
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

[firstname.lastname]@iaas.uni-stuttgart.de

An Approach to Automatically Check the Compliance
of Declarative Deployment Models

Christoph Krieger, Uwe Breitenbücher, Kálmán Képes, Frank Leymann

@InProceedings{Krieger2018_DeploymentComplianceRules,
author = {Christoph Krieger and Uwe Breitenb{\"u}cher and

K{\'a}lm{\'a}n K{\'e}pes and Frank Leymann},
title = {{An Approach to Automatically Check the Compliance of

Declarative Deployment Models}},
booktitle = {Papers from the 12th Advanced Summer

School on Service-Oriented Computing (SummerSoC 2018)},
year = {2018},
pages = {76--89},
publisher = {IBM Research Division}

}

:

Institute of Architecture of Application Systems

The full version of this publication has been presented as a poster at the
Advanced Summer School on Service Oriented Computing (SummerSoC 2018).

http://www.summersoc.eu

© 2018 IBM Research Division

http://www.summersoc.eu/

An Approach to Automatically Check the Compliance of

Declarative Deployment Models

Christoph Krieger, Uwe Breitenbücher, Kálmán Képes, and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart

Universitätsstr. 38, 70569 Stuttgart, Germany

{firstname.lastname}@iaas.uni-stuttgart.de

Abstract. The automation of application deployment has evolved into one of

the most important issues in modern enterprise IT. Therefore, many deployment

systems have been developed that process deployment models for automating

the installation of systems. Creating such deployment models becomes more

and more complex as compliance plays an increasingly important role. Not only

external laws and regulations must be considered, but also a company’s internal

requirements must be fulfilled. However, this is a very complex challenge for

the modelers as they require a firm knowledge of all the compliance rules that

must be observed. As a result, this often leads to deployment models that vio-

late compliance rules due to manual modeling mistakes or because of unaware-

ness. In this paper, we introduce an approach that enables modeling of reusable

Deployment Compliance Rules that can be executed automatically to check

such regulations in declarative deployment models at design time. We validate

our approach with a prototype based on the TOSCA standard and the Open-

TOSCA ecosystem.

Keywords: Cloud Computing, Compliance, Deployment Modeling.

1 Introduction

There are many laws, regulations, and guidelines that influence an enterprise’s infor-

mation technology (IT), such as the General Data Protection Regulation [1], the ISO

2018 standard [2], or company internal regulations. Threats to security through the

use of outdated software versions or financial risks due to the use of unlicensed soft-

ware also have an impact on IT landscapes. Moreover, modern application landscapes

often consist of complex composite applications and different heterogeneous systems

[3]. Such large landscapes and systems present a challenging and expensive task to be

maintained and managed manually. To decrease the costs and to minimize human

errors [4], the automation of deployment and provisioning of applications has become

an important subject in academia and industry. Approaches for deployment automa-

tion systems, such as Chef [5], Juju [6], Ansible [7], and Kubernetes [8], consume

deployment models that describe the desired deployment and automatically execute

all required tasks. However, enterprise’s applications and IT landscapes are subject to

a magnitude of requirements. If a company has a vast amount of requirements, it

2

would require great effort and expertise of modelers of deployment models to know

all rules and regulations that concern a particular application deployment. Moreover,

rules are subject to change as new requirements and needs arise, and others are sus-

pended. Not being compliant to all necessary rules can quickly result in serious con-

sequences for companies, such as lawsuits due to unlicensed software or even the loss

of customers due to leaks of personal data and subsequent trust issues by the custom-

ers. Thus, checking deployment models for compliance with a company`s

requirements is of vital importance, but practically not possible if performed manually

by modelers and operators.

In this paper, we present an approach that automates compliance checking of de-

clarative deployment models to ensure that new or updated deployment models are

always compliant with a company’s set of constraints. To achieve this, we present an

approach to specify reusable Deployment Compliance Rules that enables automated

compliance checking of declarative deployment models at design time, which de-

creases the chance of application deployments that are not compliant to a company’s

regulations. Furthermore, the approach separates the modeling of compliance rules

from the modeling of deployment models. This ensures that modelers do not need to

know all constraints and requirements to specify compliant deployment models.

The remainder of this paper is structured as follows: Section 2 motivates our ap-

proach, followed by Section 3 which presents the main concept. Section 4 provides a

formal model for the approach. Section 5 describes the prototypical implementation.

In Section 6, we discuss related work. Finally, Section 7 concludes the paper and

describes future work.

