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Abstract. Service composition is a popular approach for building soft-
ware applications from several individual services. Using imperative work-
flow technologies, service compositions can be specified as workflow mod-
els comprising activities that are implemented, e.g., by service calls or
scripts. While scripts are typically included in the workflow model it-
self and can be executed directly by the workflow engine, the required
services must be deployed in a separate step. Moreover, to enable their
invocation, an additional step is required to configure the workflow model
regarding the endpoints of the deployed services, i.e., IP-address, port,
etc. However, a manual deployment of services and configuration of the
workflow model are complex, time-consuming, and error-prone tasks. In
this paper, we present an approach that enables defining service compo-
sitions in a self-contained manner using imperative workflow technology.
For this, the workflow models can be packaged with all necessary deploy-
ment models and software artifacts that implement the required services.
As a result, the service deployment in the target environment where the
workflow is executed as well as the configuration of the workflow with
the endpoint information of the services can be automated completely.
We validate the technical feasibility of our approach by a prototypical
implementation based on the TOSCA standard and OpenTOSCA.

Keywords: Service Composition · Workflow Technology · Service De-
ployment Automation · Configuration Automation.

1 INTRODUCTION

A popular approach for building applications by combining several individual
services is called service composition, which can reduce the time and cost to de-
velop new services or applications significantly [7,13]. Service compositions can
be specified using imperative workflow languages, such as the Business Process
Execution Language (BPEL) [14], to benefit from their robustness and features
like automatic recovery [12]. Imperative workflow models usually comprise activ-
ities that can be executed in the workflow engine, like script calls, and invocations
of services that run in the environment. The endpoints of available services can
be retrieved using a service registry. Then, the services have to be bound to the
workflow, which means the workflow is configured with the required information
to access the services, such as the used protocols or the service endpoints [13].
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However, for the successful binding, the required services must be running
and accessible by the workflow [18]. Services that are provided over the inter-
net are usually always on and can be accessed from any place if they are not
protected by security mechanisms, like firewalls [8,12]. Thus, in general, the
binding is feasible independent of the execution environment, e.g., the network
of the workflow engine executing the workflow. However, if a workflow requires
a service that is not publicly available, the service binding, and therefore, the
workflow execution fails. Hence, the missing services have to be deployed by the
user to execute the workflow successfully. However, a manual determination of
the services that are required, as well as the deployment of these services, is a
complex, time-consuming, and error-prone task and not suited for non-technical
users [2]. Additionally, the service binding with the deployed services has to be
performed by the user, or the service has to be registered correctly with the
service registry. An error in the configuration, like a wrong IP-address, leads to
the failure of the overall workflow. Furthermore, if a service is migrated, e.g.,
to another virtual machine, the workflow configuration and the service registry
have to be updated correspondingly. Otherwise, the service is no longer acces-
sible, and the workflow execution fails. Therefore, this process leads to a lot of
manual work, which is error-prone and should be automated as far as possible.

Many services are not offered over the internet, and therefore, the user of the
workflow is in charge of deploying these services. Furthermore, there may also
be technical reasons to deploy a service that is available over the internet close
to the workflow engine executing the workflow, e.g., to reduce the latency of the
service interactions or the required network bandwidth. An example is a workflow
processing big data, which would overload the network if the used services are
deployed outside the local environment. Thus, to enable the execution of such
workflows, the required services must be deployed in the target environment by
the user before the workflow execution. However, this leads to the previously
described problems, such as erroneous configurations due to human errors.

In this paper, we tackle these challenges by an approach, which allows pack-
aging imperative workflows with all necessary deployment models to deploy the
required services of the workflow as a self-contained archive. It consists of the
workflow model and a set of deployment models for the required services, which
are attached to the activities of the workflow that invoke the services. Addition-
ally, our approach addresses the automatic deployment of all required services
in the target environment. Finally, the approach includes the automatic config-
uration of the workflow with the endpoint information of the deployed services,
and therefore, enables defining imperative workflows in a self-contained manner
without additional manual tasks to set up required services in the environment.

