
Institute of Architecture of Application Systems, 
University of Stuttgart, Germany

{kepes, breitenbuecher, leymann, saatkamp, weder}@iaas.uni-stuttgart.de

Deployment of Distributed Applications 
Across Public and Private Networks

Kálmán Képes, Uwe Breitenbücher, Frank Leymann, 
Karoline Saatkamp, Benjamin Weder

© 2019 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings {Kepes2019_DistDeployment,
Author = {K{\'a}lm{\'a}n K{\'e}pes and Uwe Breitenb{\"u}cher and 

Frank Leymann and Karoline Saatkamp and Benjamin Weder},
Title = {{Deployment of Distributed Applications Across Public and Private    

Networks}},
Booktitle = {Proceedings of the 23rd IEEE International Enterprise 

Distributed Object Computing Conference (EDOC)},
Publisher = {IEEE},
Pages = {236--242},
Month = oct,
Year = 2019,
issn = {2325-6354},
doi = {10.1109/EDOC.2019.00036}

}

:

Institute of Architecture of Application Systems



Deployment of Distributed Applications across
Public and Private Networks

Kálmán Képes, Uwe Breitenbücher, Frank Leymann, Karoline Saatkamp, Benjamin Weder
Institute of Architecture of Application Systems, University of Stuttgart, Germany

{kepes, breitenbuecher, leymann, saatkamp, weder}@iaas.uni-stuttgart.de

Abstract—The growing usage of software and hardware in our
everyday lives has lead to paradigms such as Cloud Computing,
Edge Computing, and the Internet of Things. The combination
of these paradigms results in distributed and heterogeneous
target environments: components of an application often need
to be deployed in different environments such as clouds, private
data centers, and small devices. This makes the deployment of
distributed applications a complex and error-prone challenge
as deployment systems have to (i) support cloud deployments,
(ii) determine the location of physical resources, (iii) cope with
security mechanisms preventing inbound communication, and
(iv) use hardware-constrained devices. In this paper, we present
an approach for the automated deployment of distributed appli-
cations on heterogeneous target environments consisting of public
and private clouds, and devices. We especially tackle the issue of
deploying components in environments having restricted inbound
communication capabilities. We prototypically implemented and
compared our approach based on a smart home scenario using
TOSCA and the OpenTOSCA Ecosystem.

Index Terms—distributed application deployment; heteroge-
neous infrastructures; orchestration; automation; TOSCA

I. INTRODUCTION

The growing usage of software and hardware in our everyday
lives gave birth to paradigms such as Cloud Computing (CC)
[1], Edge Computing (EC) [2], and the Internet of Things
(IoT) [3]. Although CC enabled companies to cut costs by
eliminating the need to buy and maintain their own data
centers, the need to fulfill requirements such as low latency
or mobility support arose. Therefore, the paradigm of EC
was developed to move compute resources to the edge of the
network [2]. With IoT, software and hardware resources are
distributed even further, e.g., in smart home devices, factories,
or even cars. In IoT scenarios, a heterogeneous landscape
of sensors and actuators is installed to monitor and actuate
within environments, respectively. The data generated by these
components must often be aggregated on available devices or
edge clouds to realize low latency [2]. For long-term analyses,
the data is then stored and processed in the cloud.

However, deploying such applications that consist of appli-
cation components hosted in different, heterogeneous environ-
ments is a highly complex challenge - especially as a manual
deployment is not possible because it requires immense tech-
nical expertise and it is too time-consuming, error-prone, and
costly [4]. Additionally, the deployment system itself must be
able to cope not only with different environments, but also with
application components and available resources. Therefore,
application deployments must be automated.

For automating the deployment of applications several tech-
nologies have been developed in recent years [5], [6]. All
of them use different execution models that refer to how the
orchestration of a deployment is realized [5]: In the centralized
execution model, a manager performs all tasks to deploy
components by pushing its commands to resources, e.g., by
sending request messages to an API or executing scripts
via Secure Shell protocol. In contrast, in the de-centralized
execution model all participating resources, such as virtual
machines and devices have to install agents that poll their
commands from a central manager.

