

Page 1 of 19

The Nature of Pattern Languages

Falkenthal, Michael, Institute of Architecture of Application Systems, University of Stuttgart,
Universitätsstraße 38, 70569 Stuttgart, Germany, falkenthal@iaas.uni-stuttgart.de

Breitenbücher, Uwe, Institute of Architecture of Application Systems, University of Stuttgart,
Universitätsstraße 38, 70569 Stuttgart, Germany, breitenbuecher@iaas.uni-stuttgart.de

Leymann, Frank, Institute of Architecture of Application Systems, University of Stuttgart,
Universitätsstraße 38, 70569 Stuttgart, Germany, leymann@iaas.uni-stuttgart.de

Abstract

Patterns and pattern languages have emerged in many disciplines to capture deep domain
expertise and knowledge about solving frequently recurring problems by proven solutions.
Thereby, patterns capture the essence of many implementations along with descriptions about
how to apply them in combination with other patterns, which manifests in pattern languages.

Although pattern languages are a powerful means to preserve and reuse expertise, a clear
definition is missing about what a pattern language actually is. Pattern languages are primarily
described as being networks of patterns which does not provide a clear and unambiguous
foundation to reveal their nature. This lack of rational about the structure behind pattern
languages hinders reasoning about them to grasp what connections between patterns are and
how the interplay of patterns from different pattern languages can be authored and managed.

Therefore, we present a formal notion of pattern languages as node-coloured and edge-
weighted directed multigraphs. We show how this model can be used to sharpen Alexander’s
idea of pattern languages. Thereby, we illustrate how pattern languages can be authored and
adapted to establish living networks of patterns. We further introduce that patterns are specific
renderings of such a graph depending on actual problems and use cases at hand. This
manifests in the fact that our graph concept extracts relationships between patterns from the
patterns themselves, which enables easily adaptable networks of patterns. This can be
leveraged as the formal meta-model for developing tool support for authoring and sharing
pattern languages among communities via IT-based systems.

Keywords: Pattern Language; Formalization; Pattern Language Composition; Pattern Graph

ISBN (tba)
www.purplsoc.org
Creative Commons Licence CC-BY-SA

Page 2 of 19

1. Introduction
The comprehensive documentation and efficient reusability of knowledge has been one of the
most important challenges for many decades. In 1977, Christopher Alexander and his
colleagues published their pioneering idea of pattern languages, which are linked documents
describing proven solutions for problems that frequently occur in certain contexts (Alexander,
Ishikawa, & Silverstein, 1977). Originally their idea of pattern languages was born in the
domain of architecture and urban design with the aim of supporting architects in creating well-
designed buildings and landscapes. As a proof of the brilliant nature of this idea, we can see
the many pattern languages that have emerged in the meantime: Pattern languages can be
found in various domains such as, for example, education, systemic transformations, and
information technology. They range from languages that capture the essence of learning and
teaching (Iba & Miyake, 2010), to languages that provide compelling guidance at emergency
situations such as earthquakes (Furukawazono et al., 2013). Also in technical domains such
as information technology, pattern languages have been successfully authored and applied,
e.g., for designing cloud applications (Fehling, Leymann, Retter, Schupeck, & Arbitter, 2014)
or to integrate different systems of an enterprise (Hohpe & Woolf, 2004). Moreover, besides
the documentation of proven solutions, pattern languages are also often used to foster the
comprehensibility of domains by acting as a domain-specific jargon or as lingua franca.

Pattern languages consist of patterns that are linked with each other. A pattern is a human
readable document that describes a general solution principle to solve a frequently recurring
problem in a certain context. The solution a pattern describes is typically documented in an
abstract manner in order to enable solving many concrete instances of the conceptual problem.
For example, Christopher Alexander and his colleagues documented the general principles
about how to build well-designed Farmhouse Kitchens in the form of a pattern (Alexander et
al., 1977). This pattern is documented abstractly enough to be applied to many concrete
buildings, but nevertheless describes all the key solution principles and best practices the
authors gained during their many years of architecting houses. Thus, other architects may take
such a pattern to get an idea of a proven conceptual solution, which they can refine to solve
their concrete problem at hand. Therefore, patterns typically provide a certain degree of
freedom for applying the solution principles to a vast amount of concrete instances of the
conceptual problems (Alexander et al., 1977).

To unfold the actual generativity, patterns are typically organized as pattern languages, which
provide a comprehensive means to connect patterns for solving different problems that often
occur together. Organized as pattern language, patterns are not just isolated junks of proven
solution knowledge but support the navigation through the language along relevant problems
that may occur together with the original problem that needs to be solved (Zdun, 2007). For
example, if a farmhouse kitchen needs to be designed, typically also the cooking layout must
be considered. By documenting related patterns, pattern languages form a network of patterns
that reveals generative combinability of an entire set of patterns, which are typically applied in
combination (Alexander et al., 1977; Alexander, 1979; Buschmann, Henney, & Schmidt, 2007).
Based on this concept, readers can navigate through the pattern language and select a pattern
that solves a particular part of the problem at hand and then navigate to the next patterns along
references from the formerly selected one.

Page 3 of 19

Since people constantly create new knowledge, pattern languages typically evolve over time
and increase in their size. Therefore, a pattern language cannot be seen as a static result of
documenting all important knowledge about a certain domain, but is rather subject to constant
change – it’s a living network of patterns. Moreover, due to this ongoing process of
documenting proven solutions in the form of new patterns, also interrelations between different
pattern languages become more and more important: Two pattern languages, which originally
had different areas of application, may converge through new related patterns that are part of
the two languages. Therefore, also the dependencies between pattern languages constantly
change and must be documented to support users in solving all related problems.

However, especially this key concept of living pattern networks is ironically in contradiction with
the typical way pattern languages are documented: Many languages are published in books,
papers, or journals, which are static documents that are hard to change. Thus, these forms of
documentation only provide static snapshots of proven solutions at a certain point in time, but
do not reflect the liveliness of knowledge in general. To tackle these issues, many authors
publish their pattern languages also on webpages that allow for constant changes.
Unfortunately, also these webpages often consider only one single pattern language and do
not document the dependencies to other languages. Therefore, our overall vision is to support
realizing Christopher Alexander’s main idea of living pattern networks by information
technology. Pattern authors need intuitive means to publish, adapt, and interrelate pattern
languages via globally accessible media such as webpages that are linked with each other. To
realize this vision, a clear definition of the concept of a pattern language is required.

However, the definition given by Alexander is a summarization of characteristics in natural
language: Although he gives a clear mathematical definition of the decomposition of problems
into diagrams of forces based on the mathematical rigor of set theory in Notes on the Synthesis
of Form (Alexander, 1964), there is no such formal definition of a pattern language.