2 FUNDAMENTALS & PROBLEM STATEMENT

In this section, we introduce fundamentals about service composition approaches,
imperative workflow technologies, and the deployment of services. Furthermore,
we present the problem statement which underlies our approach.
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2.1 Service Composition

The creation of new applications by combining existing services is denoted as
service composition [11]. Service composition can reduce development time and
cost significantly as existing functionality is reused instead of implementing it
again. In static service composition, the required service functionalities and the
order in which they have to be invoked are specified at the design time of the
service composition [3]. Furthermore, the concrete service implementation must
be selected for each required functionality, and the service composition has to
be configured to invoke them, which is referred to as binding [13]. The binding
includes the configuration of the required protocol to invoke the service, the mes-
sage format, and the endpoint, i.e., the IP address and port of the service. The
available services can be retrieved using a service registry, which provides bind-
ing information for running services to a requester [9]. Thereby, the selection and
binding of services during the development of the service composition is called
static binding. In contrast, the binding at runtime is referred to as dynamic bind-
ing, which allows to dynamically select a suited service based on non-functional
requirements. In this paper, we focus on the static binding of services.

2.2 Imperative Workflow Technology

Service compositions can be specified using imperative workflow languages, such
as the Business Process Execution Language (BPEL) [14]. An imperative work-
flow consists of a predefined set of activities that have to be executed to achieve
the goals of the workflow [5]. Activities can be divided into different categories,
e.g., activities that invoke web services or activities that require an human action.
The different activities are connected by control flow and data flow edges [12].
Control flow edges specify a partial order in which the activities of the workflow
have to be executed. In contrast, data flow edges define which parts of the output
data of an activity must be transferred to which other activities. Two benefits
of using workflow technologies are scalability and robustness [5]. Another ad-
vantage is the comprehensive error handling mechanisms implemented in most
workflow languages and engines. These mechanisms, e.g., allow executing activ-
ities in a transactional manner and role changes back in case of an error. Thus,
workflows can be executed robustly and provide high-availability to the user.

Due to these advantages, workflows are essential for the implementation of
long-running business processes [12]. Such business processes have to be exe-
cuted (i) reliably, (ii) robustly, (iii) in parallel, and (iv) provide high-availability
to the user to achieve the maximum business value. The implementation of pro-
grams, e.g., written in programming languages such as Java or C, that fulfill these
properties is a complex and time-consuming task, as they have to be designed
specifically with these non-functional properties in mind. In contrast, workflow
management systems are general-purpose systems and provide the needed prop-
erties directly to the user without the need to implement or adapt them for a
certain use case. Hence, they ease the development of workflows implementing
business processes [5]. Therefore, workflow technology is of vital importance for
the implementation and execution of long-running business processes.
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2.3 Service Deployment

For our approach, we distinguish between provided services, that are offered by
a provider over a network, e.g., the internet, and self-hosted services, for which
the required software artifacts for the deployment are available, but for which
the user is in charge of deploying them. Provided services are “always-on”, which
means the user can directly use them and is not in charge of creating or deleting
them [12]. Examples of this kind of service are Google Maps, Dropbox, or Spotify.
In contrast, self-hosted services do not always run on the infrastructure of some
provider, and thus, must be deployed by the user before using them in a workflow.
All utilized services must be available to execute a workflow successfully. This
means the services have to respond to requests and return correct results [12]. We
focus on self-hosted services in our approach as the user is in charge of deploying
them and keeping them available as long as they are needed.

However, the deployment of the required self-hosted services is a complex,
time-consuming, and error-prone task [2]. The infrastructure, such as a virtual
machine, has to be prepared, the dependencies of the service have to be installed,
and the software artifacts of the service have to be transferred to the prepared
infrastructure. Furthermore, the service must be configured with the required
certificates, and the needed authentication has to be set up. Additionally, the
workflow models have to be configured using the endpoint information of the
deployed services to access them during runtime [12]. Therefore, a lot of manual
work has to be done, and this process should be automated as far as possible.

In recent years several technologies for automating the deployment and man-
agement of applications have been developed, such as Terraform1 or Kuber-
netes2 [20]. Using these technologies, applications are described as reusable de-
ployment models, which can be used to instantiate the application fully automat-
ically. Depending on the modeling approach, deployment models can be divided
into two classes, as shown in Figure 1: declarative and imperative deployment
models [6]. A declarative deployment model describes the structure of an ap-
plication, including all software and hardware components and their relations.
In contrast, imperative deployment models express the deployment process in a
procedural manner and contain all activities that have to be executed to deploy
the application, as well as the execution order of these activities. Such imperative
deployment models can be defined using workflow languages such as BPEL.

