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Abstract. Various technologies have been developed to automate the
deployment of applications. Although most of them are not limited to a
specific infrastructure and able to manage multi-cloud applications, they
all require a central orchestrator that processes the deployment model
and executes all necessary tasks to deploy and orchestrate the application
components on the respective infrastructure. However, there are appli-
cations in which several organizations, such as different departments or
even different companies, participate. Due to security concerns, organi-
zations typically do not expose their internal APIs to the outside or leave
control over application deployments to others. As a result, centralized
deployment technologies are not suitable to deploy cross-organizational
applications. In this paper, we present a concept for the decentralized
cross-organizational application deployment automation. We introduce
a global declarative deployment model that describes a composite cross-
organizational application, which is split to local parts for each partic-
ipant. Based on the split declarative deployment models, workflows are
generated which form the deployment choreography and coordinate the
local deployment and cross-organizational data exchange. To validate
the practical feasibility, we prototypical implemented a standard-based
end-to-end toolchain for the proposed method using TOSCA and BPEL.

Keywords: Distributed Application ·Deployment · Choreography · TOSCA
· BPEL.

1 Introduction

In recent years various technologies for the automated deployment, configura-
tion, and management of complex applications have been developed. These de-
ployment automation technologies include technologies such as Chef, Terraform,
or Ansible to name some of the most popular [27]. Additionally, standards
such as the Topology and Orchestration Specification for Cloud Applications
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(TOSCA) [20] have been developed to ensure portability and interoperability
between different environments, e.g., different cloud providers or hypervisors.
These deployment automation technologies and standards support a declarative
deployment modeling approach [9]. The deployment is described as declarative
deployment model that specifies the desired state of the application by its com-
ponents and their relations. Based on this structural description a respective
deployment engine derives the necessary actions to be performed for the deploy-
ment. Although most of these technologies and standards are not limited to a
specific infrastructure and able to manage multi-cloud applications, they all use
a central orchestrator for the deployment execution. This central orchestrator
processes the declarative deployment model and either forwards the required
actions in order to deploy and orchestrate the components to agents, e.g., in the
case of Chef to the Chef clients running on the managed nodes, or executes them
directly, e.g., via ssh on a virtual machine (VM), as done by Terraform [25].

However, today’s applications often involve multiple participants, which can
be different departments in a company or even different companies. Especially in
Industry 4.0 the collaboration in the value chain network is of great importance,
e.g., for remote maintenance or supply chain support [7]. All these applications
have one thing in common: They are cross-organizational applications that com-
posite distributed components, whereby different participants are responsible for
different parts of the application. The deployment and management of such ap-
plications cannot be automated by common multi-cloud deployment automation
technologies [22], since their central orchestrators require access to the internal
infrastructure APIs of the different participants, e.g., the OpenStack API of the
private cloud, or their credentials, e.g., to login to AWS. There are several rea-
sons for the involved participants to disclose where and how exactly the applica-
tion components are hosted internally: new security issues and potential attacks
arose, legal and compliance rules must be followed, and the participant wants
to keep the control over the deployment process [17]. This means that common
centralized application deployment automation technologies are not suitable to
meet the requirements of new emerging application scenarios that increasingly
rely on cross-organizational collaborations.

In this paper, we address the following research question: ”How can the de-
ployment of composite applications be executed across organizational boundaries
involving multiple participants that do not open their infrastructure APIs to the
outside in a fully automated decentralized manner?” We present a concept for the
decentralized cross-organizational application deployment automation that (i) is
capable of globally coordinating the entire composite application deployment in
a decentralized way while (ii) enabling the involved participants to control their
individual parts locally. Therefore, we introduce a global multi-participant deploy-
ment model describing the composite cross-organizational application, which is
split into local parts for each participant. Based on the local deployment models a
deployment choreography is generated, which is executed in a decentralized man-
ner. Based on the TOSCA and BPEL [19] standards the existing OpenTOSCA
ecosystem [6] is extended for the proposed method and validated prototypically.
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2 Declarative and Imperative Deployment Approaches

