
Service-Oriented Computing – ICSOC 2019 Workshops, 2019. © 2019 Springer-Verlag.
This is the author’s version of the work. It is posted by permission of Springer-Verlag for
your personal use. The final publication is available at Springer via https://doi.org/10.
1007/978-3-030-45989-5_26.

The EDMM Modeling and Transformation System

Michael Wurster1, Uwe Breitenbücher1, Antonio Brogi2, Ghareeb Falazi1, Lukas
Harzenetter1, Frank Leymann1, Jacopo Soldani2, and Vladimir Yussupov1

1 Institute of Architecture of Application Systems, University of Stuttgart, Germany
[lastname]@iaas.uni-stuttgart.de

2 Department of Computer Science, University of Pisa, Pisa, Italy
[lastname]@di.unipi.it

Abstract. Since deployment automation technologies are heterogeneous
regarding their supported features and modeling languages, selecting a
concrete technology is difficult and can result in a lock-in. Therefore, we
presented the Essential Deployment Metamodel (EDMM) in previous
work that abstracts from concrete technologies and provides a normalized
metamodel for creating technology-independent deployment models. In
this demonstration, we present tool support for EDMM in the form of the
EDMM Modeling and Transformation System, which enables (i) creating
EDMM models graphically and (ii) automatically transforming them into
models supported by concrete deployment automation technologies.

Keywords: Deployment Modeling, Automation, Transformation, Tool

1 Motivation: The Deployment Technology Lock-In

An integral aspect of efficient application deployment processes is that they must
be highly automated: Manually deploying applications consisting of multiple
components is complex, time-consuming, error-prone, and, moreover, requires
immense technical expertise to execute the technical deployment tasks. Therefore,
several deployment automation technologies have been developed in the past years
that are actively used by industry and research. Deployment technologies are
usually offered as a software system or service that can deploy applications fully
automatically by processing so-called deployment models. Deployment models can
be categorized into two types: (i) imperative models and (ii) declarative models [1].
The main idea of imperative models is to describe a detailed, executable process
specifying all necessary technical tasks to be executed, their implementations, and
their order. In contrast, declarative models only describe the components to be
deployed, their configurations, and the relations between them, but hardly provide
technical execution details. Declarative models, hence, need to be interpreted
by a deployment automation technology that derives the technical deployment
instructions while an imperative model can be directly executed as-is. Since
our previous work [3] has shown that 13 of the most important deployment
technologies are either declarative by nature or support declarative deployment
modeling, we focus on declarative deployment models in this work.

https://doi.org/10.1007/978-3-030-45989-5_26
https://doi.org/10.1007/978-3-030-45989-5_26
https://doi.org/10.1007/978-3-030-45989-5_26


2 Wurster et al.

EDMM
Modelling Tool

EDMM Transformator

W i n e r y

..
.

Transformation Logic
Model 

Importer

Chef Plugin

Terraform Plugin

…YAML Plugin

EDMM
Model

Fig. 1. EDMM Modeling and Transformation System Architecture.

However, the available deployment technologies are heterogeneous regarding
their features and supported modeling languages. Thus, deciding for a specific
technology quickly results in a Deployment Technology Lock-In, which means
that it is hard to exchange the technology later. The main reasons for this lock-in
result from (i) the deep technical expertise that needs to be acquired to work with
such a technology and (ii) the need to rewrite all deployment models that are
currently in use. Therefore, we introduced the Essential Deployment Metamodel
(EDMM) in previous work [3], which abstracts from concrete technologies and
provides a normalized metamodel that only supports commonalities of the 13
most important technologies. Thereby, it enables to create deployment technology-
agnostic EDMM models that can be translated into each of the 13 technologies
following the translation guidelines we presented in Wurster et al. [3]. However,
this translation is currently a manual, time-consuming, and error-prone approach.

2 The EDMM Modeling and Transformation System

To tackle this issue, in this demonstration, we present the EDMM Modeling and
Transformation System shown in Fig. 1, which consists of (i) the EDMM Modeling
Tool and (ii) the EDMM Transformation Framework. Using the EDMM Modeling
Tool, a user is able to graphically model the deployment of an application in the
form of an EDMM model that describes the components to be deployed, their
configurations, their implementations, and their relations. The resulting EDMM
model is independent of concrete deployment technologies and can be exported
as a file. This EDMM model file can be fed into the EDMM Transformation
Framework, which offers a command-line interface (CLI) that can be either used
directly by the user or integrated into any automation workflow. Using the CLI,
the desired target deployment technology in which the EDMM model should be
transformed can be selected. The output is an executable, technology-specific
deployment model, which can be executed using the selected technology. Our
prototype3, as well as a video demonstrating the system, are available on GitHub.
3 https://github.com/UST-EDMM/transformation-framework

https://github.com/UST-EDMM/transformation-framework


The EDMM Modeling and Transformation System 3

EDMM Modeling Tool

The EDMM Modeling Tool has been developed by extending Eclipse Winery [2],
which is a web-based environment to graphically model TOSCA-based applica-
tion topologies. It includes (i) a back-end to manage component and relation
types, their properties, and artifacts and (ii) a Topology Modeler that enables to
graphically compose application components and specify configuration properties.
Since EDMM can be mapped to TOSCA [3], Winery has been extended by
providing an export plugin to transform its internal TOSCA-based data model
to the YAML format defined by EDMM. The EDMM export functionality was
developed for the Java back-end and is merged to Winery’s official master branch.
Further, an administration component in the Angular user-interface has been
added to specify custom type mappings between the maintained TOSCA node
types and the built-in EDMM types. The Topology Modeler itself did not need
an extension as we fully rely on Winery’s internal data model during modeling.

