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Abstract—To automate the deployment of applications several
deployment technologies have been developed. However, the
management of deployed applications is only partially covered
by existing approaches: While management functionalities such
as scaling components or changing their configurations are
covered directly by cloud providers or configuration management
technologies such as Chef, holistic management processes that
affect multiple components probably deployed in different
environments cannot be automated using these approaches. For
example, testing all deployed components and their communication
or backing up the entire application state that is scattered across
different components requires custom management logic that
needs to be implemented manually, e. g., using scripts. However,
a manual implementation of such management processes is error-
prone, time-consuming, and requires immense technical expertise.
Therefore, we propose an approach that enables automatically
generating executable management workflows based on the
declarative deployment model of an application. This significantly
reduces the effort for automating holistic management processes as
no manual implementation is required. We validate the practical
feasibility of the approach by a prototypical implementation based
on the TOSCA standard and the OpenTOSCA ecosystem.

Index Terms—Management Automation; Application Manage-
ment; Deployment Models; TOSCA; Workflows

I. INTRODUCTION

The complexity of today’s applications is constantly increasing
as they are composed of more and more interacting components.
A manual deployment and configuration of such complex
composed applications is error-prone and time-consuming [1].
Therefore, a plethora of technologies for automating the
deployment of applications have been developed in recent years.
This includes general-purpose technologies, such as Chef [2] or
Terraform [3], as well as provider-specific technologies, such as
CloudFormation for Amazon Web Services (AWS) [4]. While
provider-specific technologies often only support single cloud
deployments, general-purpose technologies mostly enable multi-
cloud deployments for distributed applications. To automatically
deploy an application, many of these technologies support
declarative deployment models, which describe the structure of
the application to be deployed including all components and
their relations [5], [6]. Based on these models, the deployment
system automatically derives and runs the tasks that need to
be executed [7]. In contrast, imperative deployment models
explicitly specify the tasks and the order in which they
must be executed in the form of a process model that can
be implemented, for example, using scripting or workflow
languages such as BPMN [8] or BPEL [9].

Although the deployment of applications can be automated
completely using such technologies, automating the manage-
ment of deployed applications is only supported in a very
limited way: While management functionalities such as scaling
or reconfiguring application components are typically natively
supported by cloud providers or declarative configuration
management technologies, holistic management functionalities
that affect multiple components which are possibly distributed
across environments are only supported to a limited extent.
For example, to perform backups of all stateful components
or to test the availability of all deployed components, a
manual implementation of such functionalities is required as
multi-environment deployments can neither be managed by a
single provider, nor do declarative configuration management
technologies support tasks such as backing up a database or
testing components. Unfortunately, manually implementing
such functionalities, for example, in the form of an imperative
script or workflow, requires immense technical knowledge and
is time-consuming, error-prone, and, if the deployment model
changes over time, it quickly becomes outdated [10], [11].

To tackle these issues, we address the following research
question in this paper: How can executable management
workflows for different kinds of functionalities be automatically
derived from a declarative deployment model of an application?
Our approach consumes declarative deployment models and en-
riches the modeled components with component-specific man-
agement operations that are provided by reusable component
types. Based on this enrichment, an executable management
workflow gets generated that orchestrates these operations to
execute the desired management functionality, e.g., to test all
involved components. As a result, the effort required to enable
the automated execution of management functionalities is
significantly reduced as no manual implementation is required.
We validate the practical feasibility of our approach by a
prototypical implementation based on the TOSCA standard [12],
[13] and the OpenTOSCA ecosystem [14] and present two
case studies showing practical management use cases.

The rest of this paper is structured as follows: Section II
provides fundamentals and a detailed motivating scenario. In
Section III the management feature enrichment and workflow
generation approach is introduced. Section IV presents the
prototypical implementation and Section V illustrates two
case studies. In Section VI the related work is discussed and
Section VII concludes the paper and outlines future work.
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Figure 1. Deployment Model Approaches

II. FUNDAMENTALS AND MOTIVATING SCENARIO

In this section, we first introduce fundamentals about deploy-
ment and management automation in Sections II-A and II-B.
Afterwards, we describe the motivating scenario in Section II-C.

A. Deployment Models

To automate the deployment of applications, several tech-
nologies, such as Puppet, Chef, and Terraform, have been
developed. Many of these deployment technologies are based on
deployment models. These deployment models can be processed
by the respective deployment system which is capable of
deploying the modeled application. Using the definition of
Endres et al. [5], deployment models can be classified into
two general approaches as shown in Figure 1: Declarative
models (see Figure 1a) and imperative models (see Figure 1b).
Declarative deployment models specify the desired state of an
application, while imperative deployment models define the
tasks and their execution order to reach a specific state.