Therefore, in this paper, we translate the ideas of Christopher Alexander and his colleagues,
which have been documented only in natural language, into a formal mathematical definition
of pattern languages as directed node-coloured and edge-weighted directed multigraphs. This
reveals the formal nature of pattern languages and provides the basis for further mathematical
considerations that are required to realize our vision of globally accessible, living pattern
networks based on information technology. We further introduce that patterns are specific
renderings of such formal multigraphs depending on actual problems and use cases at hand.
This manifests in the fact that our multigraph concept extracts relationships between patterns
from the patterns themselves, which enables easily adaptable networks of patterns. In the
following, we explain in detail and step by step how the characteristics of pattern languages as
described by Alexander in natural text can be translated into formal mathematical definitions.
Moreover, we show how our formal definition can be used to interrelate different pattern
languages by the original concepts described in The Timeless Way of Building.

The remainder of this paper is structured as following: In Section 2 we reveal the nature of
pattern languages by developing a formal model stepwise on the basis of the fundamental
theory of graphs. In Section 3 we discuss related work, which our approach is built on. We
conclude this work in Section 4 by pointing out future research topics we are going to tackle.

Page 4 of 19

2. Revealing the Nature of Pattern Languages
Alexander (1964) clearly describes in Notes on the Synthesis of Form, the preceding work of
A Pattern Language (Alexander et al., 1977), how complex design problems can be
decomposed into subproblems that are more easily to grasp and solve. Thereby, he provides
a fundamental formal notion of design as the process of remedying identified misfits. He
specifies his approach with mathematical rigor by means of set theory and the analysis of
correlations between misfits. This is especially remarkable because he translates thoughts,
concepts, and an overall method into a mathematical model, which allows to logically reason
about the presented approach. Thus, the concept of patterns he introduced in the succeeding
works goes back to this clearly described model. The main aspect about patterns is that they
typically are not isolated but are organized into pattern languages that unfold generative power
by the combined expressiveness of all interrelated patterns. However, the model of a pattern
language as described in A Pattern Language (Alexander et al., 1977) and The Timeless Way
of Building (Alexander, 1979) is pretty much a summary of qualitative statements without the
preciseness used for the fundamental concepts patterns build on. In the following, we discuss
the characteristics of pattern languages by descriptive quotes from both mentioned works. We
incorporate additional characteristics of pattern languages that have arisen in the domain of
IT, where pattern languages are widely used. These identified characteristics describe the
concepts behind pattern languages, which we then translate stepwise into an emerging
general formal, mathematical meta-model of pattern languages.

2.1. A Network of Patterns
The general understanding of what a pattern language is can be ascribed to the fact that
patterns are not just isolated proven solutions for common non-trivial problems. Alexander
refers to this by pointing out the collaborative character of patterns. In a Timeless Way of
Building he states that “the structure of a pattern language is created by the fact that individual
patterns are not isolated” (Alexander, 1979, p. 311). Thus, there exist inherent relations
between different patterns according to the things they represent. Moreover, he describes this
structural characteristic of a pattern language to be a network of patterns by the quotes “[a]
pattern language has the structure of a network” (Alexander et al., 1977, p. xviii) and “[t]he
structure of the language is created by the network of connections among individual patterns
[…]” (Alexander, 1979, p. 305). Based on the idea of a network of patterns, he introduces the
concept of completeness of patterns and, thereby, substantiates the inherent relationships
between patterns even more. This is because a pattern does not provide a single finalized
solution, but rather the actual solution is completed by other patterns it is related to. He
underpins this by the statements “[e]ach pattern sits at the center of a network of connections
which connect it to certain other patterns that help to complete it. […] And it is the network of
these connections between patterns which creates the language” (Alexander, 1979, p. 313).
Moreover, Alexander states that “[i]t is, indeed, the structure of the network which makes sense
of individual patterns, because it anchors them, and helps make them complete.” (Alexander,
1979, p. 315). Thus, he raises the relationships between patterns to the backbone and core of
a pattern language.

The relations between the patterns, i.e., the paths through the network of patterns restricts the
combinability of patterns to only suitable and relevant ones. Hence, we can grasp the
connections between patterns and so the paths through the network of patterns as necessary
constraints that eliminate variations of pattern combinations that do not lead to meaningful
good solutions. Although, at a first glimpse this seems to limit a pattern language exactly these

Page 5 of 19

restrictions increase the usability and expressiveness of a pattern language immensely to
elaborate good solutions. Alexander points this out by the following statement:

“At this stage, we have defined the concept of a pattern language clearly. We know that it is a
finite system of rules which a person can use to generate an infinite variety of different buildings
– all members of a family – and that the use of language will allow the people of a village or a
town to generate exactly that balance of uniformity and variety which brings a place to life.”
(Alexander, 1979, p. 191)

Figure 1: Network of Patterns as a Graph of Patterns consisting of Nodes and Edges

From this statement we can derive that a pattern language consists of a finite set of patterns
and connections between patterns due to the fact that it is a “finite system of rules” (Alexander,
1979, p. 191). Thus, if we draw a figure based on the above identified characteristics we result
in a mathematical structure that is called a graph. Such a graph is exemplarily depicted in
Figure 1. Therein the patterns PA – PJ are the nodes of the graph and the connections between
patterns e1 – e10 the edges of the graph. Therefore, we refer to a pattern language as being a
pattern graph because a graph inherently consists of nodes and edges, which provide us key
entities to form networks of patterns as described by Alexander. Based on this interpretation
of a pattern language, we provide the following definition of its basic structure.

Definition 1 (Pattern Graph): We define that a pattern language is a pattern graph 𝒢 specified
as a tuple 𝒢 = (𝑁, 𝐸). The finite non-empty set 𝑁 is the set of all patterns of the pattern
language and the set 𝐸 is the set of all edges connecting patterns to form an overall network.
Sequences of patterns connected by edges form so-called paths through the graph indicating
combinations of patterns that are relevant.

We define

𝒢 = (𝑁, 𝐸)

with

(i) 𝑁 is a set of patterns
(ii) 𝑐𝑎𝑟𝑑(𝑁) ∈ ℕ
(iii) 𝐸 ⊆ ℘ 𝑁
(iv) ∀𝑒 ∈ 𝐸: 𝑐𝑎𝑟𝑑 𝑒 = 2

PF

PE PG

PA

PC

PB

PI

PD

PH

PJ

e1
e3

e6e4

e7

e8
e9 e10

e2

e5

Page 6 of 19

(v) 𝑛5, 𝑛6, …	 , 𝑛9 ∈ 𝑁 is a path from 𝑛5	𝑡𝑜	𝑛9:⟺ 𝑛5, 𝑛6 , 𝑛6, 𝑛= , …	 , 𝑛9>5, 𝑛9 ∈ 𝐸
(vi) A path 𝑛5, 𝑛6, …	 , 𝑛9 ∈ 𝑁 is a simple path :⟺ ∀2 ≤ 𝑖, 𝑗 ≤ 𝑘 − 1: 𝑛E ≠ 𝑛G	∎

By this definition we enable the analysis of pattern languages by mathematics and well-known
algorithms operating on graphs. For example, by this definition we can explain the concept of
adjacency of patterns, which plays a core role in Alexander’s theory, because it is the network
a pattern is centered in that helps to develop complete solutions of the pattern. For this reason,
if we want to investigate how to complete a pattern, we now have a formalism that explicitly
defines which patterns are adjacent to each other, namely by the edges of the graph that
connect them. Referring to the abstract pattern language depicted in Figure 1 we can easily
determine that the patterns PA, PB, PE, PF, PG are required to complete pattern PC because PC
resides in the center of the network connecting all these patterns via edges.