However, in IoT scenarios, such as Smart Home and In-
dustry 4.0, the involved private networks of smart homes
or factories are protected by firewalls that prevent inbound
communication and thus the centralized orchestration model is
not sufficient, since API or SSH calls cannot pass the firewalls
[7]. Besides, some of the participating devices (e.g. Raspberry
Pi or Arduino) in such scenarios are only equipped with
minimal computing capacity and hundreds of these devices
types can be involved. Thus, installing agents on each device
that request commands from a central manager in order to
avoid inbound communication is costly and for some devices
even not possible due to restricted computing and storage
capabilities. As a result, neither a fully centralized nor a fully
de-centralized model employing agents is sufficient.

In this paper, we present an approach to tackle these
issues, by enabling to determine the location of a participating
resource and to execute operations locally in its respective
environment, without the need of network access from an
central perspective or the need for installing an agent on each
managed resource. The basis for this approach is a temporary
orchestrator coordinating the sequence of deployment tasks
for the entire application. The actual execution of a task is
performed either by the temporary orchestrator itself or a
temporary executor which is running in a participating envi-
ronment in the fashion of a manager or agent to manage local
resources, e.g., virtual machines or devices. We implemented
our approach based on the TOSCA standard [8] and demon-
strate its feasibility with a smart home scenario. Moreover, we
made a comparison with widely used technologies.

The remainder of the paper is as follows: Section II de-
scribes fundamentals and a motivating scenario. We present
our approach in Section III and describe the prototypical
implementation and comparison in Section IV. The related
work is discussed in Section V and we conclude in Section VI.



Deployment	System

Device Public
Cloud

Broker

TopicApp

Create
Topic

Login
Device

Declarative	Deployment	Model

deploy	App
Device	1

Smart	Home

Broker

Public	Cloud

?Where	is	
the	device

xaccess	
denied

2

31

Deployment	Plan

…

Topic

� �

Developer
User

Agent resource	
capacity4

Fig. 1. Distributed application deployment with a (de-)centralized deployment system causes selection and access problems.

II. MOTIVATING SCENARIO AND FUNDAMENTALS

In the following, we introduce declarative deployment mod-
els [9] as the basis for our approach and a motivating scenario
showing challenges of distributed deployments in restricted
and heterogeneous environments.

A. Declarative Deployment Models

A declarative deployment model [9] (see also Breitenbücher
[10] and Saatkamp et al. [11]) describes the structure of
an application to be deployed (e.g. see left in Figure 1).
It specifies the application’s components and their relations
among each other [12]. Components can be infrastructure
components, such as IoT devices (e.g. a Raspberry Pi) or
virtual machines (e.g. on AWS), middleware components (e.g.
a Messaging Broker) or application-specific components (e.g.
a Python app). The relations specify the relationship between
two components, e.g., that a Broker shall run on AWS. To
specify the semantics of components and relations, these
elements have an associated component type and relation
type, respectively. A device component, e.g., can be of type
Raspberry Pi or Arduino. For relations, types such as hostedOn
or connectsTo can be defined, where the first indicates that a
component must be hosted on another, or a component has to
connect to another component via communication channels.
To enable the configuration of components they expose so-
called properties that allow application developers to set
configuration parameters, e.g., as key-value pairs, such as, the
port of a message broker or the ID of a device. Additionally, a
component type can expose deployment operations that allow
a deployment system to create instances of components by
invoking these, e.g., to create a virtual machine instance by a
createVM operation of a cloud or creating a topic by using a
Create Topic operation of the Broker component in Figure 1.
In addition, each deployment operation is associated with a
(software) artifact that implements the operations functionality
in a reusable manner to be executed in proper execution
environments [12], e.g., as a Java-based web service on an
application server or a shell script on a virtual machine.