1 https://terraform.io
2 https://kubernetes.io
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Thus, deployment automation technologies can be utilized to deploy required
self-hosted services automatically in the target environment. However, the de-
ployment automation technologies are not integrated with workflows and do not
update the endpoint information of the activities invoking the services. Hence,
the user has to trigger the deployment of the services using a deployment system,
retrieve the endpoints from the deployed services, and configure the workflow
according to the endpoints. As outlined previously, this process is complex and
time-consuming for non-technical users and can lead to configuration errors.

2.4 Problem Statement

As described in the previous subsections, workflow technology is essential for the
execution of long-running business processes. However, some of the used services
are usually not available over the internet and have to be deployed by the user.
Hence, (i) the deployment models for the required self-hosted services have to be
determined first. This is complex if there are repositories with lots of deployment
models, as it is unclear for non-technical users how to search and select appro-
priate deployment models. Additionally, (ii) the determined deployment models
must be transferred into the target environment for the workflow execution.
Further, (iii) required services have to be deployed by passing the corresponding
deployment models to a deployment system. Finally, (iv) the services have to be
bound to the workflow to access them on runtime. Hence, a lot of complex and
time-consuming work has to be performed to prepare the target environment and
the workflow for the execution and this process should be automated. Therefore,
the resulting research question for this work can be formulated as follows: “How
can business processes be modeled in a self-contained manner and be deployed in
the target environment fully automatically including all required services?”

3 SELF-CONTAINED WORKFLOW MODELS

To enable packaging and deploying workflow models that require services that are
not provided with the “always-on” property over the network, a self-contained
packaging format is needed. Without such a packaging format, the required self-
hosted services of a workflow have to be determined manually and deployed
in the environment to execute the workflow successfully. Thus, our goal is to
develop a packaging format that enables bundling all required information.

The conceptual structure of a self-contained workflow model is depicted in
Figure 2. It contains the workflow which can be modeled, e.g., using a stan-
dardized workflow language such as BPEL. In the example, the workflow starts,
performs two sequences of two activities in parallel, and terminates afterward.
However, in contrast to existing workflow archives, deployment models can be
added and linked by the activities in the self-contained workflow model. For ex-
ample, the activity on the top-left references a declarative deployment model.
This deployment model can be used to deploy the service that is invoked by the
activity. If multiple deployment models for services with the same functionality
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Fig. 2. Our new modeling approach: Self-Contained Imperative Workflow Models.

exist, they can all be linked by the invoking activities (see top-right activity).
E.g., one deployment model could deploy the service on a private cloud, while the
other could use a local workstation. Further, different deployment models can
implement the same service providing various non-functional properties, like re-
sponse time or security. Hence, a selection based on non-functional requirements
of the user or available hardware in the target environment can be performed.

In addition to declarative deployment models, imperative deployment models
can be referenced by activities of the self-contained workflow model too (see
bottom-left activity). While declarative deployment models simplify common
and non-complex application deployments and require only limited technical
expertise, imperative deployment models can be modified arbitrarily [6]. Hence,
they are better suited for complex deployments with a lot of custom-tailored
components. Therefore, our approach allows utilizing both kinds of deployment
models to deploy a required service to be generally applicable.

Finally, a self-contained workflow model can also contain activities that do
not require the deployment of a service, and thus, have no reference to a service
deployment model. For example, an activity that is implemented by a script can
be executed within the workflow engine and has no external dependency on a
service (see bottom-right activity). Additionally, some activities have to be per-
formed by humans, such as the physical set up of a device. Hence, depending on
the required software tools to perform the human task, deployment models may
be referenced. Further, activities can invoke provided services that are accessible
over the network and do not have to be deployed before the workflow execution.