2 Motivation Scenario

Declarative deployment models describe the structure of an application to be de-

ployed by specifying the required components, their relationships, as well as all arti-

facts required for the deployment, thus, the topology of the application [9]. A topolo-

gy is a directed, weighted, and possibly disconnected graph consisting of nodes repre-

senting the components of the application and edges representing the relationships

between them. Types associated with the components and relations specify the de-

sired semantics. In addition, attributes associated with components or relations repre-

sent properties, such as ports or network addresses for servers. Figure 1 illustrates a

topology describing the deployment of an application. The left-hand side shows a

stack consisting of a component of type Web-application which is hosted on a Tomcat

server of type Tomcat8.5.23 as indicated by the hostedOn relation between the two

components. The Tomcat server is hosted on a component of type Ubuntu16.04VM,

which is hosted on a component of type AmazonEC2. The web application is connect-

ed to a component of type MySQLDB5.0, which provides persistent data storage. The

attribute with key DataType and value PersonalData associated to the component

indicates the type of data stored in this database. The database is managed through a

Database Management System (DBMS) of type MySQLDBMS5.0 that is also hosted

on a component of type Ubuntu16.04VM. However, this Ubuntu VM is hosted on an

OpenStack cloud with a specific IP address, as indicated by the IP attribute associated

3

with the component. Thus, this deployment scenario describes a hybrid cloud applica-

tion deployment which is partly hosted in a private cloud (OpenStack) and partly in a

public cloud (Amazon EC2) [10]. In our scenario, the web application is a stateless

component hosted on Amazon EC2 to be scaled out automatically based on the work-

load. The web application retrieves data from the MySQL database, performs pro-

cessing tasks, and stores the results back to the database.

Fig. 1. A declarative deployment model describing the deployment of an application

Deployment models can be subject to a variety of constraints and rules which must be

adhered to. However, it is difficult for modelers to be aware of all regulations, which

quickly results in non-compliant deployment models that violate a company’s rules.

For the presented deployment model, there may be several rules that must be adhered

to. In the scenario, the database contains personal data, i.e., customer names, which is

sensitive data. A company could decide that all personal data must only be stored in a

specific private cloud. The application uses components that should receive regular

updates since old versions of software artifacts often present security risks. In our

scenario, this is relevant for the MySQL database and management system, the

Tomcat server, and the Ubuntu VMs. For example, an outdated Tomcat could expose

vulnerabilities that have been fixed by later versions, such as remote code execution.

In this paper, we present an approach to express such regulations as reusable compli-

ance rules that can be automatically checked at design time.

DataType: PersonalData

(MySQLDB5.0)

(MySQLDBMS5.0)

(Web-application)

(Tomcat8.5.23)

(Ubuntu16.04VM) (Ubuntu16.04VM)

= connectsTo

= hostedOn

IP: 192.168.4.3

(OpenStack)(AmazonEC2)

4

3 Concept to Automatically Check the Compliance of

Declarative Deployment Models

An overview of the included roles, components, and tasks of the approach to automat-

ically check the compliance of declarative deployment models is shown in Figure 2.

There, the Compliant Deployment Modeling System is divided into the two separate

areas Compliance Modeling and Deployment Modeling. The system separates

concerns, as the expertise of compliance experts and deployment experts is integrated

in an automated fashion without the need to exchange knowledge between the in-

volved roles.

The left-hand side of Figure 2 shows the involved roles, components, and tasks of

the Compliance Modeling area. Compliance experts use the Compliance Modeling

Tool for the definition and maintenance of Deployment Compliance Rules, which

formally describe and capture all regulations that must be fulfilled by deployment

models. These rules are stored persistently in a Compliance Rule Repository within

the Compliance Modeling Tool. The stored rules provide a means to detect potentially

relevant areas of deployment models and check their compliance by comparing them

to a compliant fragment. A respective method will be elaborated in the next sections.

Deployment Modeling is concerned with the definition and maintenance of de-

ployment models. The right-hand side of Figure 2 shows the involved roles, compo-

nents, and tasks of the Deployment Modeling area. Deployment experts use the De-

ployment Modeling Tool to define and maintain deployment models that are stored

persistently in a Deployment Model Repository. The deployment experts do not have

to be aware of all regulations concerning deployment models since the Deployment

Modeling Tool uses the Compliance Checker to verify the compliance of declarative

deployment models based on the stored compliance rules. This ensures that only

compliant deployment models are stored in the repository.

Fig. 2. Overview of roles, components, and tasks of the approach

Compliance Modeling Tool

Compliance Rule
Repository

Compliant Deployment Modeling System

Compliance Experts Deployment Experts

User Interface

Compliance
Checker

Deployment Modeling Tool

Deployment Model
Repository

User Interface

define and maintain
deployment models

define and maintain
Deployment Compliance

Rules

Deployment
Model

Deployment Modeling Compliance Modeling

Deployment
Compliance Rule

5

4 Metamodel and Formalization

In our previous work [11], we have conceptually introduced Deployment Compliance

Rules. In the context of this paper, we will present a formal metamodel for the defini-

tion of such Deployment Compliance Rules. For this, in Section 4.1, we first provide

a formal metamodel for declarative deployment models, which is based on topologies.