For application deployment automation two general approaches can be distin-
guished: declarative and imperative deployment modeling approaches [9]. For our
decentralized cross-organizational application deployment automation concept
both approaches are combined. Most of the deployment automation technolo-
gies use deployment models that can be processed by the respective deployment
engine. Deployment models that specify the actions and their order to be exe-
cuted, e.g., as it is done by workflows, are called imperative deployment models,
deployment models that specify the desired state of an application are called
declarative deployment models [9]. We explain the declarative deployment mod-
els in a technology-independent way based on the Essential Deployment Meta
Model (EDMM) that has been derived from 13 investigated deployment technolo-
gies in previous work [27]. The meta model for declarative deployment models
presented in section 3 is based on the EDMM and is the basis for the declarative
part of the presented concept.

In EDMM an application is defined by its components and their relations. For
the semantic of these components and relations reusable component and relation
types are specified. For example, it can be defined that a web application shall
be hosted on an application server and shall be connected to a queue to publish
data that are processed by other components. For specifying the configuration
of the components properties are defined, e.g., to provide the credentials for the
public cloud or to set the name of the database. For instantiating, managing, and
terminating components and relations executable artifacts such as shell scripts or
services are encapsulated as operations that can be executed to reach the desired
state defined by the deployment model. The execution order of the operations
is derived from the deployment model by the respective deployment engine [5].

In contrast, imperative deployment models explicitly specify the actions and
their order to be executed to instantiate and manage an application [9]. Actions
can be, e.g., to login to a public cloud or to install the WAR of a web appli-
cation on an application server. Especially for complex applications or custom
management behavior imperative deployment models are required, since even if
declarative models are intuitive and easy to understand, they do not enable to
customize the deployment and management. Imperative deployment technolo-
gies are, e.g., BPMN4TOSCA [16], and general-purpose technologies such as
BPEL, BPMN [21], or scripting languages. In general, declarative deployment
models are more intuitive but the execution is less customizable, while impera-
tive deployment models are more complex to define but enable full control of the
deployment steps. Therefore, there are hybrid approaches for using declarative
models that are transformed into imperative models to get use of the benefits of
both approaches [5]. In this paper, we follow this hybrid approach by transform-
ing declarative models to imperative choreography models. This means, the user
only has to specify the declarative model and, thus, we explain the declarative
modeling approach in section 4 using a motivating scenario. First, in the next
section the meta model for declarative deployment models is introduced.
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3 Meta Model for Declarative Deployment Models

Our approach presented in section 5 is based on declarative deployment mod-
els that are transformed into imperative choreographies. Based on EDMM and
inspired by the Declarative Application Management Modeling and Notation
(DMMN) [3], the GENTL meta model [1], and TOSCA, a definition of declara-
tive deployment models d ∈ D is introduced:

Definition 1 (Declarative Deployment Model). A declarative deployment
model d ∈ D is a directed, weighted, and possibly disconnected graph and de-
scribes the structure of an application with the required deployment operations:

d = (Cd, Rd, CTd, RTd, Od,Vd, typed, operationsd, propertiesd)

The elements of the tuple d are defined as follows:

– Cd: Set of components in d, whereby each ci ∈ Cd represents one component.
– Rd ⊆ Cd×Cd: Set of relations in d, whereby each ri = (cs, ct) ∈ Rd represents

the relationship and cs is the source and ct the target component.
– CTd and RTd: The set of component and relation types in d, whereby each
cti ∈ CTd and rti ∈ RTd describes the semantics for components and rela-
tions having this type.

– Od ⊆ ℘(Vd) × ℘(Vd): The set of operations in d, whereby each operation
oi = (Input ,Output) ∈ Od specifies an operation that can be applied to
components or relations with its input and output parameters.

– Vd ⊆ ℘(Σ+) × ℘(Σ+) : Set of data elements, whereby Σ+ is the set of
characters in the ASCII table and vi = (datatype, value) ∈ Vd.

Let the set of deployment model elements DEd := Cd ∪ Rd be the union of
components and relations of d. Let the set of deployment model element types
DET d := CTd ∪RTd be the union of component types and relation types of d.

– typed: The mapping assigning each dei ∈ DEd to a component or relation
type deti ∈ DET d: typed : DEd → DET d.