In previous work [6], we investigated 13 deployment
technologies to derive the Essential Deployment Meta Model
(EDMM) that describes common features supported by the ana-
lyzed technologies. Thus, EDMM enables creating declarative
deployment models that (i) are vendor- and technology-agnostic
and (ii) that can be mapped to arbitrary technologies. We use
EDMM as basis in this paper to provide a technology-agnostic
approach. A declarative deployment model based on EDMM
describes the application components and their dependencies.
Components are, for example, a Java application or a Platform
as a Service (PaaS) [15] offering. Hereby, components are typed
by component types which define properties and operations
for the component. For instance, to use AWS Beanstalk, user
credentials must be provided and for the Java application at
least an operation to install it is required. Operations and
components can be implemented by so-called artifacts which
can be, in the case of a web application, a WAR file, or any
other executable software artifact. To describe the dependencies
of components, relations specified by a relation type, e. g.,
hostedOn or connectsTo, are used. Hence, a web application
can be hosted on AWS Beanstalk and may connect to a database
(DB) that is hosted on a virtual machine (VM) in an on-
premise infrastructure such as OpenStack (see Figure 1a). By
interpreting such a declarative deployment model, a deployment
system can derive the required steps to deploy the application.

Even though a declarative modeling approach is intuitive, it
has some limitations: For example, the order in which tasks
are executed to reach a desired state cannot be customized and
application-specific tasks cannot be implemented in an arbitrary
manner [5], [16]. Thus, imperative deployment models are
required for modeling complex application deployments as they
enable the specification of arbitrary tasks that are performed
during the deployment process. Examples for imperative
deployment technologies are workflow languages such as
BPMN4TOSCA [17]. Also, general-purpose technologies, such
as scripting languages, are often used to implement deployment
and management processes. In contrast to a declarative deploy-
ment model, an imperative deployment model, as depicted in
Figure 1b, explicitly describes what activities must be executed
in which order. For example, one activity invokes the API
of a cloud provider to create a new VM, while the next one
establishes an SSH connection to the VM and executes shell
commands in order to install a web server. Thus, implementing
these activities quickly becomes a significant challenge as (i)
immense technical expertise is required, (ii) this approach is
error-prone, and (iii) the implementations become outdated
quickly if the application changes.

B. Automating Management Functionalities
Holistic management functionalities that involve multiple,
distributed components are hard to automate [16]. First,
management functionalities offered by providers are limited
to the hosted components. Thus, if multiple providers are
involved, the individual management functionalities must be
orchestrated. For example, if an application consists of multiple
storage components hosted by different cloud providers, e.g.,
database or cache services, several provider APIs need to
be orchestrated to backup the entire system. In contrast,
available declarative configuration management technologies
are able to support multi-environment deployments, but are
limited in the management tasks they support. For example,
state-preserving management tasks such as testing the HTTP
connection between two components cannot be modeled
declaratively [16]. Thus, to automate holistic management
functionalities, typically several individual technologies must
be orchestrated by a program, script, or workflow [10]. Typical
management functionalities, besides testing and backup, are,
e. g., extending the license of proprietary components, installing
security updates on all VMs, or adding a new user to a VM.
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Figure 2. Declarative deployment model of a common web application. Rectangles represent components of the application while arrows illustrate the
dependencies between them. The types of the components are shown in braces while types of the relations are encoded by their line type.

C. Motivating Scenario and Problem Statement

Figure 2 illustrates a declarative deployment model describing
a multi-cloud scenario based on EDMM [6]: A highly scalable
user front-end, i. e., the Order App, is hosted on an AWS cloud
service and communicates with a back-end processing service,
i. e., the Order Processor, that is hosted on a private cloud of
type OpenStack. Of course, the Order Processor could also be
hosted on a public cloud for improved scalability. However,
this scenario is selected to demonstrate the challenges of multi-
cloud deployments using different cloud offerings as a service
(XaaS). To ensure that the application conforms to the cloud-
native properties [18], all data in our scenario is stored in
a Database, which is depicted at the top right in Figure 2.
Additionally, an Order Queue of type SQS Queue is utilized as
messaging system to enable loose coupling between the Order
App and the Order Processor component. While the Order App
and the Order Queue are hosted on PaaS offerings, i. e., Elastic
Beanstalk and Simple Queue Service, the Order Processor and
the Database are hosted on Ubuntu 18.04 VMs and require
additional middleware to run, i. e., the Java 8 Runtime and
the MySQL DMBS 5.7 components. All components define
properties expressing the target state or configuration that
are set during deployment, e. g., the Order Queue defines its
implementation type to be “FIFO”. Each component also defines
at least its lifecycle operations which encompass operations to
create, configure, start, stop, and delete the component.