B. Motivating Scenario

Figure 1 depicts our motivating scenario illustrating problems
that occur when deploying distributed applications across en-
vironments restricting inbound communication. An application
developer wants to deploy an application where its components
have to be deployed in heterogeneous environments. This is
done by a deployment system by giving it a declarative de-
ployment model that specifies the structure of the application
(see left in Figure 1). The model consists of the needed
components, their exposed deployment operations, their re-
lations, and software artifacts that implement components
and deployment operations. The deployment system processes
the given declarative deployment model and generates and
executes a sequence of deployment tasks, i.e., a deployment
plan (see middle in Figure 1) to start and configure instances of
the modeled components and relations (for details see [13]).
In the example in Figure 1, a new topic has to be created
at the Broker by executing the Create Topic operation. The
operation is implemented as a web service which is deployed
by the deployment system in a runtime for executing the
operation. If the task is executed the web service is called
with the respective parameters, e.g., the URL and the topic
name, to send an API call to the Broker. However, the App
component that sends data to the Broker from the device is not
deployable on the device because of the Smart Home firewall
preventing inbound communication (see 3 in Figure 1). This
can be overcome by installing agents on the resources to poll
commands from a central manager, but is not sufficient for
our IoT scenario that uses a hardware-constrained device (see
4 in Figure 1). Moreover, if the infrastructure component does
not have a publicly accessible address, the deployment system
cannot even connect to the device (see 2 in Figure 1). Hence,
these challenges arise while executing the deployment plan: (i)
the deployment system has to determine where the resources
are located, e.g., in our case the device, (ii) it requires access to
these resources which are protected by security mechanisms,
e.g., in our case firewalls, and additionally (iii) it has to be able
to manage heterogeneous resources from virtual machines to
hardware-constrained IoT devices.



Register	

Infrastructure	Component

Deployment	PlanSmart	Home

Broker

TopicApp

Create	Deployment	Model Distributed	Deployment Orchestration2 31

Device 1

Temporary	Orchestrator	
Deployment	System
(TODS)

ID:	b8:27:e…

Device

Matching	

Topic

User
Application	
Developer

MatchA

Instance	

Data

Mgmt

Ops

…
Login
Device

Command	

Topic

Type:	RaspberryPi

Property:	ID=b8:27:..

ForwardB
Local

Execute
C

…

Public

Cloud

Device 1

Give	Identifier Identifier	
as	Input

Temporary	Executor	
Deployment	System
(TEDS)

ID:b8:27:e…

PrivKey:	….

Device

A

Login	Device

Type:	RaspberryPi

Property:	ID=b8:..

B

C

Brok
er

Topic

App

ID:	b
8:27:

e…
Devi

ce

Publi
c

Cloud

Deployment	System	(DS)
Deployment	System	(DS)

Declarative	Deployment	Model

Fig. 2. Overview approach for a distributed deployment across closed networks.

III. DISTRIBUTED DEPLOYMENT APPROACH

To deal with the mentioned challenges, we present an approach
to enable the deployment of distributed applications across
network boundaries and without the need to install agents
on each managed component, starting with an overview in
Section III-A. In Section III-B, we introduce the matching of
instance data to identify the location of infrastructure compo-
nents used for the deployment. In Section III-C, we present a
system architecture supporting our proposed approach.

A. Overview

Figure 2 gives an overview of our deployment approach. It
covers all steps from the registration of new infrastructure
components available in a certain network to the automated
distributed deployment of an application. Since middleware
and application-specific components can only be deployed on
known infrastructure components, they have to be registered
at the respective deployment system (DS) in the first step
(step 1). One DS manages all components accessible in a
certain network. Such components can be devices, such as
Raspberry Pis or MICAs, hypervisors, such as a vSphere, or
public clouds, such as AWS or Azure. For the registration, the
component type and its specific properties, e.g., MAC- or IP-
address and credentials, are required. The user on the one hand
is responsible for the components in a certain network, e.g., in
the smart home. The application developer on the other hand
develops applications that consist of components distributed
across several networks, where parts of the application must be
deployed directly on the devices, e.g., to collect and aggregate
data, and other parts are deployed on private or public clouds.

The developer creates a declarative deployment model for the
automated provisioning (step 2). In our motivating scenario in
Figure 2, a Python-App shall be deployed on a Raspberry
Pi with the ID containing its MAC-address. The Python
app publishes data to a Topic created on a MQTT-Broker
running on a public cloud, e.g., to send measured temperature
data. Since the device is located in a network that restricts
inbound communication, a DS which is located in the same
network is required for the application deployment in step
three. The DS which starts the deployment takes the role of the
temporary orchestrator DS (TODS) and starts a deployment
plan for instantiating the modeled application. The execution
order can be derived from the deployment model, e.g., as in
[13]. For each deployment operation, first, the location of its
execution have to be determined (step A) and, second, the
deployment artifact implementing the operation have to be
forwarded to the responsible DS which will take the role of
the temporary executor DS (TEDS, see step B) before it can
be locally executed (step C). For determining the execution
location in step A, the TODS identifies the infrastructure
components in the deployment model and tries to match these
to its registered instances using the model-instance matching
concept, described in detail in Section III-B. If no matching
instance can be locally detected, the component information
is forwarded to the other DSs using the Matching Topic to
determine a DS which has a matching instance registered.
In the example in Figure 2, the device component in the
deployment model matches to the instance registered in the DS
in the smart home on the left. After successful matching, the
command to execute the deployment operation is forwarded to



the respective TEDS using the Command Topic (step B). The
TEDS polls the deployment artifact and executes it depending
on the artifact (step C): If it is, for example a WAR, it is
deployed and executed in the deployment operation runtime
(see Section III-C) of the TEDS. If it is a script, e.g., a shell-
script, it is loaded and executed directly on the device.