Self-contained workflow models enable to define imperative workflows imple-
menting service compositions in a self-contained manner with all required service
deployment models. Hence, the required services do not have to be determined
and transferred into the target environment by the user, which can be a com-
plex task if there are many deployment models available. However, the user is
still in charge of deploying the services and configuring the workflow with the
endpoints. Therefore, an approach to automate these tasks is required.
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4 AUTOMATIC SERVICE DEPLOYMENT

After transferring the self-contained workflow model into the target environment,
the required services must be deployed by using the included service deployment
models. Furthermore, the endpoints of the deployed services have to be retrieved,
and the services have to be bound to the workflow using this endpoint informa-
tion. In this section, we present an approach to automate these tasks.

Figure 3 gives an overview of our approach. It covers all steps from the
definition of the self-contained workflow model to the workflow execution. In
the first step, the user models his workflow utilizing a suited modeling tool.
The modeling tool presents the available service deployment models to the user,
and therefore, allows referencing them within activities of the workflow. After
finishing the modeling, the workflow is packaged as a self-contained workflow
model. Subsequently, the self-contained workflow model can be transferred into
the target environment for the workflow execution without the need to trans-
mit additional files. In the target environment, it is passed to the deployment
orchestrator, which handles the upload of the deployment models to a suitable
deployment system (step 2). Thereby, the required deployment system depends
on the kind of deployment models that are referenced by the activities. E.g., if
they are imperative or declarative and based on a standard, such as TOSCA [15],
or a proprietary format. However, the deployment orchestrator can use any de-
ployment system by providing a plugin system to enable easy extensibility.

Before deploying the services, the deployment orchestrator has to select one of
the referenced service deployment models per service if multiple alternatives are
available. Therefore, the available computing infrastructure can be registered
at the deployment orchestrator by a system administrator. This information
can be used to exclude deployment models that utilize infrastructure that is
not available in the target environment. In case, that no deployment models
remain, the deployment must be aborted and the user has to be informed. If
multiple alternative deployment models still exist, the selection can be continued
by comparing the non-functional requirements, that can be specified by the user,
with the non-functional properties of the different deployment models [21].



8 B. Weder et al.

After selecting the service deployment models, the deployment orchestrator
triggers the deployment of all required self-hosted services (step 3). For the cre-
ation of the services, different input parameters, such as user name and password
for the deployment on a private cloud, can be required. These input parameters
have to be provided by the user in step 3. Alternatively, all parameters can
already be included in the deployment models that are contained in the self-
contained workflow model. This eases the instantiation of the workflow model.
However, it can reduce the portability if, e.g., a deployment model using a lo-
cally installed hypervisor is part of the self-contained workflow model. Therefore,
the endpoint of the hypervisor should be provided by the user after transferring
the archive into the target environment. After deploying the services, they are
bound to the workflow by the deployment orchestrator. Subsequently, the cor-
rectly configured workflow can be deployed into the workflow engine (step 4).
Finally, the workflow engine executes the workflow, and the activities access the
deployed services (step 5). Thus, the workflow can be executed with no manual
task except the upload of the self-contained workflow model to the deployment
orchestrator in the target environment despite the usage of self-hosted service.

5 PROTOTYPE

This section presents the prototypical implementation of our approach. Due to
its wide distribution, the workflow language BPEL and the open-source work-
flow engine Apache ODE 3 were selected to model and execute the workflows.
For the specification of the service deployment models, the Topology and Or-
chestration Specification for Cloud Applications (TOSCA) [15] is used. TOSCA
is an OASIS standard, which allows describing cloud applications in a vendor-
neutral way, and therefore, eases portability and interoperability of modeled
applications. The prototype is based on the open-source TOSCA modeling tool
Winery4. We extended Winery to enable the modeling of BPEL-based service
compositions and the attachment of declarative service deployment models to
the activities. The resulting workflow can be packaged by Winery into a self-
contained workflow archive. Furthermore, the services and the workflow can be
deployed automatically using the workflow engine Apache ODE and the Open-
TOSCA Container5, an open-source TOSCA-compliant runtime, which is part
of the OpenTOSCA ecosystem [1]. After the service deployment is successful,
the services can be bound to the workflow by Winery. Therefore, the required
services can be deployed and the workflow can be configured fully automati-
cally. The created enhancements are plug-in based and can easily be extended
to support other workflow engines or deployment systems.