For such an application scenario, it is crucial to create copies
of the current data in regular intervals. In case of the motivating
scenario, respective AWS APIs must be utilized in order to
backup and empty the Order Queue correctly. Further, to backup
the Database in our scenario, either the backup functionality
of the underlying DBMS must be utilized or a direct SQL
connection to the database must be established, which requires

correct credentials and a correct query to retrieve all data.
Thus, to reproducibly backup stateful components, additional
technology- and domain-specific logic is required that must be
orchestrated and executed in the correct order.

In the domain of testing, it is not only important to ensure
the technical success of an application deployment, but also to
check the deployment success from a business perspective.
In cases where applications get deployed across multiple
clouds, components may need to communicate with each other.
However, cloud providers typically apply different security
settings by default, i. e., some open common ports for created
VMs while others keep all ports closed. Furthermore, depending
on the test, an SSH connection, HTTP connection, or even an
SQL connection, which requires additional credentials, must be
established. This requires immense expertise in each technology
used to detect possible issues and to realize the tests. Therefore,
the generation of automated tests in a reproducible manner
is crucial every time an application is changed to verify that
all components work as intended, configuration properties are
set correctly, defined computing instances are running, and
communication among components is established correctly.

Thus, even automating the management of such simple appli-
cations is a major challenge if the corresponding functionality
must be implemented manually as such implementations are
error-prone, time consuming, and require expert knowledge in
the respective domains and used technologies. Moreover, even
if this is possible for a company to create such management
scripts, programs, or workflows manually, one change in the
deployment model can obsolete them as the implementations do
not match the deployment model anymore. This leads to major
effort in refactoring or rewriting such management programs to
reflect the changes from the deployment model. Therefore,
we present an approach to automatically generate holistic
management workflows from declarative deployment models.
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Figure 3. Overview of the approach: Automated Generation of Management Workflows for Applications Based on Deployment Models.

III. APPROACH

In this section, we introduce our approach to automatically
generate management workflows for applications based on
deployment models. The overall concept is described in
Section III-A while the following sections outline the details.

A. Overview

To automatically derive executable management workflows for
different kinds of functionalities from declarative deployment
models of existing applications, we propose the management
feature enrichment and workflow generation approach. An
overview of the approach is shown in Figure 3:

(1) Retrieve Declarative Deployment Model: The input for
our approach is a declarative deployment model as described
in Section II-A. The declarative deployment model is modeled
based on Basic Component Types. These Basic Component
Types only define the lifecycle operations, i. e., the operations
to create, configure, start, stop, and delete an application
component of this type. The exemplary deployment model
depicted in Figure 3 on the left expresses only the desired
state of the application and does not define any management
related operations. A deployment model that already contains
management operations can, of course, also serve as input.

(2) Enrich Deployment Model with Management Features:
The Component Types Repository contains all Basic Compo-
nent Types and available Feature Component Types. Feature
Component Types provide component-specific management
operations for certain features, e. g., testing or backup, which
are implemented and provided by domain experts. For instance,
for the Web App, a Testable Web App Feature Component
Type is available, while there is an additional Backup Feature
Component Type available for MySQL. The Basic and Feature
Component Types form Component Type Hierarchies which

are explained in detail in Section III-B. The Component Type
Repository is searched for available Feature Component Types
that are applicable to the Basic Component Types used in the
given model. For one feature of a certain Basic Component
Type, several implementations of the management operation
can be available: For instance, if a MySQL database exists
in the given deployment model, an operation for testing can
be implemented as a shell-script that is executed on a Linux
environment or as an external web service. In the Component
Types Repository in Figure 3, two Testable MySQL features are
depicted. One of these defines an Ubuntu requirement. Hence,
it requires the Database component to run on an Ubuntu
VM, for example, to execute script-based operations. Thus,
the applicability of a certain Feature Component Type is
determined by the hosting components in the deployment model.
In the example in Figure 3, the MySQL component is hosted
on an Ubuntu VM and, thus, the requirement of the Feature
Component Type is satisfied.

Before the features can be applied, a new component type
providing all selected management operations is generated. A
Basic Component Type is merged with the respective Feature
Component Types to a Feature-Enriched (FE) Component Type.
The merged component type for MySQL is called MySQLFE

providing lifecylce, testing, and backup operations. The newly
generated FE Component Types, i. e., MySQLFE and Web
AppFE, are then applied to the deployment model by replacing
the component types of the respective components, i. e., the
component of type MySQL is updated to the MySQLFE type.
The result is a Feature-Enriched (FE) Deployment Model.