Our approach enables to deploy and manage distributed
applications across protected networks that restrict inbound
communication by dynamically assigned roles of TODS and
TEDSs that manage the respective restricted environments.
Based on that, no significant altering of security mechanisms is
needed, as there is only the need for a communication channel
between the participating DSs. Additionally, there is no need
to install agents on each single resource and thus, the pre-
installation effort of agents is reduced and also devices with
limited computing and storage capacity can be managed.

B. Model-Instance Matching

To achieve a distributed execution of deployment operations
an approach to determine where to execute which operation
is needed. In this section, we provide a location detection
algorithm to determine the execution location of deployment
operations required for step 3A of our approach. In Algo-
rithm 1 its two procedures are shown: The location detection
procedure gets the application component cm for which the
deployment operation is executed. For example, the compo-
nent that exposes the Create Topic deployment operation in
Figure 1 is the Broker component in the deployment model.
In addition, the application deployment model d, and the set
of all components Ci in the instance data database of the
respective TODS or TEDS is given as input. The algorithm
is executed in two steps: First, the component at the bottom
of the application stack of component cm, which we call
the infrastructure component is determined, and then the
infrastructure component is checked against all infrastructure
components in the instance data database.

Let Cd be the set of all components in d. Then, we have to
find the component in this set that is connected to cm by a path
of hostedOn relations and which has no outgoing hostedOn
relations, which means it is on the bottom of the stack of cm
(lines 2-3). Therefore, we define successors

+hostedOn(ci) as the
subset of components in Cd, which are direct or transitive
hostedOn successors of a component ci 2 Cd. Thus, the
infrastructure component needs to be a direct or transitive
successor of cm and the set of its own direct and transitive
successors needs to be empty. This condition could be fulfilled
for multiple components, if a component is allowed to have
multiple outgoing hostedOn relations. However, we restrict our
approach to components without multiple outgoing hostedOn
relations, as the semantic of a component hosted on more
than one other component is unclear, leading to a unique
infrastructure component for each component.

Afterwards, the infrastructure component is matched against
all components in the instance data by comparing its compo-
nent type and properties (lines 12-15). A matching is found,
if a component in the instance data has the same type and a

Algorithm 1 Location Detection Algorithm
1: procedure LOCATIONDETECTION(cm, d, C i)
2: cinfra := ci 2 Cd : (cinfra 2 successors

+hostedOn(cm)
3: ^ successors

+hostedOn(cinfra) = ;)
4: if InstanceDataMatching(cinfra, C i) then
5: return own location
6: else
7: publish message cinfra on matching channel
8: receive & return location from matching channel
9: end if

10: end procedure
11: procedure INSTANCEDATAMATCHING(cinfra, C i)
12: if (9ci 2 C i :(properties(cinfra) ✓ properties(ci)
13: ^ type(cinfra) = type(ci))) then
14: return true

15: end if
16: return false

17: end procedure

subset of matching properties. We allow to match against a
subset to enable matching only against the unique identifier
(e.g. MAC address) of an infrastructure component. If a
matching is found by a DS, it is responsible for executing the
deployment operation on component cm (line 5). Otherwise
the execution of the deployment operation can be delegated to
another DS, which has matching instance data (lines 7-8). Each
participating DS tries to find a matching instance by executing
the instance data matching algorithm. Once a responsible DS
has been identified, the deployment operation is delegated.