3 https://github.com/apache/ode
4 https://github.com/OpenTOSCA/winery
5 https://github.com/OpenTOSCA/container
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6 RELATED WORK

Research works from different research areas focus on the development of self-
contained archives or packaging formats. The TOSCA [15] standard can be used
to define cloud applications in a portable and self-contained manner. For this, all
required information for the application deployment is packaged in a Cloud Ser-
vice Archive (CSAR), which can be executed by any TOSCA-compliant runtime.
Qasha et al. [16] provide a framework for scientific workflow reproducibility and
portability in the cloud. For this, they propose to use TOSCA to define scientific
workflows together with the specification of the hosting environment. Hence, the
resulting CSAR can be used by a TOSCA runtime to automatically deploy the
required services and to enact the workflow. However, every workflow activity, its
execution environment, and control or data connections between different activ-
ities have to be modeled using TOSCA. This can lead to a cluttered model that
gets incomprehensive. Furthermore, benefits from classical workflow languages
and engines, like widely known graphical notations or automatic scaling, can not
be reused directly and have to be provided additionally.

Different approaches use virtual machine images to provide workflows in a
portable and reproducible manner [10,17]. This means, they create virtual ma-
chine images from the running services, which can then be utilized to execute
the workflow in other environments. For this, new virtual machines are created
from each required image. However, the virtual machine images often depend
on provider-specific extensions, which are used to improve the performance, and
therefore, the portability is reduced. Additionally, services running on other in-
frastructures, like local workstations, are not considered. Another problem is the
size of the virtual machine images that impedes their transmission.

Several scientific workflow management systems provide capabilities to sub-
mit tasks to available computing resources and to set up required services au-
tomatically when they are invoked by a workflow. Pegasus [4] separates the
description of the scientific workflow from the execution environment to allow
the specification of portable workflows. Additionally, it enables the runtime op-
timization of workflows regarding the performance or reliability by selecting
appropriate computing resources for the given requirements. Thus, Pegasus con-
tains a mapper component that searches and assigns computational resources
to activities of the abstract workflow provided by the user. However, Pegasus
is only capable to use existing resources and prepares them by transferring files
or needed executables. In contrast to our approach, it is not possible to deploy
required services using arbitrary deployment models employing Pegasus.

Kepler [19] is an open-source scientific workflow management system, that
was extended to enable the usage of EC2 resources within workflows. Therefore,
it is possible to deploy services on cloud resources in scientific workflows. How-
ever, this extension is provider-specific and not suited for services that should
be hosted on different infrastructure. Furthermore, every task, including the de-
ployment of virtual machines, the setup of needed programs and the copying of
data, has to be modeled within the workflow. This can quickly lead to a cluttered
model that gets incomprehensive and decreases the reusability.
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Vukojevic-Haupt et al. [18] introduce an approach for the on-demand deploy-
ment of services that are required by a workflow. This means the services are
deployed when they are invoked by the workflow and decommissioned afterward
to save computing resources. Therefore, they proposed the extension of an en-
terprise service bus to enable the deployment of services. However, they assume
that all required services are available as so-called service packages in a local
service repository. The service packages include all artifacts needed to deploy
the services, and therefore, correspond to deployment models in our approach.
Hence, in contrast to our approach, the workflow archives are not self-contained,
and new service packages must be registered by the service registry manually
before the workflow is initiated, which reduces the portability of the workflows.

7 CONCLUSION

In this paper, we presented an approach (i) to specify service compositions in
a self-contained manner using imperative workflow models and (ii) to support
the automatic deployment of services that are required in the environment. For
this, we defined self-contained imperative workflow models, which contain the
workflow, and additionally, the deployment models of the required services that
are attached to the corresponding activities of the workflow. Hence, the user
is no longer responsible for determining the required services for a workflow,
transferring the corresponding deployment models into the target environment,
initiating the deployment, and configuring the workflow with the service end-
points before executing it. Instead, these time-consuming and error-prone tasks
can be automated completely. Further, our approach eases the execution of the
workflow in another environment, as all required software artifacts are contained
in the self-contained imperative workflow model. We prototypically implemented
our approach using the TOSCA standard to model declarative deployment mod-
els and BPEL as the workflow language to specify the service compositions.
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