Section 4.2 provides the metamodel of Deplyoment Compliance Rules, while Section

4.3 describes the algorithm used for automated compliance checking.

Fig. 3. Metamodel of topologies

4.1 Basic Metamodel of Topologies

The metamodel of topologies, is based on the Declarative Application Management

Modeling and Notation (DMMN) introduced by Breitenbücher [12] and further ab-

stracted by Saatkamp et al. [13]. Figure 3 gives an overview of the metamodel. There,

class names contain a starting capital letter.

Let 𝑇 be the set of all Topologies, then 𝑡 ∈ 𝑇 is defined as an eight-tuple:

 𝑡 = (𝐶𝑡 , 𝑅𝑡 , 𝐶𝑇𝑡 , 𝑅𝑇𝑡 , 𝐴𝑡 , 𝑡𝑦𝑝𝑒𝑡 , 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑡 , 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑡) (1)

The elements of 𝑡 are defined as follows:

 𝐶𝑡: The set of Components in 𝑡, whereby each 𝑐𝑖 ∈ 𝐶𝑡 represents a component of

the application to be deployed.
 𝑅𝑡 ⊆ 𝐶𝑡 × 𝐶𝑡: The set of Relations in 𝑡, whereby each 𝑟𝑖 = (𝑐𝑠, 𝑐𝑡) ∈ 𝑅𝑡 represents

the relationship between two components, where 𝑐𝑠 is the source and 𝑐𝑡 is the tar-

get of the relationship.

 𝐶𝑇𝑡: The set of Component Types in 𝑡, whereby each 𝑐𝑡𝑖 ∈ 𝐶𝑇𝑡 describes the se-

mantics for the Components that have this Component Type assigned.

 𝑅𝑇𝑡: The set of Relation Types in 𝑡, whereby each 𝑟𝑡𝑡 ∈ 𝑅𝑇𝑡 describes the seman-

tics for the Relations that have this Relation Type assigned.

 𝐴𝑡 ⊆ Σ+ × Σ+ × Σ+: The set of Attributes in 𝑡, whereby each 𝑎𝑖 = (𝐼𝑑, 𝐾𝑒𝑦,
𝑉𝑎𝑙𝑢𝑒) ∈ 𝐴𝑡 describes a property of a Component or Relation with a key and a

value. Each 𝐼𝑑 must be unique within a Topology. 𝐼𝑑, 𝐾𝑒𝑦 and 𝑉𝑎𝑙𝑢𝑒 ∈ Σ+ are

typically strings.

6

 𝑡𝑦𝑝𝑒𝑡: The mapping that assigns all Relations and Components in 𝑡 to their Rela-

tion Type or Component Type. Let the set of Topology Elements 𝐸𝑡 ≔ 𝐶𝑡 ∪ 𝑅𝑡 be

the union of the set of Components and the set of Relations of 𝑡, and the set of To-

pology Element Types 𝐸𝑇𝑡 ≔ 𝐶𝑇𝑡 ∪ 𝑅𝑇𝑡 be the union of the set of Component

Types and the set of Relation Types of 𝑡. Then, the mapping 𝑡𝑦𝑝𝑒𝑡 associates each

𝑒𝑖 ∈ 𝐸𝑡 with an 𝑒𝑡𝑗 ∈ 𝐸𝑇𝑡 to provide the semantics for each Topology Element.

 𝑡𝑦𝑝𝑒𝑡: 𝐸𝑡 → 𝐸𝑇𝑡 (2)

 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑡: The mapping that assigns each Topology Element to a set of Attrib-

utes.

 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑡: 𝐸𝑡 → ℘(𝐴𝑡) (3)

 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑡: The mapping that assigns Relation Types and Component Types to

their respective supertype. Let 𝐸𝑇𝑡 be the set of Topology Element Types of 𝑡.

Then, the mapping 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑡 associates an 𝑒𝑡𝑖 ∈ 𝐸𝑇𝑡 with an 𝑒𝑡𝑗 ∈ 𝐸𝑇𝑡 with 𝑖 ≠

𝑗. This means that 𝑒𝑡𝑗 is the supertype of 𝑒𝑡𝑖.

 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑡: 𝐸𝑇𝑡 → 𝐸𝑇𝑡 (4)

Additionally, we define the mapping 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑠𝑡 that maps a Topology Element of

𝑡 to its respective Topology Element Type specified by 𝑡𝑦𝑝𝑒𝑡 combined with all tran-

sitively resolvable supertypes of 𝑡𝑦𝑝𝑒𝑡. Let 𝐸𝑡 be the set of Topology Elements and

𝐸𝑇𝑡 be the set of Topology Element Types of 𝑡.