(3) Generate Workflows for Management Features: For exe-
cuting the added management operations, imperative workflows
are generated based on the operations in the FE Deployment
Model using feature-specific plan generation plugins. These



plugins encompass the logic defining the order in which the
operations must be executed. For example, a Testing plugin
generates a management workflow that is able to execute
all operations related to the Testing feature, i. e., all light
grey operations in Figure 3. Hence, an executable Test Plan
that runs all tests is created fully automatically. Similarly, the
Backup Plan, as a result of the Backup plugin, contains the
corresponding backup operations only, i. e., all white operations
in Figure 3. Details of the plan generation, including the
order of execution, of these two use cases are introduced
in Section III-D. The resulting plans, one for each selected
feature, can then be executed by a workflow engine depending
on the underlying language. For example, BPEL workflows
can be executed using the Apache ODE [19] workflow engine.

B. Component Type Hierarchies

For feature definition we distinguish two kinds of component
types, namely Basic Component Types and Feature Component
Types. Hereby, Basic Component Types specify the basic
functionality to deploy the respective component, i. e., the
lifecycle operations. Besides, Feature Component Types define
component-specific management operations. Thus, a Feature
Component Type extends the Basic Component Type, whereby
a Type Hierarchy is formed. For example, to create a feature for
Web Apps, the Feature Component Type must inherit from the
Web App Basic Component Type and define new operations for
implementing this new feature. In general, a feature declares
an interface defining operations that have to be implemented by
specific Feature Component Types respectively. For example,
the Backup feature declares a single backup() operation, whereas
the Testing feature defines that each operation prefixed with
test is considered to be a testing related operation having
a defined return value that indicates the success or failure.
Although EDMM does not include inheritance, this concept
does not affect the deployment model itself, as type hierarchies
are only needed for feature selection.

C. Deployment Model Enrichment

To enrich a declarative deployment model with additional
management functionalities, the set of available features must
be determined first. Therefore, as described in Algorithm 1,
the set of Feature Component Types 𝐹𝑇 are retrieved from
a Component Types Repository and passed, alongside the
deployment model 𝑚𝑜𝑑𝑒𝑙, to the deployment model enrichment
algorithm. The enrichment is achieved in four major steps:
First, for each component in the given model, all applicable
features are determined (lines 2–10). Then, the applicable
Feature Component Types must be selected by a user or custom
logic since multiple Feature Component Types of the same
kind, e. g., two Testing Feature Component Types as illustrated
in Figure 3, could overwrite themselves (line 11). Third, the
selected Feature Component Types 𝐹 *

𝑐𝑖 that are applicable to a
specific component 𝑐𝑖 are combined with its Basic Component
Type into an FE Component Type 𝑐𝑡FE (lines 12–15). Finally,
the Component Type of each component in the deployment
model is updated (line 16).

Algorithm 1 enrichDeploymentModel(𝑚𝑜𝑑𝑒𝑙, 𝐹𝑇 )

1: for all
(︀
𝑐𝑖 ∈ components(𝑚𝑜𝑑𝑒𝑙)

)︀
do

2: let 𝐹𝑐𝑖 be the set of applicable 𝑓𝑡𝑗 ∈ 𝐹𝑇 of 𝑐𝑖
3: for all

(︀
𝑓𝑡𝑗 ∈ 𝐹𝑇

)︀
do

4: if
(︀
basicType(𝑐𝑖) == supertype(𝑓𝑡𝑗)

)︀
then

5: let 𝐶𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠
𝑚𝑜𝑑𝑒𝑙 (𝑐𝑖) set of hosted on successors of 𝑐𝑖

6: if
(︀
∀𝑟𝑒𝑞𝑘 ∈ requirements(𝑓𝑡𝑗) :(︀
∃𝑐𝑚 ∈ 𝐶𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠

𝑚𝑜𝑑𝑒𝑙 (𝑐𝑖) : 𝑟𝑒𝑞𝑘 = type(𝑐𝑚)
)︀)︀

then
7: 𝐹𝑐𝑖 := 𝐹𝑐𝑖 ∪ {𝑓𝑡𝑗}
8: end if
9: end if

10: end for
11: 𝐹 *

𝑐𝑖 := selectFeatures(𝐹𝑐𝑖)
12: let 𝑐𝑡FE = (𝑝𝑟𝑜𝑝𝑠𝑐𝑡FE , 𝑜𝑝𝑠𝑐𝑡FE ) := type(𝑐𝑖)
13: for all

(︀
𝑓𝑡𝑗 ∈ 𝐹 *

𝑐𝑖

)︀
do

14: 𝑐𝑡FE := ({𝑝𝑟𝑜𝑝𝑠𝑐𝑡FE ∪ 𝑝𝑟𝑜𝑝𝑠𝑓𝑡𝑗}, {𝑜𝑝𝑠𝑐𝑡FE ∪ 𝑜𝑝𝑠𝑓𝑡𝑗})
15: end for
16: type(𝑐𝑖) := 𝑐𝑡FE