Further, if we want to extract parts of a pattern language which are relevant to solve a concrete
problem at hand, we can determine them by searching for simple paths between patterns we
are interested in. For instance, if we require the patterns PA and PJ to be part of a solution to a
problem at hand, then we can determine the path PA, PC, PG, PJ that contains relevant patterns
in this case. As a consequence, the selected patterns can now be used to investigate all
patterns they are connected with in order to complete them. The problem of determining paths
through a graph is well investigated and, thus, further motivates the understanding of pattern
languages by a mathematical formalism because many mathematical approaches dealing with
graphs can be used to support the application of pattern languages (Schöning, 2001).

2.2. Organizing the Network of Patterns
In the following, we further refine our meta-model of pattern languages by considering more
statements by Alexander. First of all, we incorporate one important aspect which can be
derived from the characteristics of patterns. According to Alexander, patterns step in to a
process of creating things starting from larger structures to more and more fine-grained
structures. Thus, as part of a pattern language each pattern creates so-called morphological
structures, which are then filled in by other patterns. Thereby, when creating a solution from a
pattern it is important to also consider the structure, which the pattern is contained in because
it influences respectively restricts the freedom of elaborating the solution. The solution is
constrained by the other patterns and their solutions with which it has to form an overall whole.
Alexander emphasizes this need by the phrasings:

“[…] when you build a thing you can not merely build that thing in isolation, but must also repair
the world around it, and within it, so that the larger world at that one place becomes more
coherent, and more whole; and the thing which you make takes its place in the web of nature
as you make it.” (Alexander et al., 1977, p. xiii)

“Each pattern then, depends both on the smaller patterns it contains, and on the larger patterns
within which it is contained.” (Alexander, 1979, p. 313)

“And you see then what a beautiful structure a pattern language has. Each pattern is itself a
part of some larger pattern [...] And each pattern itself gives birth to smaller patterns [...]”
(Alexander, 1979, p. 322)

As a result, the ordering of the network of patterns is based on the fact that there exist patterns
that are larger than other patterns and, vice versa, there are patterns that are smaller than
other ones. However, the concept of morphological structures, which arose from the domain

Page 7 of 19

of architecture as discussed above can be generalized if we also consider the application of
the pattern approach in other domains. For instance, in the domain of information technology
many pattern languages have been successfully authored and are widely used. There are
pattern languages for software architecture such as the cloud computing patterns by Fehling
et al. (2014), the enterprise integration patterns by Hohpe and Woolf (2004) but also currently
emerging research fields such as the internet of things (Reinfurt, Breitenbücher, Falkenthal,
Leymann, & Riegg, 2016, 2017) are tackled with the pattern approach, to name just a few.
Interestingly, the concept of morphological structures is not equally present in these pattern
languages, though we can also discover the concept of ordering of patterns in the network.
Thereby, patterns allow to create designs, software artifacts, or components that can be
combined and refined with solutions provided by other patterns. Buschmann et al. (2007) call
this characteristics Sustainable Progression and Tight Integration and explain it by the quotes:
“Sustainable progression. Pattern languages must connect their patterns appropriately to
ensure that challenges are addressed in the right order, which is essential to creating
sustainable designs incrementally and via stable intermediate steps […]” (Buschmann et al.,
2007, p. 269) and “Tight integration. Pattern languages must integrate their constituent
patterns tightly, based on the roles each pattern introduces and the inter-relationships between
them.” (Buschmann et al., 2007, p. 270). Hence, we can deduce that the relations between
patterns only have proper meaning if we give them direction, so that we can express that one
pattern is larger than other patterns or that one pattern has to be applied earlier in the process
of design than others. This is depicted in Figure 2 as an example of larger and smaller patterns.

Figure 2: Pattern Language as Directed Graph

Therefore, these characteristics of patterns, be it their effect on morphological structures or on
the process of creating artifacts in the domain of information technology, have explicit impact
on the network of patterns and, thus, on the pattern graph. This means that the fundamental
organization of patterns in a pattern language needs to be reflected by more specific
relationships in the structure of the pattern graph. Thus, we refine 𝐸 to be the set of ordered
pairs of patterns. This refines 𝒢 to be a directed graph (digraph). Consequently, we can express
the semantics of a relationship between two patterns by defining that they are connected by
an edge, which connects a larger pattern with a smaller pattern, i.e., the edge between two
patterns directs from the larger pattern to the smaller one. Directed edges are commonly drawn
as arrows, thus, a directed edge between two patterns is drawn as an arrow whose tail is
connected to the larger pattern and whose head is connected to the smaller pattern. Based on

PF

PE PG

PA

PC

PB

PI

PD

PH

PJ

e1 e2
e3

e6e4

e7

e5

e8
e9 e10

larger	patterns

smaller	patterns

ordering	according	to	
morphological	structures

Page 8 of 19

this we can refine our model of a pattern graph to be an Alexandrian pattern graph capturing
the expressiveness elucidated in the original pattern language theory by Alexander. Of course
this differently applies to domains like information technology where the direction provides
other semantics because there are no morphological structures present. Therefore, we first
define the Alexandrian pattern graph covering morphological structures and afterwards relax
this formalism towards a graph that contains arbitrary semantics on edges between patterns.

Definition 2 (Alexandrian Pattern Graph): We define an Alexandrian Pattern Graph as a
directed acyclic graph (DAC) by refining the set of edges 𝐸 to contain ordered pairs of nodes
expressing the direction from larger to smaller patterns.