 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑠𝑡 : 𝐸𝑡 → ℘(𝐸𝑇𝑡) (5)

4.2 Metamodel of Deployment Compliance Rules

In the following, we will provide a formal metamodel for Deployment Compliance

Rules. Additionally, we define the conditions under which such a rule is valid, detect-

ed, or satisfied. The concept of automated compliance checking based on Deployment

Compliance Rules is illustrated in Figure 4. There, the left-hand side of the figure

illustrates a declarative deployment model, the right-hand side illustrates a Deploy-

ment Compliance Rule. A Deployment Compliance Rule consists of two Topologies

called Detector and Required Structure. The Detector is used to detect areas in the

deployment model that are subject to the rule while the Required Structure is used to

verify if the rule is satisfied, i.e., if the rule is fulfilled. The rule shown in Figure 4 is

concerned with the storage of personal data in a specific private cloud as discussed in

the motivation scenario presented in Section 2. It specifies that any database that

stores personal data has to be managed by a database management system (DBMS).

7

The DBMS must in turn be hosted in a virtual machine provided by a specific Open-

Stack cloud.

Fig. 4. Concept of detection and checking of Deployment Compliance Rules in declarative

deployment models

Let 𝐶𝑅 ⊆ 𝑇 × 𝑇 be the set of all Deployment Compliance Rules, then 𝑐𝑟 ∈ 𝐶𝑅 is

defined as:

 𝑐𝑟 ∈ 𝐶𝑅 ∶= (𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟, 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒) (6)

The 𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 and 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 are provided as a Topology, i.e.,

𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 ∈ 𝑇 and 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ∈ 𝑇.

The detection and checking of Deployment Compliance Rules is based on the detec-

tion of subgraph isomorphisms that also considers the types and attributes of the To-

pology Elements that form the deployment model. Subgraph isomorphisms can be

detected by using the VF2 algorithm described by Cordella et al. [14]. We omit the

VF2 algorithm here and refer interested readers to the provided reference. The detec-

tion of relevant areas in a deployment model is formally the detection of subgraph

isomorphisms. To detect semantically compatible subgraph isomorphisms, i.e. to find

areas with the same structure, types, and attributes, we define a matching relation to

decide if a Topology Element can be matched to another Topology Element. Let 𝑒𝑖 ∈
𝐸𝑡 and 𝑒𝑗 ∈ 𝐸𝑡 with 𝑖 ≠ 𝑗 be two Topology Elements in 𝑡. Then the matching relation

≡𝑒 is defined as follows:

𝑒1 ≡𝑒 𝑒2 ∶⇔ (𝑡𝑦𝑝𝑒𝑡(𝑒1) ∈ 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑠𝑡(𝑒2)) ∧ (∀𝑎𝑖 ∈ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑡(𝑒1)∃𝑎𝑗 ∈

𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑡(𝑒2) ∶ 𝜋2(𝑎𝑖) ⇔ 𝜋2(𝑎𝑗) ∧ 𝜋3(𝑎𝑖) ⇔ 𝜋3(𝑎𝑗)) (7)

A Topology Element 𝑒1 can be matched to a Topology Element 𝑒2 if the type of 𝑒1 is

of the same type or supertype of the type of 𝑒2. Furthermore, all attributes of 𝑒1 must

also be present in 𝑒2 with equivalent 𝐾𝑒𝑦 and V𝑎𝑙𝑢𝑒. For example, the Component

with Component Type “Database” shown in Figure 4 can be matched to the Compo-

nent with Component Type “MySQLDB5.0”. The “Database” Component has an

attribute with 𝐾𝑒𝑦 = “𝐷𝑎𝑡𝑎T𝑦𝑝𝑒” and 𝑉𝑎𝑙𝑢𝑒 = “PersonalData”. The equivalent at-

tribute, i.e., same 𝐾𝑒𝑦 and 𝑉𝑎𝑙𝑢𝑒, is also assigned to the “MySQLDB5.0” Compo-

Detector Required Structure

DataType: PersonalData

(Database)

(VirtualMachine)

IP: 192.168.4.3

(OpenStack)

DataType: PersonalData

(Database)

(DBMS)

Detect

Check

Check

Check

DataType: PersonalData

(MySQLDB5.0)

(MySQLDBMS5.0)

(Web-application)

(Tomcat8.5.23)

(Ubuntu16.04VM) (Ubuntu16.04VM)

IP: 192.168.4.3

(OpenStack)(AmazonEC2)

Check

8

nent. In addition, the Component Type “Database” is a supertype of the Component

Type “MySQLDB5.0”.