17: end for

To determine the available features for a component in a
given deployment model, the set of Feature Component Types is
searched for applicable features: The applicability of a Feature
Component Type is determined based on (i) its Component
Type Hierarchy, as a Feature Component Type must inherit
from a Basic Component Type, and (ii) its defined requirements,
which must be satisfied by the deployment model. For example,
as shown in Figure 3, the Testable MySQL Feature Component
Types are both applicable to the MySQL Basic Component
Type in the given deployment model as all requirements for
both features can be fulfilled: While one does not define any
requirements, the other one requires an Ubuntu VM, which can
be satisfied in the given deployment model as the MySQL
database is hosted on an Ubuntu VM. For this, it is first
checked if the considered Feature Component Type 𝑓𝑡𝑗 inherits
from the Basic Component Type of the component 𝑐𝑖 (line 4).
Second, it must be checked whether the requirements of 𝑓𝑡𝑗
are satisfied by the model. All components that are directly or
transitively connected with 𝑐𝑖 using a hostedOn relation are the
set of its successors (line 5). If all required component types,
stated by the requirements of 𝑓𝑡𝑗 , are contained in this set,
the requirements are satisfied (line 6) and 𝑓𝑡𝑗 is an applicable
Feature Component Type (line 7).

Afterwards, based on the determined applicable Feature
Component Types for a certain component 𝐹𝑐𝑖 , a user or a
custom logic can select the desired Feature Component Types to
be used for enrichment (line 11). This is required, since Feature
Component Types of the same kind can overwrite themselves:
For example, if both Testable MySQL Feature Component
Types define the same test operations, invalid mappings between
the operations and the implementing artifacts may arise during
the merge of the different Feature Component Types.

In the third step, all selected Feature Component Types 𝐹 *
𝑐𝑖

of a component 𝑐𝑖 are combined into the FE Component Type.
Each Component Type 𝑐𝑡𝑘 has a set of properties 𝑝𝑟𝑜𝑝𝑠𝑐𝑡𝑘 and



a set of operations 𝑜𝑝𝑠𝑐𝑡𝑘 . A new FE Component Type 𝑐𝑡FE

is initially defined by the properties and operations of the type
of the component 𝑐𝑖 (line 12). For each Feature Component
Type 𝑓𝑡𝑗 , the set of properties and operations are added to the
corresponding sets of 𝑐𝑡FE (line 13-15). Lastly, the type of
the component in the deployment model is exchanged with the
FE Component Type to persistently attach all selected features
to the respective component in the deployment model (line
16). Hence, the FE Deployment Model can be passed to the
workflow generation to generate executable processes.

D. Workflow Generation

Our approach can be used to generate arbitrary management
workflows fully automatically. Workflows are also referred to as
Plans as they describe all activities that must be performed in a
defined order. Hereby, we are following a similar approach as
proposed by Breitenbücher et al. [7] who generate provisioning
workflows based on declarative deployment models. However,
instead of deriving the provisioning logic for the application
itself, i. e., plans to deploy an application, we are creating
management workflows for specific management functionalities.
For example, to test the deployment, we are generating a
Test Plan which executes only operations related to testing.
Therefore, we combine and adapt existing approaches, such as
application deployment testing [20] and backing up running
cloud applications [21], to be used as independently executable
features in the form of management workflows.

As depicted in Figure 3, our approach introduces a Man-
agement Workflow Generator component that requires feature-
specific plugins to generate imperative workflows based on
an FE Deployment Model. Such plugins encapsulate feature-
specific logic on how the resulting imperative workflow is
generated. For example, a plugin to generate a Test Plan
encompasses the logic in which order test-related operations
are executed, e. g., starting from the underlying infrastructure or
platform component and following the hostedOn relationships
in reverse direction until no other child component is found.

In general, each plugin first analyzes the FE Deployment
Model and checks if it can work with the FE Component Types
supplied within the model. If supported FE Component Types
are found, the plugin starts to generate respective workflow
fragments, e. g., BPEL [9] fragments, for each operation
associated to the matching FE Component Types. According
to the plugin’s logic, the workflow fragments are ordered in
the required sequence and the resulting workflow is stored and
deployed to await its invocation. However, an operation can
define multiple input parameters that are required in order to run
it successfully. Each plugin must be able to satisfy such input
parameters using matching property values of the respective
component or from the underlying infrastructure or platform.
On the one hand, a plugin must be able to write respective
property values hard-coded to the workflow fragments, i. e.,
for configuration properties such as static port definitions. On
the other hand, plugins must be able to generate according
workflow fragments that are able to retrieve property values at
runtime, e. g., an IP address of a deployed virtual machine.