We define

𝒢 = (𝑁, 𝐸)

with

(i) 𝑁 is a set of patterns
(ii) 𝑐𝑎𝑟𝑑(𝑁) ∈ ℕ
(iii) 𝐸 ⊆ 𝑁×𝑁
(iv) 𝑒 ∈ 𝐸, then 𝜋5(𝑒) is the starting point or tail of an edge, respectively, the arrow

connecting two patterns and 𝜋6(𝑒) the endpoint or head
(v) ∀𝑒 ∈ 𝐸: 𝜋5(𝑒) ≠ 𝜋6(𝑒)
(vi) 𝑛5, 𝑛6, …	 , 𝑛9 ∈ 𝑁 is a path from 𝑛5	𝑡𝑜	𝑛9:⟺ (𝑛5, 𝑛6), (𝑛6, 𝑛=), …	 , (𝑛9>5, 𝑛9) ∈ 𝐸
(vii) A path 𝑛5, 𝑛6, …	 , 𝑛9 ∈ 𝑁 is a simple path :⟺ ∀2 ≤ 𝑖, 𝑗 ≤ 𝑘 − 1: 𝑛E ≠ 𝑛G
(viii) ∀	𝑛E, 𝑛EK5, …	 , 𝑛9 ∈ 𝑁 that are simple paths holds 𝑛E ≠ 𝑛9∎

Such a pattern graph describes the fundamental structure behind a pattern language according
to Alexander because it incorporates structural order of patterns. This kind of order is the core
expressiveness of a pattern language that allows to navigate purposefully from things that have
to be present before other things can be created, from larger structures to the things that are
contained in them. Thus, we lift the relations between the patterns to first-class elements in the
understanding of a pattern language that carry implicit semantics, which is underpinned by the
phrase by Alexander “[i]n this network, the links between the patterns are almost as much a
part of the language as the patterns themselves.” (Alexander, 1979, p. 314).

2.3. Semantics of Relations between Patterns
So far, we introduced in Section 2.2 the concept of directed edges to represent the implicit
semantics of larger and smaller patterns and, hence, purposeful navigation structures through
pattern languages. In the following, we will investigate the semantics of relations between
patterns in more detail. As described above, the directed edges in an Alexandrian pattern
graph do not only employ navigation structures with a direction but are means to express the
semantics that one larger pattern contains several smaller patterns as it creates a structure,
which gets filled by the smaller patterns. Thus, directed edges are the elements that add actual
semantics to the model of a pattern language. This is explained by Alexander in the statement:

“However, when we use the network of a language, we always use it as a sequence, going
through the patterns, moving always from the larger patterns to the smaller, always from the
ones which create structures, to the ones which then embellish those structures, and then to
those which embellish the embellishments.” (Alexander et al., 1977, p. xviii)

Page 9 of 19

However, in domains besides towns and building architecture the morphological structures are
not as obvious and comprehensible. Thus, in these domains the structuring of pattern
languages via different link types has emerged. For example, further introduced relationships
focus on different types of references between patterns such as “see also” and “consider after”,
which are used in the pattern languages on cloud computing (Fehling et al., 2014). Reiners
(2013) describes link types that support to express AND, OR, and XOR semantics to specify
the interaction of patterns. Further, we have so-called composite patterns, which describe the
interplay of different other patterns. They do not aim for describing morphological larger
structures but rather describe combinations of patterns for solving strongly-related problems,
i.e., they provide an aggregated solution to such composite problems (cf. Buschmann, Henney,
& Schmidt, 2007; Fehling, Leymann, Retter, Schupeck, & Arbitter, 2014). These patterns can
be linked with the patterns they are composed of via a link type “composed of” to indicate the
patterns that are part of the composition. In addition to this, the pattern community has created
a lot more domain-specific dependencies between patterns, however, for the sake of brevity
we focus on the above mentioned as evident examples to further refine our meta-model.

Figure 3: Directed Weighted Pattern Graph

Referring to the mentioned examples, we can generalize different link semantics to be arbitrary
weights assigned to edges. Thus, we can refine our model of a pattern graph as depicted in
Figure 3. Therein different weights are assigned to edges. In the following we transfer this
concept to our formalism.

Definition 3 (Directed Weighted Pattern Graph): To assign weights to edges we associate the
pattern graph 𝒢 with the set of weights 𝒲:

𝒢 = (𝑁, 𝐸,𝒲)

with

(i) 𝑁 is a set of patterns
(ii) 𝑐𝑎𝑟𝑑(𝑁) ∈ ℕ
(iii) 𝐸 ⊆ 𝑁×𝑁×𝒲
(iv) 𝒲 ≠ ∅
(v) 𝑒 ∈ 𝐸, then 𝜋5(𝑒) is the starting point of the edge 𝑒, 𝜋6(𝑒) is the endpoint of the

edge 𝑒 and 𝜋=(𝑒) is the weight assigned to an edge 𝑒

PF

PE PG

PA

PC

PB

PI

PD

PH

PJ

e1,!1 e2,!2
e3,!3

e6,!6
e4,!4

e7,!7

e5,!5

e8,!8 e9,!9
e10,!10

Page 10 of 19

(vi) ∀𝑒 ∈ 𝐸: 𝜋5(𝑒) ≠ 𝜋6(𝑒)
(vii) 𝑛5, 𝑛6, …	 , 𝑛9 ∈ 𝑁 is a path from 𝑛5	𝑡𝑜	𝑛9:⟺ (𝑛5, 𝑛6), (𝑛6, 𝑛=), …	 , (𝑛9>5, 𝑛9) ∈ 𝐸
(viii) A path 𝑛5, 𝑛6, …	 , 𝑛9 ∈ 𝑁 is a simple path :⟺ ∀2 ≤ 𝑖, 𝑗 ≤ 𝑘 − 1: 𝑛E ≠ 𝑛G
(ix) ∀	𝑛E, 𝑛EK5, …	 , 𝑛9 ∈ 𝑁 that are simple paths holds 𝑛E ≠ 𝑛9
(x) ∀𝑒E, 𝑒9 ∈ 𝐸: 𝜋5 𝑒E = 𝜋5 𝑒9 ∧ 𝜋6 𝑒E = 𝜋6(𝑒9) ⇒ 𝜋=(𝑒E) ≠ 𝜋=(𝑒9)	∎

It is obvious that a pattern graph according to Alexander corresponds to this definition if and
only if all edges represent the semantics contains, i.e., ∀𝑒 ∈ 𝐸:	𝜋= 𝑒 = 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠. Thus, the
weight of all edges in the Alexandrian pattern language is “contains”.

Besides Alexanders pattern language that only uses a single implicit relationship, many pattern
languages use arbitrary kinds of relationships between patterns to interrelate them. Most often,
important details about relationships to other patterns are described directly in the pattern
document in natural language. This is exemplarily depicted in Figure 4 where pattern
documents are depicted that reference other patterns by means of specific labels on edges
that indicate the semantics of the references and text passages the provide more information
about these references However, having such additional descriptions that detail the references
directly captured in pattern documents makes it really hard to extend or adapt them if new
patterns join the language. Therefore, we discuss this problem in detail in the next section.

Figure 4: Different Semantics on Edges

2.4. The Combination of Patterns to Form an Overall Whole
For some pattern languages, it is important to provide a defined structure for the weights along
with predefined domains of allowed values. This is for example important if programs should
be used to automatically traverse pattern graphs parsing and processing the weights on the
edges. For these cases, we allow the annotation of edges by domain-specific types. These
types further enable to add arbitrary type-specific information describing the relation of two
patterns in detail, while the allowed values are defined by type-specific domains. Thus, this
concept enables to extract the formerly described details about references to other patterns
out of the pattern document to the edges themselves, which separates concerns and eases
adapting and extending the pattern language in regard to its liveliness.