Let 𝐸 be the set of all Topology Elements. Then 𝑚 ∈ 𝑀, 𝑚 ⊆ 𝐸 × 𝐸 is defined as a

bijective mapping that maps a Topology Element 𝑒𝑖 ∈ 𝐸 to another Topology Element

𝑒𝑗 ∈ 𝐸 with 𝑖 ≠ 𝑗:

 𝑀 ∶= ℘(𝐸 × 𝐸) \ ∅ (8)

A matching mapping is a mapping between two Topologies that preserves the struc-

ture and semantics of the Topologies and the individual Topology Elements by also

considering the matching relation ≡𝑒 . A mapping 𝑚 ∈ 𝑀 is a matching mapping from

𝑡1 ∈ 𝑇 to 𝑡2 ∈ 𝑇 if 𝑡1, 𝑡2, and 𝑚 fulfill the relation 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 ⊆ 𝑇 × 𝑇 × 𝑀:

 (𝑡1, 𝑡2, 𝑚1) ∈ 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 ∶⇔ (𝑚1 ⊆ 𝐸𝑡1
× 𝐸𝑡2

) ∧ (∀𝑐𝑖 ∈ 𝐶𝑡1
∃! 𝑐𝑗 ∈ 𝐶𝑡2

: (𝑐𝑖 , 𝑐𝑗) ∈

𝑚1 ∧ 𝑐𝑖 ≡𝑒 𝑐𝑗) ∧ (∀𝑟𝑘 ∈ 𝑅𝑡1
∃! 𝑟𝑙 ∈ 𝑅𝑡2

∶ (𝑟𝑘 , 𝑟𝑙) ∈ 𝑚1 ∧ 𝑟𝑘 ≡𝑒 𝑟𝑙 ∧

(𝜋1(𝑟𝑘), 𝜋1(𝑟𝑙)) ∈ 𝑚1 ∧ (𝜋2(𝑟𝑘), 𝜋2(𝑟𝑙)) ∈ 𝑚1) (9)

The mapping 𝑚1 represents a subgraph isomorphism from 𝑡1 to 𝑡2 that also considers

the matching relation ≡𝑒. Each Component in 𝑡1 is mapped to exactly one matching

Component in 𝑡2, to which no other Component in 𝑡1 has been mapped to. Analo-

gously each Relation in 𝑡1 is mapped to exactly one matching Relation in 𝑡2 with the

addition that the relations sources and targets have also been mapped to each other

and therefore the mapping preserves the structure of the topologies. For example, in

Figure 4, the Required Structure can be matched completely to the right-hand stack of

the Topology since all indicated component pairs fulfill the matching relation ≡𝑒 and

both stacks are structurally identical.

A Deployment Compliance Rule 𝑐𝑟1 is valid if there is exactly one matching map-

ping from the Detector to the Required Structure and the following holds:

 ∃! (𝜋1(𝑐𝑟1), 𝜋2(𝑐𝑟1), 𝑚) ∈ 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 (10)

This ensures that each matching mapping found for the Required Structure corre-

sponds to a matching mapping found for the Detector.

A Deployment Compliance Rule 𝑐𝑟1 is detected in a Topology 𝑡1 if there is at least

one matching mapping from the rule’s Detector 𝜋1(𝑐𝑟1) to the Topology:

 ∃(𝜋1(𝑐𝑟1), 𝑡1, 𝑚) ∈ 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 (11)

For a Deployment Compliance Rule 𝑐𝑟1 to be satisfied for a Topology 𝑡1, there has to

be exactly one corresponding matching mapping from the Required Structure

𝜋2(𝑐𝑟1) 𝑡𝑜 𝑡1 for each matching mapping form the Detector 𝜋1(𝑐𝑟1) 𝑡𝑜 𝑡1:

∀(𝜋1(𝑐𝑟1), 𝑡1, 𝑚𝑖) ∈ 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 ∃! (𝜋2(𝑐𝑟1), 𝑡1, 𝑚𝑗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 ∶ (∀𝑒𝑘 ∈ 𝜋2(𝑚𝑖) ∶

𝑒𝑘 ∈ 𝜋2(𝑚𝑗)) (12)

9

Each area that has been found in 𝑡1 by mapping the Detector to 𝑡1 also satisfies the

Required Structure and therefore, the Deployment Compliance Rule 𝑐𝑟1 is satisfied,

i.e., the rule is fulfilled. For example, the rule in Figure 4 is detected in the declarative

deployment model as there is a matching mapping from the rule’s Detector to the

Topology of the deployment model. Since there exists exactly one corresponding

matching mapping from the Required Structure to the Topology for each matching

mapping from the Detector to the Topology, the rule is also satisfied.