IV. VALIDATION

The presented concepts build upon the Essential Deployment
Metamodel (EDMM) to provide a technology agnostic ap-
proach which is realizable in all technologies that can be
mapped to EDMM, e. g., Terraform. To validate the practical
feasibility of our concepts, we used the deployment modeling
language TOSCA [12], [13] as it is vendor- and technology
agnostic, ontologically extensible [22], and can be mapped to
EDMM. Moreover, we implemented a prototype based on the
OpenTOSCA ecosystem [14], [23].

A. Mapping EDMM to TOSCA

The Topology and Orchestration Specification for Cloud
Applications (TOSCA) [12], [13] is a modeling language to
describe applications in a standardized, vendor- and technology-
independent manner. Applications are described in declarative
deployment models, so-called Topology Templates inside of
Service Templates. Hereby, Node Templates and Relationship
Templates represent Components and Relations following
predefined semantics which are defined by Node Types and
Relationship Types, i. e., Component Types and Relation Types,
respectively. A Node Type specifies the available Properties of
Node Templates that are instances of this type. For example, the
Database component shown in Figure 2 is, in TOSCA jargon, a
Node Template which is an instance of the Node Type MySQL
Database 5.7 that defines a property called DB-Name.

Similarly, a Node Type defines a set of Operations inside
an Interface that can be executed on a Node Template
instance. These operations can be mapped to Operations in
EDMM. The TOSCA standard introduces a lifecycle interface
that defines a create, configure, start, stop, and terminate
operation [13]. These operations can be implemented using
Node Type Implementations associating each operation with
an Implementation Artifact, i. e., an Artifact in EDMM, that
represents the actual executable, e. g., a shell script. In addition,
Requirements can be defined for Node Types which express that,
e. g., certain Capabilities or Node Templates of specific Node
Types are expected in a Topology Template the Node Type is
used in. A TOSCA type can inherit from another type to further
improve the reusability. For example, the MySQL Database
5.7 Node Type can inherit from an abstract Database Node
Type. In EDMM, inheritance and requirements of component
types can be expressed by using properties.

All elements defined by the TOSCA standard, e. g., Service
Templates, Node Types, or Relationship Types can be persisted
in a repository enabling modelers to reuse them in multiple
applications. In addition to the declarative deployment model,
TOSCA also supports imperative models [12]. To describe
these, workflow languages such as BPMN [8] or BPEL [9] can
be used. Besides deploying an application, imperative models
can also perform arbitrary management tasks.

B. System Architecture based on OpenTOSCA

To proof our concepts, we implemented a prototype based on
the open-source TOSCA ecosystem OpenTOSCA [14], [23].
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The OpenTOSCA ecosystem consists mainly of three com-
ponents: Winery [24] which provides modeling functionality
for applications modeled in TOSCA, the deployment system
OpenTOSCA Container [25] or just Container for short, and
a management UI called Vinothek [26]. The extended system
architecture is depicted in Figure 4. Since our approach is based
on an existing deployment model the modeling tool Winery
is not explicitly illustrated. However, since the enrichment
affects the topology model, the existing Winery capabilities to
deal with topology model elements are utilized. Therefore, the
Container Repository is based on the Winery.

The presented approach for enriching declarative deployment
models with management operations used for an automated
workflow generation (see Section III) is implemented in the
OpenTOSCA ecosystem as depicted in Figure 4: First, an
existing Cloud Service Archive (CSAR), the standard packaging
format for TOSCA models, is uploaded to the Container
using Vinothek. In the second step, the Container calls the
repository API of the Container Repository to request the
feature enrichment for the given CSAR.

In the Container Repository all TOSCA elements are
stored and managed by the Winery repository. In the Types
repository the Node Types defining the lifecycle operations, i. e.,
representing the Basic Component Types, as well as the Node
Types specifying management operations, i. e., representing
the Feature Component Types, are contained. We utilize the
inheritance capability of TOSCA: The Feature Node Types
inherit from the Basic Node Types and define management
operations. The Feature Node Types can also specify Feature
Requirements, which must be satisfied by the Topology Tem-
plate the Feature Node Type shall be used in. For example,
the Feature Requirement Ubuntu, or Ubuntu_16.04 if a certain
version is required, can be added to a Feature Node Type. This
means, a Node Template of type Ubuntu must be contained
in the hosting stack of the Node Template, encompassing all
Node Templates that are directly or transitively connected by a

hostedOn relation. The Feature Selection component determines
for each Node Template contained in the given Topology
Template the applicable Feature Node Types based on Node
Types and Requirements matching. The Feature Enrichment
component creates FE Node Types and replaces the original
Node Types in the Topology Template by the FE Node Types.