An example for this concept can be studied by the sophisticated dependencies between
Remoting Patterns as presented by Zdun, Hentrich, & Dustdar (2007), which are further
extended by Zdun (2007). There, the semantics of the relations between patterns are enriched
by additional descriptors that describe the effect of the application of a pattern to the quality

Page 11 of 19

attributes of an IT application architecture. This means that following an edge from one pattern
to another pattern it is annotated to the edge that for instance quality attribute A increases but
quality attribute B decreases. For instance, such quality attributes can be used, e.g., to
document the negative side effect that combining two patterns decreases the overall
performance of an application. However, for our investigation it is not of importance what a
quality attribute exactly is or what “increases” and “decreases” specifically means in this
context. Much more important is that the edges between patterns are used to not only describe
how two patterns are related to each other by means of a semantic keyword but also provide
more detailed description about how this relation is defined in the specific case. For example,
if two patterns are interrelated with a reference having the type “can be combined with”,
additional descriptions directly on the edge provide the user all information required to actually
combine the two patterns. Please note, that today this information is often contained in the
pattern documents themselves, which makes it hard to maintain the pattern language as all
related pattern documents must be adapted if something changes. Therefore, our formalization
is not bound to certain semantics but supports the generative nature of pattern languages as
arbitrary information can be annotated.

Definition 4 (Domains of Edge Types): There is a set 𝔇 that is the set of all domains of types
used to specify value ranges for type-specify descriptions on edges. The domains of types are
used to define reusable structures to add type-specific descriptions to edges.	∎

Definition 5 (Directed Pattern Graph with Types): The weights 𝒲 are refined to represent
types assigned to edges between patterns whereby each type specifies a reusable structure
to add type-specific descriptions to edges to detail the relationship of two patterns. Thus, for
all cases that require such expressiveness on edges, we refine the directed weighted pattern
graph 𝒢 to be a directed pattern graph with types as weights.

We define

𝒢 = (𝑁, 𝐸,𝒲,𝔇, 𝛼, 𝛽)

with

(i) 𝑁 is a set of patterns
(ii) 𝑐𝑎𝑟𝑑(𝑁) ∈ ℕ
(iii) 𝐸 ⊆ 𝑁×𝑁×𝒲
(iv) 𝒲 ≠ ∅
(v) 𝑒 ∈ 𝐸, then 𝜋5(𝑒) is the starting point of the edge 𝑒, 𝜋6(𝑒) is the endpoint of the
edge 𝑒 and 𝜋=(𝑒) is the type assigned to an edge 𝑒
(vi) ∀𝑒 ∈ 𝐸: 𝜋5(𝑒) ≠ 𝜋6(𝑒)
(vii) 𝑛5, 𝑛6, …	 , 𝑛9 ∈ 𝑁 is a path from 𝑛5	𝑡𝑜	𝑛9:⟺ (𝑛5, 𝑛6), (𝑛6, 𝑛=), …	 , (𝑛9>5, 𝑛9) ∈ 𝐸
(viii) A path 𝑛5, 𝑛6, …	 , 𝑛9 ∈ 𝑁 is a simple path :⟺ ∀2 ≤ 𝑖, 𝑗 ≤ 𝑘 − 1: 𝑛E ≠ 𝑛G
(ix) ∀	𝑛E, 𝑛EK5, …	 , 𝑛9 ∈ 𝑁 that are simple paths holds 𝑛E ≠ 𝑛9
(x) ∀𝑒E, 𝑒9 ∈ 𝐸: 𝜋5 𝑒E = 𝜋5 𝑒9 ∧ 𝜋6 𝑒E = 𝜋6(𝑒9) ⇒ 𝜋=(𝑒E) ≠ 𝜋=(𝑒9)
(xi) 𝛼:	𝒲 → 	℘(𝔇)
(xii) 𝛽: 𝐸 → ×U∈𝔇V(WX Y)Z∈[𝐷
(xiii) ∀𝑒 ∈ 𝐸 ∶ 𝛽 𝑒 ∈ 	×U∈𝔇V WX Y

𝐷	

where 𝛼 is a map that assigns subsets of all domains to weights and 𝛽 is a map that assigns
type-specific descriptions to edges. ∎

Page 12 of 19

This definition allows to enrich edges between patterns by arbitrary information about the
dependency of the connected patterns. Thus, this formalism can be used to add descriptions
about how to combine two patterns to edges that is yet part of the plain text of pattern
documents. We argue that this formalism is now powerful enough to represent the real nature
of pattern languages because we are capable of moving all information describing
dependencies between patterns to those entities of the network of patterns which are meant
to reflect them – the edges. Let’s investigate this in more detail. Pattern languages are today
not present as networks of patterns but the network exists implicitly because pattern
documents reference each other and, thus, the edges of the pattern graph are not authored as
entities. However, as a consequence of our formalism the pattern documents as authored
today are just renderings of a directed pattern graph with types. This means that by rendering
the graph in order to produce human readable plain text the information provided on the edges
of the graph is inserted into the pattern documents. Thus, our formalism reveals the real nature
of pattern languages that was pointed out by Alexander by the statement “[i]n this network, the
links between the patterns are almost as much a part of the language as the patterns
themselves” (Alexander, 1979, p. 314).

Beyond this, our formalism also supports to efficiently extend pattern languages by new
patterns. This is because we conceptually overcome the problem that adding new patterns to
a pattern language leads to the rephrasing of already present patterns in order to reference
the newly added one, which is depicted in Figure 5. This is motivated by Alexander’s
statements that “[w]e must […] invent new patterns, whenever necessary, to fill out each
pattern which is not complete” (Alexander, 1979, p. 319) and “[a] living language must
constantly be re-created in each person’s mind” (Alexander, 1979, p. 338).

Our formalism enables that references to other patterns are no longer contained in pattern
documents in the form of describing text but are part of the actual references themselves.
Thereby, adding new patterns only requires to add new references between the present
patterns and the new one. Then, the created edges can be annotated with the information that
describes the dependency of two patterns.

Figure 5: Problem of rephrasing patterns when new patterns are added to a language

PA

PC

PB

Pnew1

Pnew2

Pnew3

rewrite

rewrite

Page 13 of 19

2.5. Living Networks of Patterns
Alexander describes pattern languages as living networks of patterns. This means that they
are not just static structures but are liable to change, be it because of the addition of new
patterns to a pattern language or also the combination with other pattern languages. In the first
case, an existing pattern graph 𝒢 is extended by new nodes and edges as described in the
former section. This means new patterns are added to the set of patterns 𝑁 and connections
to other patterns are expressed by new edges added to the set of edges 𝐸 of 𝒢.