C. Distributed Deployment Operation Execution

Figure 3 shows the system architecture of our distributed
deployment approach. The system consists out of multiple
cooperating DS. They manage the components, devices, and
applications in their own network. If an application is in-
stantiated by the system, one of the DSs has the role of the
TODS responsible for executing and coordinating the overall
deployment plan. Only the TODS is in charge of running the
deployment plan of the application. The other distributed DSs
are responsible for the execution of deployment operations,
which are called by the deployment plan, but cannot be
performed at the TODS, and therefore, have the role of TEDSs.
However, the role assignment is not static and every DS of
the distributed deployment system can play the role as TODS
or TEDS, as long as, the TODS are accessible by all other
participating TEDSs.

In addition to the plan runtime, which is used to execute
deployment plans, a DS consists out of a management bus, a
deployment operation runtime, and two databases. The artifact
database stores all deployment artifacts which are contained
in uploaded deployment models, like scripts or WAR files.
Depending on the artifact type they are executed directly on
the infrastructure component or need an additional runtime
inside the deployment system. This runtime is provided by
the deployment operation runtime, an extensible component



Public	Cloud

Smart	Home

Pull	
Management	Artifacts

Deployment	System

Deployment
Operation	
Runtime

Management	
Bus

Plan
Runtime

Instance	Data
Database

Artifact
Database

Deployment	System

Deployment
Operation	
Runtime

Management	
Bus

Plan
Runtime

Instance	Data
Database

Artifact
Database

Broker

Topic

ID:b8:27:e…
PrivKey:	….

Device

TEDS

Deploy	Components

DS
DS

DS

DS
Messaging	

Matching

Command

TODS

Fig. 3. System architecture of the proposed distributed deployment system showing the communcation, components and roles of the participants.

which is able to execute deployment operation, e.g., imple-
mented as web services. The management bus provides the
communication capabilities for all components inside a DS
as well as between other DSs. Finally, the instance data
database is used to store instance information, e.g., identifiers
and current properties of running infrastructure and application
components, which is used by the location detection algorithm
to identify such instances and, therefore, the location where
to execute deployment operations (see Section III-B).

When the deployment plan needs to execute a deployment
operation, it calls the management bus of the TODS with the
operation name and the needed parameters. After receiving the
operation call, the management bus runs the location detection
algorithm. Therefore, it first performs instance data matching
on local component instances to determine whether the de-
ployment operation can be executed in its local environment.
If this is the case, the operation call can be forwarded to
the local deployment system. After successful execution, it
returns to the plan runtime and the next task in the deployment
plan is triggered. However, if the local instance data matching
of a TODS is not successful, the management bus publishes
a matching request containing the component type and the
properties of the infrastructure component to be resolved by
the location detection procedure. Exchanging these requests is
done via topics on a Messaging middleware (see Messaging
component in Figure 3). The messaging middleware should
support the publish-subscribe pattern to decouple the DSs,
which in return eases the extensibility of the system itself.
Each subscribed DS receives the matching request and per-
forms instance data matching locally and returns a response if
it finds a matching component. After receiving the response the
TODS knows, a DS is able to execute the current deployment
operation and publishes a command request with the deploy-
ment operation and the location of the component’s artifacts
in the artifact database. The location is used by the executing
deployment operation runtime to poll the deployment artifact.
As the communication is started from inside the protected
network only the polling of operations and artifacts must be
achieved. In case the TODS does not receive a response from
one of the TEDS within time, the operation cannot be executed
and the deployment aborts.

IV. PROTOTYPE AND COMPARISON

In this section we describe the implementation of our
approach. It is based on the OASIS standard Topology and
Orchestration Specification for Cloud Applications (TOSCA)
[8] and the OpenTOSCA ecosystem [14].

TOSCA enables to model cloud applications in a standard-
ized, vendor-independent and portable manner and is also
applicable for modeling IoT applications [15]. Applications
are modelled as so called Service Templates, which con-
tain Topology Templates describing their application topology.
A Topology Template maps to the application structure of
our application deployment models and consists of Node
Templates corresponding to application components and Re-
lationship Templates representing their relationships. Node
Templates and Relationship Templates are instances of Node-
and Relationship Types which specify their semantics, and
therefore, map to component and relation types. Besides the
description of Interfaces, which correspond to deployment
operations, TOSCA also enables to define Properties, which
can be used to configure a template when it is instantiated.
Deployment operations of types are implemented by so called
Implementation Artifacts, such as scripts or web services.