EDMM Transformation Framework

The EDMM Transformation Framework provides a CLI for transforming EDMM
models into technology-specific deployment models. At this stage, the framework
supports YAML files as input according to the published EDMM YAML specifi-
cation4. All components, as well as their component types, must be provided in
a single EDMM model file at the time of writing.

We designed the framework to employ a plugin architecture that supports
integrating various deployment technologies in an extensible and pluggable way.
Each plugin defines an identifier and a corresponding display name, e.g., the
“kubernetes” plugin is implemented to transform EDMM-based models into
“Kubernetes” resource files. The transformation can be started by using the
transform command of the CLI: The user has to specify the EDMM model file
and the identifier of the target deployment technology. For the framework, we use
Java with Spring and Spring Boot to build the CLI as well as to load the plugins
dynamically once they are registered in a configuration file. Each plugin must
implement a transform() method to execute the required transformation logic.
Further, a plugin may implement different lifecycle methods: (i) checkModel()
to indicate whether a model can be transformed by a plugin, (ii) prepare() to
execute preparation activities prior to the transformation, e.g., download external
files, and (iii) cleanup() to execute clean up activities after the transformation.

The internal data model of the EDMM Transformation Framework is based
on and represented as a graph using the Java library JGraphT. By employing
a graph, also for the reason that the component structure in an EDMM-based
model naturally forms a graph, the plugins are able to efficiently traverse the data
model to apply the respective transformation logic. Plugins may apply arbitrary
graph algorithms, e.g., topological sorting of components to traverse the graph
in a certain way. Further, this also enables to make use of the visitor pattern to
add or extend new plugin logic without modifying the graph structure.
4 https://github.com/UST-EDMM/spec-yaml

https://github.com/UST-EDMM/spec-yaml


4 Wurster et al.

Developed Plugins and Supported Component Types

Currently, the framework supports all 13 deployment technologies which were
systematically selected and reviewed by Wurster et al. [3]. Details of the plugins’
implementations and the transformation rules can be found in the documenta-
tion. Please note: In this demonstration, we only focus on deployments that are
based on virtual compute resources, i.e., operating systems, virtual machines, or
containers, and on the software that needs to be deployed on them including their
configuration and orchestration5. Therefore, we introduce a couple of built-in
EDMM component types as modeling baseline. The base of all supported deploy-
ments is represented by the Compute component type that permits modeling
a virtual compute resource, which can be then transformed by a plugin into a
virtual machine or container, respectively, depending on the target technology’s
capabilities. For example, a Compute component gets transformed into a virtual
machine for OpenStack Heat, while it is transformed into a container for Kuber-
netes. We also defined several software component types that can be installed
on Compute components, e.g., a MySQL database. To install such components,
either the plugin (i) contains built-in logic to translate a certain component
type into the corresponding modeling element in the target model or (ii) it
uses EDMM Operations, which provide generic plug-points in EDMM models to
specify installation scripts for components that can be injected into the target
model by the plugin. Also, the orchestration of components is supported, e.g.,
to connect an application to its database (possibly hosted on different Compute
components), plugins inject the properties of the target component, e.g., IP
address, as environment variable into the source component, which enables using
them, for example, in installation scripts. In future work, we plan to extend the
plugins for other types of components, e.g., PaaS, FaaS, and other Cloud services.

Acknowledgments This work is partially funded by the European Union’s
Horizon 2020 research and innovation project RADON (825040), the DFG project
SustainLife (379522012), and the projects AMaCA (POR-FSE) and DECLware
(University of Pisa, PRA_2018_66).

References

1. Endres, C., et al.: Declarative vs. Imperative: Two Modeling Patterns for the Automated
Deployment of Applications. In: Proceedings of the 9th International Conference on
Pervasive Patterns and Applications. Xpert Publishing Services (Feb 2017)

2. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – A Modeling Tool for
TOSCA-based Cloud Applications. In: ICSOC 2013. pp. 700–704. Springer (2013)

3. Wurster, M., et al.: The Essential Deployment Metamodel: A Systematic Review
of Deployment Automation Technologies. SICS Software-Intensive Cyber-Physical
Systems (Aug 2019)

5 An example that is supported by all developed plugins can be found here:
https://github.com/UST-EDMM/getting-started

https://github.com/UST-EDMM/getting-started

	The EDMM Modeling and Transformation System
	1 Motivation: The Deployment Technology Lock-In
	2 The EDMM Modeling and Transformation System