However, the second case, the combination of pattern languages requires more investigation.
Often the knowledge about different aspects of a domain is spread among different pattern
languages. For instance, in the domain of information technology the remoting patterns (Zdun
et al., 2004), the cloud computing patterns (Fehling et al., 2014) and enterprise integration
patterns (Hohpe & Woolf, 2004) are often used together to design application architectures
although they were authored almost isolated from each other in the first place. This is
conceptually depicted in Figure 6 where patterns from one pattern language do not reference
patterns from another pattern language.

Figure 6: Isolated Pattern Languages

This leads to time consuming elaborations of solutions based on the isolated pattern languages
because no guidance is provided by means of references between them, although they are
used often in combination. Therefore, this scenario motivates that we need a means to
combine the pattern languages somehow to support and ease their combined usage. Also
Alexander motivates this by discussing that pattern languages that are shared among
communities typically diverge and thus, have to be integrated again in order to create
structures that inherently work together. He points this out by the quote:

“We see then, that a language which is shared within a town is a vast structure, far more
complex than an individual language.

Not merely a network, but a network of networks, a structure of structures, a vast pool of
changing, varying, languages which people create for themselves as they take on their different
building tasks.

And once this kind of structure exists, we have a living language in a town, in just the same
sense that our common speech is living” (Alexander, 1979, p. 341f).

Therefore, based on our formal notion we introduce the operator ⊙ to support the combination
of pattern languages, which combines two graphs to a single one.

PE

PD PF

alternative

PC

PB

Pattern	Language	I

PE

PF

PG

PC

PB

Pattern	Language	II

PA

Page 14 of 19

Definition 6 (Pattern Language Aggregator): The set 𝔊 is the set of all pattern language
graphs. Two pattern languages are aggregated to a single one by aggregating the underlying
graphs based on a set of new edges ℰ:

⊙:𝔊×𝔊×ℰ → 𝔊

is the pattern language aggregator function that aggregates two pattern language graphs to a
single one containing new edges ℰ. ∎

Exemplarily, two pattern graphs 𝒢5 = (𝑁5, 𝐸5) and 𝒢6 = (𝑁6, 𝐸6) are aggregated to 𝒢= based on
new edges ℰ connecting patterns from 𝒢5 with patterns from 𝒢6 as following:

𝒢= =⊙ (𝒢5, 𝒢6, ℰ) = 𝑁5 ∪ 𝑁6, 𝐸5 ∪ 𝐸6 ∪ ℰ

For the sake of simplicity, we write 𝒢= = 𝒢5 ⊙ℰ 𝒢6 to indicate that 𝒢5 is aggregated with 𝒢6 via
the new edges ℰ.

The pattern language aggregator ⊙ is associative and commutative according to the
fundamental union operation of set theory because it unions the sets of nodes and the sets of
edges and new edges of two pattern graphs.

Proof: 𝒢5 ⊙ℰb,c 𝒢6 = 𝑁5 ∪ 𝑁6, (𝐸5 ∪ 𝐸6) ∪ ℰ5,6 = 𝑁6 ∪ 𝑁5, 𝐸5 ∪ 𝐸6 ∪ ℰ5,6 = 𝑁6 ∪ 𝑁5, 𝐸6 ∪

𝐸5 ∪ ℰ5,6 = 𝑁6 ∪ 𝑁5, (𝐸6 ∪ 𝐸5) ∪ ℰ5,6 = 𝒢6 ⊙ℰb,c 𝒢5 ∎

Therefore, the aggregation of different pattern languages can be written in general as following,
whereby the order of the graphs to be aggregated can be changed ad libitum:

𝒢dK5 = 𝒢5 ⊙ℰb,c 𝒢6 ⊙ℰc,X 𝒢= …⊙ℰefb,e 𝒢d

Based on this operator we can also explain Alexander’s idea of pattern language aggregation
as mentioned in A Timeless Way of Building (Alexander, 1979). He describes that two yet
isolated pattern languages can be aggregated into an overall pattern language by authoring a
larger pattern that is more general than at least two patterns from the pattern languages to be
combined. Then this pattern can be used to connect both pattern languages into one larger
structure because it is used to connect to at least one smaller pattern from each of the pattern
languages to be combined. He summarizes this concept as following:

“And, more subtly, we find also that different patterns in different languages, have underlying
similarities, which suggest that they can be reformulated to make them more general, and
usable in a greater variety of cases.” (Alexander, 1979, p. 330)

“Gradually it becomes clear that it is possible to construct one much larger language, which
contains all the patterns from the individual languages, and unifies them by tying them together
in one larger structure.” (Alexander, 1979, p. 330)

As a consequence, we can apply the introduced aggregation operator to this scenario. Let’s
assume that two pattern languages 𝒢5 and 𝒢6 have to be combined. Further, a newly authored
larger pattern can be grasped as a pattern graph 𝒢g that contains just one pattern and, hence,
no edges. Then 𝒢g can be aggregated with 𝒢5 via a set of edges ℰg,5 connecting the larger
pattern in 𝒢g with patterns in 𝒢5. Likewise, 𝒢g can be aggregated with 𝒢6 via a set ℰg,6. Therefore,
we can specify the aggregation of 𝒢5 and 𝒢6 by a larger pattern into an aggregated pattern
graph as 𝒢g ⊙ℰh,b 𝒢5 ⊙ℰh,c 𝒢6 = 𝒢ijjkZjilZm.

Page 15 of 19

3. Related Work
Alexander et al. (1977) introduce a pattern language as a web of patterns, which supports the
navigation through a set of patterns by references between them. The important point is that
the relations between the patterns establish so-called pattern sequences, which comprise the
generative power of the whole pattern language. Such sequences unfold paths through the
pattern language that are typically used to start building a solution based on one pattern, while
then, the solution is refined stepwise utilizing the following patterns in the sequence. This is
what they call the piecemeal growth that is inherently provided by patterns that build upon
others in order to create a whole solution. In contrast pattern sequences the solution paths
discussed in this paper are not just navigation structures contained in a pattern language but
the actually selected patterns at the time a user chooses applicable patterns in order to solve
a concrete problem at hand. Thus, if a pattern sequence allows to choose either one pattern
or another at some point, the actual choice of a user is reflected in a solution path. Hence,
modelling pattern languages mathematically as presented in this work allows to reflect the
nature, i.e., the structure and coherence of a network of patterns appropriately.

Porter et al. (2005) have shown that selecting patterns from a pattern language is a question
of temporal ordering of the selected patterns. They show that combinations and aggregations
of patterns rely on the order in which the patterns have to be applied. This leads to so called
pattern sequences which are partially ordered sets of patterns reflecting the temporal order of
pattern application. Their approach requires clear structures and semantics that enables the
navigation through a pattern language. Thus, the presented formalization in this paper lays a
proper base for the navigation through a pattern language to enable the selection of patterns.