Our prototypical implementation extends the OpenTOSCA
container, a TOSCA-compliant runtime that is able to process
TOSCA models and create TOSCA Plans in BPEL [16]
enabling, e.g., to start and stop applications. To show the
feasibility of the presented concepts, the extension enables
to setup several cooperating OpenTOSCA containers and to
execute BPEL plans on TODS, invoking the needed deploy-
ment operations on itself or other TEDS. The communication
between the OpenTOSCA container instances is realized over
the management bus and the Message Queuing Telemetry
Transport (MQTT) protocol. Additionally, we implemented
the location detection algorithm in the systems management
bus. If a local execution is not possible, the management bus is
able to publish matching and command messages via MQTT
to delegate the execution to the other available OpenTOSCA
containers. For validating the feasibility of our approach, we
realized the deployment model as presented in Figure 2.



Resource
Resource

Master Agent

Manager

Provider

ResourceResource

ResourceResourceInternal	
Resource

Manager
ResourceResource

ResourceResource
Manager

master-agent	

central manager

provider-specific

distributed central managers (our approach)

opaquePush/Poll Push

Fig. 4. Overview of execution model and communication pattern.

A. Comparison with widely used technologies

We conducted a comparison based on the different execution
models and communication patterns (see Figure 4) between
different deployment technologies and our own approach (see
detailed results in Table I). The comparison is based on
previous work [5] [17]. In upper left corner of Figure 4 the
master-agent execution model executes deployment operations
by sending commands to registered agents running on the used
resources, which executes the respective software artifacts to
achieve the desired deployment tasks. The central manager
execution model directly executes the software artifacts on the
used (external) resources (see lower left corner in Figure 4).
In the provider-specific execution model the provider executes
software artifacts on the internal resources of the provider (see
upper right corner in Figure 4). In our approach, we use the
so-called distributed central manager (see lower right corner
in Figure 4) were a set of central managers are either able to
directly communicate with the used resources or passing the
deployment operation to another manager to execute it.

Most of the compared technologies use a master-agent
execution model (see in Table I), while other technologies
either employed a centralized manager execution model (Note
that some can employ multiple models, e.g., SaltStack). The
main problem with the approaches are either the connectivity
through firewalls (in case of push communication) or the
restricted capacities of managed resources to run an agent
(in case of master-agent execution models). Our approach
overcomes these problems by employing a network of multiple
managers that can take the role of a central manager (tem-
porary orchestrator/TODS) and other the role of agents/local
managers (temporary executor/TEDS) during runtime dynam-
ically. This enables to use the system flexibly, such as, using
only a single manager to enable centralized management,
or registering other managers behind firewalls to enable the
deployment through firewalls without agents.

Another aspect of our comparison was the communication
pattern of the technologies, i.e, if a technology uses either
the push or poll pattern. Technologies that employ a central-
manager execution model also use a push communication
pattern, while those which use a master-agent execution model
use a poll-based communication pattern. The exception here
are Docker Compose and Kubernetes which use a master-agent
execution model and push commands to agents. Additionally,

TABLE I
COMPARISON OF DEPLOYMENT SYSTEM ARCHITECTURES

Exec. Model/Comm. Pattern Technologies

master-agent/poll Puppet, Chef,Juju,
CFEngine, Cloudify

central manager/push Ansible, HEAT, Terraform,
SaltStack, Cloudify

master-agent/push Kubernetes,
Docker Compose, SaltStack

provider-specific/- CloudFormation,
Azure Resource Manager

dist. central managers/push & poll Our approach

some systems (e.g. Cloudify) enable to push and poll the
commands, i.e., push is being used when there is only a single
central manager and poll when agents are in use. Our approach
mixes push and poll as well, as each manager publishes
command messages to potential participants which poll these
message and depending whether they are responsible for the
needed resources push deployment commands to these.