In the third step, the enriched Topology Template serves as
input for the Plan Generator. For this, the Topology Template is
exported as CSAR from the Container Repository and imported
to the Plan Generator and stored in the Models repository. The
initial functionality of the Plan Generator to derive and generate
provisioning workflows from declarative deployment models
in a generic manner has been extended with the generation of
management workflows. The Management Workflow Generator
component enables to define plugin based abstract workflows
for each feature which are used to generate concrete man-
agement workflows for a certain Topology Template. This is
achieved by interpreting and analyzing the Topology Template
and the Node Types of the contained Node Templates. Thus, a
Plan, e. g., for testing the entire modeled application, can be
generated. In our prototypical implementation, the resulting
plans are executable BPEL workflows. Of course, BPMN
workflows could also be generated using our approach.

All plans returned by the Plan Generator are stored in the
Workflows repository within the Container. Afterwards, they can
be triggered using Vinothek and are executed on a workflow
engine like Apache ODE. To execute an Implementation
Artifact implementing a management operation, a workflow
calls the API of the Container which forwards the call using
the Management Bus. If needed, the IA Engine can be used
to deploy Implementation Artifacts, e.g., to run Web Services.
Therefore, the user can select available features and execute the
corresponding workflow at any time, e.g., if a current backup
is needed. Thus, features can be provided in a reusable manner
by implementing a management workflow generation plugin
and the corresponding Feature Node Types.
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V. CASE STUDIES

Given the motivating scenario depicted in Figure 2, we discuss
the application of two different management features, namely
Testing, see Section V-A, and Backup, see Section V-B. By
applying our approach, the initial types of the motivating
scenario have been enriched with corresponding FE Component
Types capable of testing or back up components. The added
feature-specific operations are shown in Figure 5 by bars
attached to the components, whereby grey bars identify test
operations while white bars are used to show backup operations.

A. Testing Feature
The Testing feature defines an interface that follows the
following contract: Each declared operation prefixed with test
is considered to be testing related and must return predefined
enumeration values indicating the success or failure. Based on
this, arbitrary test operations can be provided and encapsulated
into one or more Feature Component Types. For example,
there is a testTcpPing() operation, as depicted in Figure 5,
being able to test the availability of a Web App. Further,
there is a testHttp() operation verifying that the application
returns a suitable HTTP status code. In our case, these two
operations are part of a Web App Testing Feature Component
Type. Moreover, there are test operations to verify that the
respective operating system process is running for Java 8 App
components, to verify that related properties are set correctly
for SQS Queue components, to verify that a SQL connection
to MySQL DBMS 5.7 components can be established, to verify
that a configured database schema of MySQL Database 5.7
components is present, to verify that Ubuntu 18.04 components
are reachable and computing instances are available, and to
verify that respective cloud provider APIs can be utilized by
checking supplied credentials. These operations are respectively
provided by certain Testing Feature Component Types extending
their Basic Component Types.

Our ecosystem (cf. Section IV) enables to enrich a given
deployment model with FE Component Types and to generate
executable test plans. The Testing plugin derives the execution
order of the test operations based on the relations of type
hostedOn: First, the tests of the target component of a
hostedOn relation must complete successfully before the source
component is tested. Thus, the Test Plan starts with executing
all tests of components without outgoing hostedOn relations.
For example, the tests annotated at the VMs run before the
DBMS tests, but only after the OpenStack test completed
successfully. The generated test plan can be executed at any
point in time after the application is deployed.

B. Backup Feature

In addition to the Testing feature, the exemplary deployment
model in Figure 2 has been enriched with back up functionality.
The resulting FE Component Types with the respective backup
operations are shown in Figure 5. Hereby, both stateful
components, i. e., the Order Queue and the Database, have
been enriched with backup operations enabling the retrieval of
their internally stored states. To automatically perform a back
up of all stateful components, a Backup Plan is generated. In
contrast to the Test Plan generation, the Backup plugin creates
a Backup Plan which executes all operations in parallel.

To backup a stateful component, its internal state must be
retrieved. Hence, to create a backup of the Database component,
an SQL connection to the MySQL Database must be established
and an SQL query retrieving all tables and their contents is
executed. Similarly, by establishing a connection to the Order
Queue using the API of AWS, all stored requests can be
retrieved. However, since a backup operation retrieves the state
of a component, this state must also be saved persistently.
Thus, the operations require a storage endpoint as an input. For
example, in the OpenTOSCA ecosystem, Winery can be used
to store the state artifacts in the context of the application [21].