– operationsd: The mapping assigning each dei ∈ DEd to a set of operations
that can be applied to it: operationsd : DEd → ℘(Od).

– propertiesd: The mapping assigning each dei ∈ DEd to a set of data elements
which are the properties of the element: propertiesd : DEd → ℘(Vd). �

4 Research Method and Motivating Scenario

Following the design cycle by Wieringa [26], we first examined the current situa-
tion in various research projects with industrial partners, namely in the projects
IC4F1, SePiA.Pro2, and SmartOrchestra3. With regard to horizontal integra-
tion through the value chain network in the context of Industry 4.0, we focused

1 https://www.ic4f.de/
2 http://projekt-sepiapro.de/en/
3 https://smartorchestra.de/en/
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con1

Order App
(Web App)

App Server
(Tomcat 9)

Port: 8080

Order Queue
(Queue)

SQS
(Simple Queue Service)

Q-Name: orders

Order Processor
(Java 8 App)

Java Runtime
(Java 8 Runtime)

Order VM
(Ubuntu 18.04)

IP: […]

Private Cloud
(OpenStack)

API: http://iaas.de

URL: […]

Database
(MySQL DB 5.7)

DBMS
(MySQL DBMS 5.7)

Database VM
(Ubuntu 18.04)

IP: […]

Public Cloud
(AWS)

Account: ust-ipvs
Secret: ********

Java WAR JAR DB-Name: orders

DBMS-User: ust-iaas

con2 con3

install(IP)>_
connectsTo(IP, DB-Name, …)>_connectsTo(Q-Name, …)>_

hostedOnconnectsTo operations

Private Cloud
(OpenStack)

API: http://ipvs.de

App VM
(Ubuntu 18.04)

IP: […]

P1 P2

[…]

Fig. 1. Declarative deployment model specifying all details of the desired application.
The notation is based on Vino4TOSCA with components as nodes, relations as edges,
and the types in brackets [4]. In addition, sample operations are shown as dots.

on the requirements and challenges of collaboration between different compa-
nies [7]. Based on our previous research focus, the deployment and management
of applications, the following research problems have emerged:

(a) How can the deployment of composite applications across organizational
boundaries be automated in a decentralized manner?

(b) What is the minimal set of data to be shared between the involved partici-
pants to enable the automated decentralized deployment?

In fig. 1 a declarative deployment model according to the meta model intro-
duced in section 3 is depicted for an order application to motivate the research
problem. The application consists of four components: a web application Order
App sending orders to the Order Queue and an Order Processor that processes
the orders and stores them in the Database. These four components, depicted in
dark gray with their component types in brackets, are the so-called application-
specific components, since they represent the use case to be realized. For the
Order Queue and Database, e.g., properties are specified to set the name of the
queue and database, respectively. In addition, three operations are exemplary
shown: a connectsTo to establish a connection to the queue, a connectsTo to
connect to the database, and an install operation to install the JAR artifact on
the Order VM. The other properties and operations are abstracted.

Assuming that a single organization is responsible for deploying the entire
application and has full control over the OpenStacks and AWS, the common
deployment automation technologies examined by Wurster et al. [27] fit per-
fectly. However, in the depicted scenario two participants, P1 and P2, who may
be different departments or companies, intend to realize a cross-organizational
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Fig. 2. Decentralized cross-organizational application deployment automation.

application so that common deployment automation technologies are no longer
applicable. While all participants must agree on the application-specific compo-
nents, the underlying infrastructure is the responsibility of each participant. For
security reasons, participants typically do not provide access to internal APIs,
share the credentials for AWS, or leave the control over deployment to others.

To address the research problems, we propose a decentralized concept to en-
able the cross-organizational application deployment automation ensuring that
(i) only as little data as necessary is exchanged between participants and (ii)
each participant controls only his or her local deployment while the overall de-
ployment is coordinated. The proposed solution is described in detail in the fol-
lowing section and in section 6 the implementation and validation is presented.
The motivating scenario in fig. 1 serves as use case for the validation.