V. RELATED WORK

Arcangeli et al. [6] present a survey on research works to
enable the automated deployment of distributed applications.
From the perspective of accessing the infrastructure behind
firewalls and installing agents, most approaches investigated
by Arcangeli et al. rely on bootstrapping the infrastructure
with their specific agents, decreasing their usage on hardware
constrained infrastructure components or the usage in secured
networks when the agents receive their commands via push
pattern. Our approach enables fully distributed execution while
maintaining the ability to either use a manager to control multi-
ple infrastructure components or employ a manager as an agent
on each resource itself, with the drawback that infrastructure
components have to be registered at the responsible manager.
This task is currently executed manually, but can be automated,
e.g, using discovery standards such as UPnP in case of IoT
devices. For distributing applications across multiple envi-
ronments [11] presents an approach to annotate components
in deployment models with target location labels to indicate
the desired distribution. However, the matching is based on
model adaptations instead of model-instance matching. Several
approaches deal with the placement of services [18], [19] and
their deployment distributed across cloud, edge, and devices
[20]–[24]. Wen et al. [18] present a fog orchestrator for
the optimal placement of IoT applications. They focus on
the planning aspect rather then the distributed deployment
across network boundaries. Also Brogi et al. [19] focus on
the placement decision. Skarlat et al. [20], [21] introduce
FrogFrame, a framework for IoT service placement, deploy-
ment, and execution in the fog. The fog controller serves as
central control and orchestration node that forwards commands
to fog nodes that manage several fog cells. However, this
distributed deployment system requires management nodes on
each manageable device (i.e. it follows a fixed master-agent ar-
chitecture) and can only handle Docker containers as artifacts.
The DIANE framework developed by Vögler et a. [23] enables





the flexible deployment of IoT applications in a declarative
manner. However, the framework relies on agents on each of
the gateways which will be used as infrastructure components,
which in turn restricts the usage of the system for embedded
low computing and storage devices.

VI. CONCLUSION

In this paper, we presented problems occurring when trying to
enable the distributed deployment over heterogeneous environ-
ments. One problem is the access and location of environments
as security mechanisms may prevent proper access for deploy-
ment. Another problem is the heterogeneity of applications
using different types of resources from virtual machines hosted
on the cloud to IoT devices hosted in Smart Homes. Our
distributed deployment approach enables (i) to determine the
location of the required resources in the distributed protected
environments and (ii) to execute the deployment operations
locally to install and configure the application components on
the respective resources. In contrast to other approaches, there
is no need for pre-installed agents on each resource easing the
integration of larger amounts of infrastructure resources and
furthermore, also small devices with less computing power can
be managed. One participant in the system takes the role of the
temporary orchestrator deployment system (TODS), orches-
trating the deployment of the overall application by involving
other participants, having the role of the temporary executor
deployment system (TEDS), which are able to execute the
needed deployment tasks in the respective environments.

In the future we want to further evaluate our approach in
an Industry 4.0 scenario where multiple production machines
and robots have to be managed from an edge cloud. One of
the problems within the mentioned scenario is that different
partners that must start resources on their private infrastructure
use internal, proprietary APIs which they do not want to share
in a global application model. Therefore, we plan to adapt our
approach from an orchestrated to a choreographed execution,
by splitting the deployment plans according to the locality of
environments and infrastructure.

ACKNOWLEDGMENT

This work was partially funded by the DFG project
DiStOPT (252975529) and the BMWi project Industrial Com-
munication for Factories – IC4F (01MA17008G).

REFERENCES

[1] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud
computing systems,” in 2009 Fifth International Joint Conference on
INC, IMS and IDC, Aug 2009, pp. 44–51.

[2] R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, fog et
al.: A survey and analysis of security threats and challenges,” Future
Generation Computer Systems, vol. 78, pp. 680 – 698, 2018.

[3] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787 – 2805, 2010.

[4] U. Breitenbücher, K. Képes, F. Leymann, and M. Wurster, “Declarative
vs. Imperative: How to Model the Automated Deployment of IoT
Applications?” in Proceedings of the 11th Advanced Summer School
on Service Oriented Computing. IBM Research Division, 2017, pp.
18–27.

[5] D. Weerasiri, M. C. Barukh, B. Benatallah, Q. Z. Sheng, and R. Ranjan,
“A Taxonomy and Survey of Cloud Resource Orchestration Techniques,”
ACM Computer Surveys, vol. 50, no. 2, pp. 26:1–26:41, May 2017.

[6] J.-P. Arcangeli, R. Boujbel, and S. Leriche, “Automatic deployment of
distributed software systems: Definitions and state of the art,” Journal
of Systems and Software, vol. 103, pp. 198 – 218, 2015.

[7] A. Luoto and K. Systä, “Fighting network restrictions of request-
response pattern with MQTT,” IET Software, vol. 12, no. 5, pp. 410–417,
2018.

[8] OASIS, Topology and Orchestration Specification for Cloud Appli-
cations (TOSCA) Version 1.0, Organization for the Advancement of
Structured Information Standards (OASIS), 2013.

