked with the corresponding
Application Deployment Test to actually perform the specified
test on the running component represented by the Node
Template. For this execution, instance data of the deployed
application is maybe required, e. g., the IP address of a
virtual machine to be tested. To access this information, a
Data Access Layer provides access to this instance data.
The result of the overall test execution and each test case is
stored in a Test Results database and, for example, exposed
to a user interface. In terms of a successful deployment, the
deployment is considered to be successful only if all modeled
Deployment Tests were executed without failures. In the next
section, we describe a prototypical implementation of this
abstract deployment system architecture to prove the practical
feasibility of the presented modeling and execution approach.



V. PROTOTYPE AND APPLICATION

To show the feasibility of the concept, we implemented our
approach by extending the existing TOSCA-based ecosystem
OpenTOSCA. Thereby, we extended the modeling tool
Winery2 and the TOSCA runtime OpenTOSCA Container3.
We set up a public GitHub repository (https://github.com/
miwurster/opentosca-deployment-tests) where we published
detailed screenshots as well as a screencast to showcase the
scenario using our prototype based on OpenTOSCA. The
TOSCA modeling tool Winery can be used to model topolo-
gies and to export them as CSARs [22]. The OpenTOSCA
Container is a TOSCA-compliant runtime that can process
CSARs and deploy the applications accordingly [23]. All
extension in the course of this work has been merged into the
MASTER of the individual source code repositories. We used
Winery to create five Deployment Test Annotations and to
decorate Node Templates with them. Our prototype supports
Management Operation Tests and four Domain-specific Tests:
(i) HttpTest, (ii) TcpPingTest, (iii) PortBindingTest, and (iv)
SqlConnectionTest. We created these types and made them
available in our TOSCA definitions repository. Furthermore,
we extended Winery’s graphical Topology Modeler compo-
nent to drag and drop the annotations onto Node Templates.
Therefore, we filter for our introduced annotations namespace
“http://opentosca.org/policytypes/annotations/tests,” because
only these should be available to decorate Node Templates.
With that, an application developer is now able to decorate a
Node Template. The Topology Modeler creates a new Policy,
attaches it to the Node Template and links to an UI, where
annotation-specific properties can be entered (cf. Fig. 3). For
the execution part, we extended the OpenTOSCA Container
with the pictured Test Executor component. The component
is working based on plugins to generate and execute the
actual test cases. The Test Executor is triggered after a build
plan has been executed and creates 1) a Test Context,
2) determines the information about the current CSAR to
test, 3) as well as the created instance data. In a threaded
way, the Test Executor component schedules and launches
the test cases as separate jobs. Before it runs the tests, the
component determines if there is a registered plugin to handle
the used annotations. Therefore, all Node Templates and
Annotations are checked by each plugin. A plugin calls the
canExecute() method to check whether it can execute.
If true is returned, a job is scheduled and run as soon as
the Test Executor has the capacities. We created five plugins
for our prototype. One plugin that can handle Management
Operation Tests and four specific plugins to handle the
Domain-specific Tests outlined above. The test execution
as well as the result of each test case is stored in a database
aside to the respective instance data. We implemented a
RESTful HTTP API to query the results for the related

2Eclipse Winery: https://github.com/eclipse/winery
3OpenTOSA Container: https://github.com/OpenTOSCA/container

service instances. Finally, we enriched OpenTOSCA’s user
interface in order to show the results and to visually indicate
whether the test execution was successful.

VI. RELATED WORK

Extensive research has been conducted on automated
software testing in terms of test design, test execution, test
coverage, and test result analysis. One approach in software
testing is model-based testing (MBT) where models of a
system under test are employed to derive and to generate
test cases for the system [24]. For example, once tests are
derived, they can be directly run by a runtime or transformed
into artifacts for execution. Model-based testing has a long
history in software engineering to assure quality [25], [26].
Different test case generation techniques have been developed
and researched in the past years. Based on MBT, there are
approaches to automate security testing [27], to generate
tests based on requirements [28], to define and perform
system testing using UML [29], to test GUI-based web
applications [30], [31], as well as the automated performance
testing [32]. However, these approaches are usually not
integrated with the software delivery process [33]. More
recent work [34] tries to integrate functional test automation
methods with the software delivery processes and CI/CD
servers. Anyhow, this approach assumes an already running
application inside a testing environment. In our work, we
introduce a model-based deployment testing approach that is
tightly coupled with the provisioning system itself. Testing
is therefore integrated by design and executed continuously
based on the final deployment result.

Test automation in DevOps plays vital role [35]. Usually,
different test types target different deployment environments.
There are prominent examples, such as unit tests, integration
tests, and end-to-end tests, that typically target development
and test environments. However, there are also approaches
for production environments, such as smoke tests or synthetic
tests. The aim is to run a set of functional tests under low
load and with simulated user inputs to ensure that major
features of the applications work as expected. Here, the test
specification is decoupled from the actual deployment model
and usually maintained in a different location. Furthermore, a
survey of software testing in the cloud showed that acceptance
testing as well as interoperability testing is not thoroughly
studied [36]. Anyhow, there are research activities to test
and validate the idempotency of infrastructure as code [37].
Their focus is rather on the infrastructure level than on the
application level and, hence, do not test the final orchestrated
application as we do.

To the best of our knowledge no published work uses MBT
for deployment models. Therefore, we introduced a concept
to model and maintain test specifications along with the actual
deployment model. Our concept further increases the level
of automation in testing deployment models in the context
of DevOps. In this work, the meta-model is abstracted from

https://github.com/OpenTOSCA/container
https://github.com/miwurster/opentosca-deployment-tests
https://github.com/miwurster/opentosca-deployment-tests
https://github.com/eclipse/winery


the DMMN (Declarative Application Management Modeling
and Notation) meta-model [38]. We extend the DMMN meta-
model with an Annotation class and show how this class is
used to express Deployment Tests as well as how it is related
to an application topology and its elements. Annotations in
general are used to describe or add additional contextual
information to the elementes of an application topology. For
example, as also introduced by the authors of GENTL [39]—
a description language for Cloud Application Topologies—,
annotations convey additional information, such as metering,
billing, management, or even test specification information.
We used the DMMN meta-model and its graph-based nature
since it is abstract and generic enough to be mapped to
different kinds of graph-based languages, also shown and
exploited by Saatkamp et al. [40]. Representing an application
topology as a graph is a common approach in research. For
example and among others4, Andrikopoulos et al. [39] as
well as TOSCA [7], [41] propose a graph-based description
language for application topologies.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a concept to enable modeling
and automating the execution of deployment tests. The
presented approach enables eliminating manual and error-
prone testing effort by a simple declarative approach, which
requires no deep technical understanding of the component
to be tested but only about the test itself. The approach is
important to be integrated in continuous software delivery
processes in order to not only check the technical success
of an application deployment, but also if the business
functionality works properly. We showed how our concept
can be applied to TOSCA and demonstrated in detail—
based on a concrete use case scenario—how to model and
serialize such deployment tests. Furthermore, we proposed
an extended system architecture of a TOSCA runtime in
order to execute such tests. On top of that, we implemented
our TEST4TOSCA extension and integrated it into the open
source TOSCA ecosystem OpenTOSCA.

In future work, we plan to automatically generate test
plans based on TOSCA topology models to eliminate the
task of manually specifying deployment tests. Furthermore,
we envision the concept of Mimic Tests where components
are imitated in order to test relations between components.
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