4.3 Compliance Checking Algorithm

Based on the presented metamodel, an algorithm is proposed to automatically check a

Topology for a given Deployment Compliance Rule. This algorithm is described in

Algorithm 1 in pseudocode. It is executed once for every Deployment Compliance

Rule that is defined for a Topology. The algorithm uses a Deployment Compliance

Rule and a Topology as inputs. The result is a set containing matching mappings of

the Detector to the Topology to indicate rule violations. If the set is empty, the given

Deployment Compliance Rule is satisfied for that Topology. In the case, that a De-

ployment Compliance Rule is not detected for a Topology, the algorithm also returns

an empty set indicating that the rule is satisfied. The given Topology is analyzed for

matches to both the Detector (line 3) and the Required Structure. Subsequent, all

mappings found for the Detector are checked for a corresponding mapping for the

Required Structure (line 5). If none is found, the Detector’s mapping is added to the

result set 𝑅 (line 6). At the end of the algorithm, 𝑅𝑒𝑠𝑢𝑙𝑡 contains mappings to areas

where the given Deployment Compliance Rule is violated. If 𝑅𝑒𝑠𝑢𝑙𝑡 is empty, the

rule is satisfied for the given Topology.

Algorithm 1. Pseudocode to identify Deployment Compliance Rule violations in a Topology

10

5 Prototypical Implementation

The prototype described in this section implements the metamodel for Topologies and

Deployment Compliance Rules as well as the algorithm introduced in Section 4. Fur-

thermore, the prototype enables compliance experts and deployment experts to model

Deployment Compliance Rules, Topologies, Component Types, and Relation Types

with a graphical user interface while also providing the functionality to check the

Topologies for compliance.

The prototype consists of a graphical user interface, a compliance checker, a model

repository, and an application programmer interface (API). In our prototype, we com-

bine the Compliance Checker, the Compliance Modeling Tool, and the Deployment

Modeling Tool introduced in Section 3 to one component, the Modeling Tool. The

graphical user interface enables modelers to create and update deployment models as

well as Deployment Compliance Rules. The user interface also enables the definition

of reusable component and relation types and their hierarchical structure. The compli-

ance checker provides the functionality to validate Deployment Compliance Rules

and to check the compliance of deployment models. For that purpose, the compliance

checker has access to the model repository. The model repository is a combination of

the Compliance Rule Repository and the Deployment Rule Repository introduced in

Section 3. It is used to persistently store deployment models, Deployment Compliance

Rules, component types, and relation types. The API of the modeling tool provides

external access to the functionality of the modeling tool, such as the storing and

checking of deployment models.

Since our prototype is based on TOSCA and the OpenTOSCA ecosystem [15], we

briefly introduce the TOSCA standard and provide a mapping from the formal meta-

model to TOSCA. TOSCA is an OASIS standard that enables the specification of

cloud applications by defining their structure and their orchestration. We only intro-

duce constructs in TOSCA that are necessary for our method and refer interested

readers to the specification [16], the simple profile [17], and the primer [18]. A

TOSCA Topology Template represents the structure of an application. It specifies all

components needed for the deployment of an application as well as the relationships

between them. The Topology Template is a directed graph with typed nodes and

weighted edges and corresponds to a Topology defined in the metamodel. Node Tem-

plates and Relationship Templates represent the Components and Relations of the

metamodel. Component Types and Relation Types can be mapped to Node Types and

Relationship Types of TOSCA. The attributes defined by the metamodel can be

mapped to Properties. In TOSCA, Node Types can be specified with a Proper-

tiesDefinition that defines the structure of possible properties for the Node Templates.

The actual attribute values are specified by Node Templates. Since TOSCA allows

extensions to the specification, we introduce the new element ComplianceRule that

has exactly two Topology Templates as elements: Detector and RequiredStructure.

Therefore, we have a complete mapping from the metamodel to TOSCA.

The prototypical implementation extends Winery [19]1, which is a graphical mod-

eling tool for modeling and managing applications using TOSCA. Winery already

provides a mechanism for persistent storage of TOSCA elements which was extended

1 http://eclipse.github.io/winery

11

to also store Deployment Compliance Rules. Additionally, we added the new compo-

nent Compliance Checker to Winery which realizes the concepts presented in this

paper. To associate TOSCA deployment models with Deployment Compliance Rules,

we use the concept of namespaces, i.e., all Topology Templates must be checked for

all Deployment Compliance Rules that are in the same namespace. Therefore, each

rule defined for a certain namespace automatically applies to all Topology Templates

defined in that namespace.

6 Related Work

In this section, we discuss and compare works that are related to our method. Soft-

ware architecture is often described with 5 views first described by Kruchten [20].