[9] C. Endres, U. Breitenbücher, M. Falkenthal, O. Kopp, F. Leymann, and
J. Wettinger, “Declarative vs. Imperative: Two Modeling Patterns for
the Automated Deployment of Applications,” in Proceedings of the 9th

International Conference on Pervasive Patterns and Applications. Xpert
Publishing Services (XPS), 2017, pp. 22–27.

[10] U. Breitenbücher, “Eine musterbasierte Methode zur Automatisierung
des Anwendungsmanagements,” Dissertation, Universität Stuttgart,
Fakultaet Informatik, Elektrotechnik und Informationstechnik, 2016.

[11] K. Saatkamp, U. Breitenbücher, O. Kopp, and F. Leymann, “Topology
splitting and matching for multi-cloud deployments,” in Proceedings
of the 7th International Conference on Cloud Computing and Services
Science (CLOSER 2017). SciTePress, Apr. 2017, pp. 247–258.

[12] M. Wurster, U. Breitenbücher, M. Falkenthal, C. Krieger, F. Ley-
mann, K. Saatkamp, and J. Soldani, “The Essential Deployment Meta-
model: A Systematic Review of Deployment Automation Technolo-
gies,” arXiv:1905.07314 [cs.SE], To appear: Software-Intensive Cyber-
Physical Systems (SICS), 2019.

[13] U. Breitenbücher, T. Binz, K. Képes, O. Kopp, F. Leymann, and
J. Wettinger, “Combining Declarative and Imperative Cloud Application
Provisioning based on TOSCA,” in International Conference on Cloud
Engineering (IC2E 2014). IEEE, Mar. 2014, pp. 87–96.

[14] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak,
and S. Wagner, “OpenTOSCA - A Runtime for TOSCA-based Cloud
Applications,” in Proceedings of the 11th International Conference on
Service-Oriented Computing (ICSOC 2013). Springer, Dec. 2013, pp.
692–695.

[15] A. C. Franco da Silva, U. Breitenbücher, P. Hirmer, K. Képes, O. Kopp,
F. Leymann, B. Mitschang, and R. Steinke, “Internet of Things Out
of the Box: Using TOSCA for Automating the Deployment of IoT
Environments,” in Proceedings of the 7th International Conference on
Cloud Computing and Services Science (CLOSER 2017). SciTePress,
Apr. 2017.

[16] OASIS, Web Services Business Process Execution Language (WS-
BPEL) Version 2.0, Organization for the Advancement of Structured
Information Standards (OASIS), 2007.

[17] T. Delaet, W. Joosen, and B. Vanbrabant, “A Survey of System Config-
uration Tools,” in Proceedings of the 24th International Conference on
Large Installation System Administration (LISA 2010). USENIX, Nov.
2010.

[18] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos, “Fog
orchestration for internet of things services,” IEEE Internet Computing,
vol. 21, no. 2, pp. 16–24, Mar 2017.

[19] A. Brogi, S. Forti, and A. Ibrahim, “How to best deploy Your Fog
applications, probably,” in 2017 IEEE 1st International Conference on
Fog and Edge Computing (ICFEC), May 2017, pp. 105–114.

[20] O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner, “Resource Pro-
visioning for IoT Services in the Fog,” 2016 IEEE 9th Conference on
Service-Oriented Computing and Applications (SOCA), pp. 32–39, 2016.

[21] O. Skarlat, V. Karagiannis, T. Rausch, K. Bachmann, and S. Schulte, “A
framework for optimization, service placement, and runtime operation
in the fog,” in 2018 IEEE/ACM 11th International Conference on Utility
and Cloud Computing (UCC), Dec 2018, pp. 164–173.

[22] C. Wöbker, A. Seitz, H. Mueller, and B. Bruegge, “Fogernetes: Deploy-
ment and management of fog computing applications,” in NOMS 2018
- 2018 IEEE/IFIP Network Operations and Management Symposium,
April 2018, pp. 1–7.

[23] M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar, “DIANE -
Dynamic IoT Application Deployment,” in 2015 IEEE International
Conference on Mobile Services, June 2015, pp. 298–305.

[24] R. Jain and S. Tata, “Cloud to Edge: Distributed Deployment of Process-
Aware IoT Applications,” in 2017 IEEE International Conference on
Edge Computing (EDGE), 2017, pp. 182–189.