Henney (2006) show how stories can be the nucleus in order to find valuable sequences in a
pattern language. Investigating the pattern Encapsulate Context by Allan Kelly he shows how
a single pattern can be split and integrated into a brief pattern language. Starting from typically
occurring problems in the form of stories that reveal a chain of problems and design
considerations he shows how sequences through the authored pattern language can ease the
application of the knowledge formerly contained in just one pattern more efficiently und clearly.
Further, he shows practically how sequences can be related to pattern languages in order to
ease their application and to bring out their generative power by piecemeal growth. Both
aspects can be covered by the expressiveness of our introduced formalization for pattern
languages by means of directed weighted graphs and the selection of proper subgraphs.

Building upon Henney, Zdun (2007) introduces to formalize sequences through pattern
languages by means of pattern language grammars. The selection of a pattern is seen as an
event in the design process of solutions. According to the temporal order of applying patterns
from a pattern language one after the other based on the work of Porter et al. (2005), their
formalism considers patterns to be terminal symbols in a formal language, while relationships
between patterns are grasped as the production rules of the pattern language grammar. The
proven sequences through a pattern language correspond to words, which can be derived by
the production rules of the grammar. The effects of a pattern regarding on how it refines and
changes the present solution once it is applied is annotated to the grammar in terms of effects
on the quality goals of a software architecture. Thus, in contrast to the pattern language by
Alexander et al. (1977) the approach by Zdun requires the capability of annotating relationships
between patterns by additional semantics. This can be enabled via attaching arbitrary weights
on edges. The understandability and unambiguity of attached weights can be maintained by
means of ranges of allowed values, which we introduced as type-specific domains.

Page 16 of 19

Mikkonen (1998) tackles the issue on how to formalize the temporal behaviour of components
introduced by design patterns in system design. He shows how to overcome the lack of clear
semantics in the informal description of pattern solutions, especially focusing on
communication aspects between system components described by a pattern. Besides
formalizing single patterns also combinations and instantiations of patterns are formalized by
means of temporal logic of actions. Although he focusses on formalizing the combination of
patterns, i.e., their combined usage in software systems the approach lacks support for clearly
specifying clear navigation structures through pattern languages, which our approach allows.

Mirnig & Tscheligi (2014) introduce a general pattern framework based on set theory. This
framework provides a general theory of patterns in order to explicate knowledge in pattern
structures and relate patterns into pattern languages. Their approach is general due to the
definition of patterns and pattern languages by means of set theory and, therefore, provides a
domain independent fundamental method to define patterns and pattern languages. Further,
they introduce a conceptual mechanism by means of descriptors and targets to combine
patterns from different domains and pattern languages, respectively. In contrast to our
approach, they do not introduce the concept of pattern relations as first-class citizens in their
meta model as we do by means of weighted edges that can carry arbitrary semantics and
descriptions. Thus, while our formalization focusses on the structure and characteristics of a
pattern language and reveals it as a certain kind of graph their approach unfolds from a pattern
centric view. Thereby, their approach lacks concreteness about how it supports and guides to
create structures that conform to what is known as a pattern language, because the introduced
concepts of descriptors and targets are specified to vaguely.

Bayley & Zhu (2010) describe the composition of patterns via operators. These operators can
be used to formally specify the relation between patterns and, thus, form a pattern language.
The introduced operators are examples of specific weights of edges as described in this work.

Salingaros (2000) describes the structure of pattern languages. He mentions that patterns can
be grasped as nodes of a graph that are connected to each other but does not give a clear
formalism about that graph as we do in this work. He further describes that ordering of patterns
depends on hierarchical levels, i.e., the structure that evolves by smaller and larger patterns.
However, he does not clearly describe how such semantics can be expressed via the concept
of a graph.

Falkenthal, Barzen, Breitenbücher, Fehling, and Leymann, (2014a), (2014b) and Falkenthal et
al. (2016) have shown that specific link types can be used to establish navigation structures
through pattern languages towards concrete realizations of the contained patterns. Falkenthal
and Leymann (2017) further introduced the concept of solution languages to organize concrete
implementations of patterns similarly to pattern languages to ease and guide their reuse. Since
all of these concepts build uppon the core ideas and characteristics of pattern languages also
the introduced formalism in this work can be applied to them which lays a basis for the
development of integrated pattern and solution repositories with sophisticated user support.

Barzen and Leymann (2015) derive a formalization of pattern languages based on the interplay
of clothing in the domain of costumes in films. They present an ontological description of effects
of clothing, which is used to express patterns as clothing with similar effects regarding
impressions on the audience of films. Thereby, they define a set of domain-specific relations
that allows to create a graph representing a costume language. An environment that supports
this language is outlined by Fehling et al. (2015)

Page 17 of 19

Finally, different authors (Borchers, 2000; Coplien, 1996; Porter et al., 2005; Reiners, 2012)
have mentioned that a pattern language can be grasped as a directed acyclic graph. However,
none of them derived the actual semantics of such a model clearly from the core ideas and
thoughts by Alexander and refined them towards a sophisticated meta model as expressive as
ours.

4. Conclusion and Future Work
In this paper, we derived a formal notion of pattern languages on the basis of fundamental
mathematical concepts from graph theory. Thus, we provide an explanation about what pattern
languages are on the basis of structural dependencies that can be interpreted, i.e., we revealed
the underlying nature of pattern languages. Thereby, the general formal model of a pattern
language is developed stepwise so that we believe that our formalism covers the structural
backbone of most, if not even all present pattern languages. We presented different
manifestations of our formalisation differing in their expressiveness. Hence, readers from
different domains can step into the formalization that is mostly suitable for developing pattern
languages in his domain.

However, we grasp this work as the basis for our research about how to efficiently support the
authoring, the maintenance, and development of pattern languages across communities by
means of appropriate pattern repositories. Thus, we envision to leverage the whole
expressiveness of the presented formalism in the form of collaborative pattern language
repositories that inherently incorporate and support the features as shown in this work on the
basis of mathematical structures. We especially plan to force investigations on enabling the
application of graph algorithms that are now applicable on the basis of graph theory.

5. References
Alexander, C. (1964). Notes on the Synthesis of Form. London: Oxford University Press.

Alexander, C. (1979). The Timeless Way of Building. New York: Oxford University Press.
http://doi.org/10.1080/00918360802623131

Alexander, C., Ishikawa, S., & Silverstein, M. (1977). A pattern language: towns, buildings,
construction. New York: Oxford University Press.

Barzen, J., & Leymann, F. (2015). Costume Languages as Pattern Languages. In Pursuit of
Pattern Languages for Societal Change (PURPLSOC) - The Workshop 2014: Designing
Lively Scenarios With the Pattern Approach of Christopher Alexander (pp. 88–117).

Bayley, I., & Zhu, H. (2010). A Formal Language of Pattern Compositions. PATTERNS 2010,
The Second International Conferences on Pervasive Patterns and Applications, (c), 1–6.