However, there can still be other views on the architecture of a software system, such

as the view on the deployment model of a system. Software architecture erosion [21]

describes the deviation of actual software artifacts from their architecture that mani-

fests over time. It has been addressed with various methods such as model-driven

approaches, through dependency analysis, or through checking mechanisms, such as

the reflexion models approach by Murphy et al. [22]. They describe high-level mod-

els, i.e. boxes and arrows that are used by software architects to describe and reason

about the architecture of a software artifact. To test the compliance with the architec-

ture, they generate a low-level model from existing artifacts through the use of code-

analysis and compare the two models to find convergences, divergences, and absenc-

es, e.g., correct, additional, and missing connections between components. Koschke

and Simon extended this approach by introducing hierarchical reflexion models [23].

The method uses an architecture model to express implicit requirements and con-

straints for the resulting software artifact. With our method, we provide reusable

rules, that can be applied to deployment models in general. Other approaches to con-

trol software architectures include Architecture Description Languages [24] to de-

scribe architectures or Architecture Constraint Languages [25] to express constraints.

Deiters et al. [26] introduce Rule-Based Architectural Compliance Checks for Enter-

prise Architecture Management that are expressed as queries. However, these

approaches for describing constraints to check the compliance of software artifacts to

their intended architecture are application specific and on the level of artifacts. With

our method, we enable to specify compliance rules on the level of deployment models

in a very generic manner. Hence, they can be used to check the deployment models of

different applications.

There are many works in the area of business process verification to ensure that

business process models adhere to regulations. Due to the great number of works we

refer interested readers to a survey on business process compliance by Fellmann and

Zasada [27]. Schleicher et al. [28] introduce an approach to express control-flow and

data-related compliance rules for business processes while Koetter et al. [29] intro-

duce a generic Compliance Descriptor that links compliance rules to their source.

Tran et al. [30] introduce an approach that enables compliance modeling for service-

oriented systems through the use of domain-specific languages to model compliance

for different areas. Liu et al. [31] propose to separate the modeling of business pro-

12

cesses from the modeling of compliance rules. In their method, they use the Business

Process Execution Language (BPEL) [32] as a model for business processes and the

Business Property Specification Language (BPSL) [33] to specify their compliance

rules. They use established model checkers based on linear temporal logic to verify

process models with their rules. These compliance rules deal mostly with temporal

aspects in the execution of business processes while our method provides a compli-

ance checking mechanism for deployment models that can be used to address issues,

such as outdated software versions or structural properties, i.e., how components may

be hosted under certain circumstances.

7 Conclusion & Future Work

In this paper, we presented Deployment Compliance Rules that enable to describe

restrictions, constraints, and requirements for declarative deployment models in a

reusable manner. We provided a formalized model for Deployment Compliance Rules

and an algorithm to automatically check if a deployment model violates a given rule.

Based on this, we presented an approach to ensure that created or updated deployment

models are compliant to the current set of Deployment Compliance Rules. Further,

the approach allows separating the definition of Deployment Compliance Rules from

the creation and maintenance of deployment models. A validation of the approach is

provided via the implementation of a TOSCA-based prototype although the provided

formalization enables to apply the approach to any graph-based and declarative de-

ployment model language. In the future, we plan to extend the approach to also verify

the consistency of the rule repository through detection of conflicting rules within the

repository.

Acknowledgments. This work was partially funded by the German Research Founda-

tion (DFG) project ADDCompliance (636503) and the BMWi project SmartOrchestra

(01MD16001F).

References

1. General Data Protection Regulation, https://eur-lex.europa.eu/legal-

content/EN/TXT/?qid=1532348683434&uri=CELEX:02016R0679-20160504.

2. ISO/IEC 27018:2014 Code of practice for protection of personally identifiable information

(PII) in public clouds acting as PII processors. International Organization for Standardiza-

tion (2014).

3. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Wettinger, J.: Integrated Cloud Appli-

cation Provisioning: Interconnecting Service-Centric and Script-Centric Management

Technologies. In: On the Move to Meaningful Internet Systems: OTM 2013 Conferences

(CoopIS 2013). pp. 130–148. Springer (2013).

4. Oppenheimer, D., Ganapathi, A., Patterson, D.A.: Why do internet services fail, and what

can be done about it? In: Proceedings of the 4th Conference on USENIX Symposium on In-

ternet Technologies and Systems (USITS 2003). USENIX (2003).

13

5. Opscode, Inc.: Chef Official Site. (2017).

6. Canonical Group Ltd(GB): Juju Official Site. (2017).

7. Mohaan, M., Raithatha, R.: Learning Ansible. Packt Publishing (2014).

8. Kubernetes, https://kubernetes.io/.

9. Breitenbücher, U., Képes, K., Frank, L., Wurster, M.: Declarative vs. Imperative: How to

Model the Automated Deployment of IoT Applications? (2017).

10. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing Pat-

terns: Fundamentals to Design, Build, and Manage Cloud Applications. Springer (2014).

11. Fischer, M.P., Breitenbücher, U., Képes, K., Leymann, F.: Towards an Approach for Au-

tomatically Checking Compliance Rules in Deployment Models. In: Proceedings of The

Eleventh International Conference on Emerging Security Information, Systems and Tech-

nologies (SECURWARE). pp. 150–153. Xpert Publishing Services (XPS) (2017).

12. Breitenbücher, U.: Eine musterbasierte Methode zur Automatisierung des Anwendungsma-

nagements, (2016).

13. Saatkamp, K., Breitenbücher, U., Kopp, O., Leymann, F.: Topology Splitting and Matching

for Multi-Cloud Deployments. In: Proceedings of the 7th International Conference on

Cloud Computing and Services Science (CLOSER 2017). pp. 247–258. SciTePress (2017).

14. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub) graph isomorphism algorithm

for matching large graphs. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence. 26, 1367–1372 (2004).

15. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., Wagner, S.:

OpenTOSCA - A Runtime for TOSCA-based Cloud Applications. In: Proceedings of the

11th International Conference on Service-Oriented Computing (ICSOC 2013). pp. 692–695.

Springer (2013).

16. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA) Ver-

sion 1.0. Organization for the Advancement of Structured Information Standards (OASIS)

(2013).

17. OASIS: TOSCA Simple Profile in YAML Version 1.0. Organization for the Advancement

of Structured Information Standards (OASIS) (2015).

18. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA) Primer

Version 1.0. Organization for the Advancement of Structured Information Standards

(OASIS) (2013).

19. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – A Modeling Tool for

TOSCA-based Cloud Applications. In: Proceedings of the 11th International Conference on

Service-Oriented Computing (ICSOC 2013). pp. 700–704. Springer (2013).

20. Kruchten, P.B.: The 4+1 view model of architecture. IEEE software. 12, 42–50 (1995).

21. De Silva, L., Balasubramaniam, D.: Controlling software architecture erosion: A survey.

Journal of Systems and Software. 85, 132–151 (2012).

22. Murphy, G.C., Notkin, D., Sullivan, K.J.: Software reflexion models: Bridging the gap

between design and implementation. IEEE Transactions on Software Engineering. (2001).

23. Koschke, R., Simon, D.: Hierarchical Reflexion Models. In: WCRE. pp. 186–208 (2003).

24. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software

architecture description languages. IEEE Transactions on software engineering. 26, 70–93

(2000).

14

25. Tibermacine, C., Fleurquin, R., Sadou, S.: A family of languages for architecture constraint

specification. Journal of Systems and Software. 83, 815–831 (2010).

26. Deiters, C., Dohrmann, P., Herold, S., Rausch, A.: Rule-based architectural compliance

checks for enterprise architecture management. In: Enterprise Distributed Object Compu-

ting Conference, 2009. EDOC’09. IEEE International. pp. 183–192. IEEE (2009).

27. Fellmann, M., Zasada, A.: State-of-the-art of business process compliance approaches.

(2014).

28. Schleicher, D., Grohe, S., Leymann, F., Schneider, P., Schumm, D., Wolf, T.: An approach

to combine data-related and control-flow-related compliance rules. In: Service-Oriented

Computing and Applications (SOCA), 2011 IEEE International Conference on. pp. 1–8.

IEEE (2011).

29. Koetter, F., Kochanowski, M., Weisbecker, A., Fehling, C., Leymann, F.: Integrating com-

pliance requirements across business and it. In: Enterprise Distributed Object Computing

Conference (EDOC), 2014 IEEE 18th International. pp. 218–225. IEEE (2014).

30. Tran, H., Zdun, U., Oberortner, E., Mulo, E., Dustdar, S., others: Compliance in service-

oriented architectures: A model-driven and view-based approach. Information and Software

Technology. 54, 531–552 (2012).

31. Liu, Y., Muller, S., Xu, K.: A static compliance-checking framework for business process

models. IBM Systems Journal. 46, 335–361 (2007).

32. OASIS: Web Services Business Process Execution Language (WS-BPEL) Version 2.0.

Organization for the Advancement of Structured Information Standards (OASIS) (2007).

33. Xu, K., Liu, Y., Wu, C.: Bpsl modeler–visual notation language for intuitive business prop-

erty reasoning. Electronic Notes in Theoretical Computer Science. 211, 211–220 (2008).