C. Limitations and Benefits

The presented management feature enrichment and workflow
generation approach significantly reduces the effort for creating
management workflows for complex distributed applications as
manual implementations are not needed. A deployment modeler
can enrich an already existing deployment model with arbitrary
management functionality by simply selecting features since
they are implemented in a reusable manner. Additionally, the
workflows are generated in a fully automated manner and, thus,
manual implementations and adaptations for changing models
are no longer required. However, to provide new management
functionality, the workflow generation must be extended with a
corresponding plugin which is capable of generating executable
workflows based on specific operations. Additionally, domain
experts have to implement the operations in new Feature
Component Types. Although this requires immense expertise in
the feature domain, after a feature plugin and the corresponding
Feature Component Types are publicly available, all declarative
deployment models that can be mapped to the EDMM can be
automatically enriched with the new feature.

VI. RELATED WORK

For managing deployed applications, cloud providers such as
AWS provide operations, e. g., for scaling application compo-
nents. However, these cloud provider specific functionalities are
limited, i. e., they cannot be extended for custom management
operations, and can only be used for single cloud deployments.
Of course, configuration management technologies such as
Chef and Infrastructure as Code technologies such as Terraform
support the configuration of multi-cloud applications, but the
management functionalities are limited. For example, Terraform
enables to generate configuration and execution plans. However,
these plans only support the general lifecycle interfaces to
create, start, stop, and terminate application components.
Complex custom management logic for specific management
features cannot be covered.

Several research works also cover the generation of work-
flows based on declarative deployment models that transform
the application into the desired state as described in the
declarative model. This includes the generation of basic provi-
sioning plans [27], [7], [28], [29], configuration changes [30],
and also state-changing management functionalities such as
migration as presented by Breitenbücher et al. [11], [16], [31],
[32]. Eilam et al. [28] and Breitenbücher et al. both focus
on generating workflows based on desired state models by
using predefined elements, i. e., “automation signatures” [28]
and “planlets” [11], [16] respectively, to create activities in a
workflow. These predefined elements represent the operations
and preconditions for executing these operations for application
fragments. According to the desired state model, the operation
execution order is generated. Breitenbücher et al. [11], [16],
[31], [32] also use annotations attached to components in
a declarative deployment model to specify the management
functionality to be executed. Based on the predefined planlets
and the annotations, workflows for holistic state-preserving
management functionalities can be generated, but this approach

requires a high amount of predefined planlets and annotations
that are correctly attached to the declarative deployment model
by the deployment modeler.

Mietzner and Breitenbücher et al. [7] first generate so-
called Provisioning Order Graphs, which are transformed into
executable workflows. Eiliam et al. and several other works [33],
[34], [35], [36], [37] use planning techniques for deriving the
required steps and execution order based on desired state
models. However, they only focus on provisioning as the
definition of a target state is not possible for state-preserving
tasks. Furthermore, especially for management functionalities
a feature-specific execution order of operations is important.

In previous works the generation of management work-
flows for specific management functionalities has already
been presented [38], [20], [21]. Képes et al. [38] presented
an approach to automate the generation of scaling plans
for creating additional component instances on IoT devices.
Wurster et al. [20] introduced a concept to define deployment
tests directly along with the deployment model. The tests can
then be executed by a test execution runtime. For saving and
restoring the entire application state for applications that do
not require to be “always on”, Harzenetter et al. [21] introduce
the Freeze and Defrost concept. For freezing and defrosting the
application state, management plans are generated. The Backup
feature case study presented in Section V-B is based on the
freeze plan. We introduced a generic framework for providing
management features for enriching declarative deployment
models and to generate management workflows for arbitrary
management functionalities.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced an approach enabling the automated
generation of executable management workflows for arbitrary
management functionalities based on declarative deployment
models. For this, component-specific management operations,
e. g., for testing the availability of a Web App, backing up a
MySQL Database, extending the license of a Windows machine,
or adding security updates, are provided as reusable entities,
so-called Feature Component Types. These types are used for
enriching the application components in a declarative deploy-
ment model with additional management functionalities. Based
on the enriched deployment model, executable management
workflows can be generated. We based our concept on a generic
metamodel, the Essential Deployment Metamodel (EDMM),
to be technology- and vendor-agnostic. For validating the
feasibility of our approach we selected the standard modeling
language TOSCA, which can be directly mapped to the EDMM,
and extended the open-source ecosystem OpenTOSCA.

For further validations additional management features will
be realized as Feature Component Types and corresponding
plugins defining the execution order of the workflow tasks.
Additionally, we also want to consider data-driven workflows
and to extend the approach to enable a management across
hybrid environments. Such hybrid environments often require
distributed control of involved application components which
demand the control of their own components.
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