Borchers, J. O. (2000). A pattern approach to interaction design. Proceedings of the
Conference on Designing Interactive Systems Processes, Practices, Methods, and
Techniques - DIS ’00, 369–378. http://doi.org/10.1145/347642.347795

Buschmann, F., Henney, K., & Schmidt, D. C. (2007). Pattern-Oriented Software Architecture:
On Patterns and Pattern Languages. Wiley & Sons.

Coplien, J. O. (1996). Software Patterns. SIGS Books & Multimedia.

Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., & Leymann, F. (2014a). Efficient
Pattern Application : Validating the Concept of Solution Implementations in Different
Domains. International Journal On Advances in Software, 7(3&4), 710–726.

Page 18 of 19

Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., & Leymann, F. (2014b). From
Pattern Languages to Solution Implementations. In Proceedings of the 6th International
Conferences on Pervasive Patterns and Applications - PATTERNS 2014 (pp. 12–21).
Xpert Publishing Services (XPS).

Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., Leymann, F., Hadjakos, A., …
Schulze, H. (2016). Leveraging Pattern Applications via Pattern Refinement. In
Proceedings of Pursuit of Pattern Languages for Societal Change.

Falkenthal, M., & Leymann, F. (2017). Easing Pattern Application by Means of Solution
Languages. In Proceedings of the 9th International Conferences on Pervasive Patterns
and Applications - PATTERNS 2017. Xpert Publishing Services (XPS).

Fehling, C., Barzen, J., Falkenthal, M., & Leymann, F. (2015). PatternPedia – Collaborative
Pattern Identification and Authoring. In Pursuit of Pattern Languages for Societal Change
(PURPLSOC) - The Workshop 2014: Designing Lively Scenarios With the Pattern
Approach of Christopher Alexander (pp. 252–284). epubli GmbH.

Fehling, C., Leymann, F., Retter, R., Schupeck, W., & Arbitter, P. (2014). Cloud Computing
Patterns: Fundamentals to Design, Build, and Manage Cloud Applications. Springer.

Furukawazono, T., Studies, I., Seshimo, S., Studies, I., Muramatsu, D., & Iba, T. (2013).
Survival Language : A Pattern Language for Surviving Earthquakes. In Proceedings of
the 20th Conference on Pattern Languages of Programs (p. Article No. 30). ACM.

Henney, K. (2006). Context Encapsulation: Three Stories, a Language, and Some Sequences.
In Proceedings of the 10th European Conference on Pattern Languages of Programs
(EuroPlop 2005). Irsee.

Hohpe, G., & Woolf, B. (2004). Enterprise Integration Patterns: Designing, Building, And
Deploying Messaging Systems. Addison-Wesley.

Iba, T., & Miyake, T. (2010). Learning patterns: a pattern language for creative learners II. In
Proceedings of the 1st Asian Conference on Pattern Languages of Programs (AsianPLoP
2010) (p. I-41--I-58). New York, USA: ACM Press.
http://doi.org/10.1145/2371736.2371742

Mikkonen, T. (1998). Formalizing Design Patterns. In International Conference on Software
Engineering (pp. 115–124). Kyoto.

Mirnig, A. G., & Tscheligi, M. (2014). Building a General Pattern Framework via Set Theory :
Towards a Universal Pattern Approach. In Proceedings of the Sixth International
Conferences on Pervasive Patterns and Applications (PATTERNS). (pp. 8–11). Xpert
Publishing Services (XPS).

Porter, R., Coplien, J. O., & Winn, T. (2005). Sequences as a basis for pattern language
composition. Science of Computer Programming, 56(1–2), 231–249.
http://doi.org/10.1016/j.scico.2004.11.014

Reiners, R. (2012). A Pattern Evolution Process - From Ideas to Patterns. In Lecture Notes in
Informatics - Informatiktage 2012 (pp. 115–118). Gesellschaft für Informatik (GI).

Reiners, R. (2013). An Evolving Pattern Library for Collaborative Project Documentation.
RWTH Aachen University.

Reinfurt, L., Breitenbücher, U., Falkenthal, M., Leymann, F., & Riegg, A. (2016). Internet of
Things Patterns. In Proceedings of the 21st European Conference on Pattern Languages
of Programs (EuroPLoP). ACM.

Page 19 of 19

Reinfurt, L., Breitenbücher, U., Falkenthal, M., Leymann, F., & Riegg, A. (2017). Internet of
Things Patterns for Devices. In Proceedings of the 9th International Conferences on
Pervasive Patterns and Applications - PATTERNS 2017 (pp. 117–126). Xpert Publishing
Services (XPS).

Salingaros, N. a. (2000). The structure of pattern languages. Arq: Architectural Research
Quarterly, 4(2), 149–161. http://doi.org/10.1017/S1359135500002591

Schöning, U. (2001). Algorithmik. Springer.

Zdun, U. (2007). Systematic pattern selection using pattern language grammars and design
space analysis. Software: Practice and Experience, 37(9), 983–1016.
http://doi.org/10.1002/spe.799

Zdun, U., Hentrich, C., & Dustdar, S. (2007). Modeling process-driven and service-oriented
architectures using patterns and pattern primitives. ACM Transactions on the Web, 1(3),
14–es. http://doi.org/10.1145/1281480.1281484

Zdun, U., Kircher, M., & Völter, M. (2004). Remoting patterns: Design reuse of distributed
object middleware solutions. IEEE Internet Computing, 8(6), 60–66.
http://doi.org/10.1109/MIC.2004.70

All links were last accessed on 2017-09-28.

6. About the authors
Michael FALKENTHAL is a research associate and Ph.D. student at the Institute of
Architecture of Application Systems (IAAS) at the University of Stuttgart, Germany. He studied
business information technology at the Universities of Applied Sciences in Esslingen and
Reutlingen focusing on business process management, services computing and enterprise
architecture management. Michael gained experience in several IT transformation and
migration projects at small- to big-sized companies. His current research interests are
fundamentals on pattern language theory, cloud computing and the internet of things.

Uwe BREITENBÜCHER is a research staff member and postdoc at the Institute of Architecture
of Application Systems (IAAS) at the University of Stuttgart, Germany. His research vision is
to improve cloud application provisioning and application management by automating the
application of management patterns. Uwe was part of the CloudCycle project, in which the
OpenTOSCA Ecosystem was developed. His current research interests include cyber-physical
systems, patterns, and microservices.

Frank LEYMANN is a full professor of computer science and director of the Institute of
Architecture of Application Systems (IAAS) at the University of Stuttgart, Germany. His
research interests include service-oriented architectures and associated middleware,
workflow- and business process management, cloud computing and associated systems
management aspects, and patterns. Frank is co-author of more than 300 peer-reviewed
papers, more than 40 patents, and several industry standards. He is on the Palsberg list of
Computer Scientists with highest h-index.