5 A Concept for Decentralized Cross-Organizational
Deployment Automation

For the decentralized cross-organizational application deployment automation
with multiple participants, it has to be considered that (i) the participants want
to exchange as little data as necessary and (ii) each participant controls only
his or her local deployment while the global coordination of the deployment
of the entire application is ensured. Taking these requirements into account,
we have developed the deployment concept depicted in fig. 2. In the first step,
the application-specific components are modeled representing the use case to
be realized. They typically include the business components such as the Order
App, storage components such as the Database component, and communication
components such as the Order Queue in fig. 1. In the second step, the global
multi-participant deployment model (GDM) is generated, a declarative deploy-
ment model containing all publicly visible information that is shared between the
participants. This publicly visible information contains also data that must be
provided by the respective infrastructure. For example, to execute the operation
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to establish a connection between Order Processor and Database in fig. 1, the IP
of the Database VM is required as input. Subgraphs, so called local parts of the
GDM, are then assigned to participants responsible for the deployment of the
respective components. The GDM is then processed by each participant. First, in
step three, for each application-specific component a hosting environment is se-
lected and the adapted model stored as local multi-participant deployment model
(LDM). In the motivating scenario in fig. 1 participant P1 selected AWS for the
Order Queue and the OpenStack for the Order App. However, this individual
placement decision is not shared. For the deployment execution we use an hybrid
approach: Based on the LDM a local deployment workflow model is generated in
step four that orchestrates the local deployment and cross-organizational infor-
mation exchange activities. All local workflows form implicitly the deployment
choreography which enables the global coordination of the deployment across
organizational boundaries. Each step is described in detail in the following.

5.1 Step 1: Application-Specific Component Modeling

In the initial step, the application-specific components representing the use case
to be realized have to be modeled. They typically include business components,
storage components, and communication components. In the motivating scenario
in fig. 1 the set of application-specific components contains the Order App, the
Order Queue, the Order Processor, and the Database. In addition, the lifecycle
operations, e.g., to install, start, stop, or terminate the components and relations,
have to be defined for each of these components and their relations, since all input
parameters of these operations must be provided as globally visible information
in the GDM. Application-specific components are defined as follows:

Definition 2 (Application-Specific Components). The set of application-
specific components Cs ⊆ Cd in d, where all rs = (cs, ct) ∈ Rd with {cs, ct} ∈ Cs

are of typed(rs) = connectsTo and for each ci ∈ Cs : cap(typed(ci)) = ∅, since
they cannot offer hosting capabilities (see definition 3). �

In addition, it has to be expressed that a component can have a certain require-
ment and that a component that provides a matching capability can serve as
host, i.e., the component is the target of a relation of type hostedOn:

Definition 3 (Hosting Requirements and Capability). Let RC the set of
hosting requirement-capability pairs. The mapping req : Cd → ℘(RC ) and cap :
Cd → ℘(RC ) assign to each component the set of capabilities and requirements,
respectively. The hosting capability of a component cy ∈ Cd matches the hosting
requirement of a component cz ∈ Cd, if it exists rc ∈ RC with rc ∈ req(cz) ∩
cap(cy), then cy can host cz. �

5.2 Step 2: Global Multi-Participant Deployment Model Generation

To ensure that the application-specific components can be deployed across orga-
nizational boundaries, the GDM is generated in the second step which contains
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the minimal set of necessary information that have to be globally visible, i.e.,
that have to be shared. Thus, the GDM is defined as follows:

Definition 4 (Global Multi-Participant Deployment Model). A global
multi-participant deployment model (GDM) is an annotated declarative deploy-
ment model that contains all globally visible information including the (i) app-
lication-specific components, (ii) necessary information about the hosting envi-
ronment, and (iii) the participants assigned to parts of the GDM:

g = (d, Pg, participantg)

The elements of the tuple g are defined as follows:

– d ∈ D: Declarative deployment model that is annotated with participants.
– Pg ⊆ ℘(Σ+) × ℘(Σ+): Set of participants with pi = (id , endpoint) ∈ P ,

whereby Σ+ is the set of characters in the ASCII table.
– participantg: The mapping assigning a component ci ∈ Cd to a participant
pi ∈ Pg participantg : Cd → Pg. �

The example in fig. 3 depicts a simplified GDM. The application-specific com-
ponents, depicted in dark gray, specify requirements, e.g., the Order Queue re-
quires a message queue middleware. These requirements have to be satisfied by
the respective hosting environment. Furthermore, for these components as well
as their connectsTo-relations operations with input parameters are defined. To
establish a connection to the Order Queue the URL and Q-Name of the Queue
are required. Either the target application-specific component provides respec-
tive matching properties such as the Q-Name property exposed by the Order
Queue component or the environment has to provide it such as the input pa-
rameter URL. For this, in this step placeholder host components are generated
that contain all capabilities and properties that have to be exposed by the host-
ing environment. Each placeholder host component ch is generated based on the
following rules:

– For all cj ∈ Cs : req(cj) 6= ∅ a placeholder host component ch ∈ Ch and a
hosting relation rh = (cj , ch) ∈ Rd with typed(rh) = hostedOn are gener-
ated. Thus, |Ch| ≤ |Cs| since external services do not require a host.

– For each operation opj ∈ operationss(cj) all input data elements vj ∈
π1(opj) \ propertiesd(cj) are added to propertiesd(ch).

– For each rj ∈ Rd : π2(rj) = cj with typed(rj) = connectsTo and for each op-
eration opr ∈ operationss(rj) all data elements vr ∈ π1(opr)\propertiess(cj)
are added to propertiesd(ch).

In the example in fig. 3 the Host Order Queue component provides the capability
MessageQueue and exposes the property URL, which is required as input param-
eter for the connectsTo operations. Before the deployment model is processed by
each participant, subgraphs of the GDM are assigned to the participants. This
subgraph is called local part and indicates who is responsible for this part of the
application. This is done by annotating the GDM as shown in fig. 3 on the right.
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Fig. 3. Substitution of the database host from the motivating scenario.

5.3 Step 3: Local Part Placement

Since participants typically do not want to share detailed information about
their hosting environment, the GDM is given to each participant for further pro-
cessing. Each participant pi has to select a hosting environment for all cs ∈ Cs

with participantg(cs) = pi. In fig. 3 the placement of the Order Queue com-
ponent by substituting the placeholder host component Order Queue Host is
shown. A placeholder host can be substituted by a stack that exposes the same
capabilities and at least all properties of the placeholder host. These stacks are
stored as declarative deployment models that contain middleware and infras-
tructure components available in the environment of the respective participant.
In fig. 3 a SQS hosted on AWS is shown. The substitution is based on the sub-
stitution mechanisms of TOSCA [20,24]: A placeholder host component ch ∈ Ch

can be substituted by a deployment model m if for each proph ∈ propertiesd(ch)
a component cf ∈ Cm : proph ∈ propertiesm(cf ) and for each caph ∈ cap(ch) a
component ck ∈ Cm : caph ∈ cap(ck) exists.

The substitution in fig. 3 is valid because the property URL is covered and the
SQS exposes the required capability MessageQueue. The substitution is auto-
mated by our prototype described in section 6. For the distribution of compo-
nents and matching to existing infrastructure and middleware several approaches
exist [24,12,23]. Soldani et al. [24] introduced the ToscaMart method to reuse
deployment models to derive models for new applications, Hirmer et al. [12] in-
troduced a component wise completion, and we presented in previous work [23]
how to redistribute a deployment model to different cloud offerings. These ap-
proaches use a requirement-capability matching mechanism to select appropriate
components. We extended this mechanism to match the properties as well. The
resulting local multi-participant deployment model (LDM) is a partially substi-
tuted GDM with detailed middleware and infrastructure components for the
application-specific components managed by the respective participant. Up to
this point we follow a purely declarative deployment modeling approach.
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Fig. 4. Generated activities to (a) send information to relation source, (b) receive
information from relation target, and (c) initiate the overall deployment.

5.4 Step 4: Local Deployment Workflow Generation

The core step of our approach is the generation of local deployment workflow
models that form the deployment choreography. They are derived from the LDMs
by each participant and (i) orchestrate all local deployment activities and (ii) co-
ordinate the entire deployment and data exchange to establish cross-participant
relations. While centralized deployment workflows can already be generated [5],
the global coordination and data exchange are not covered yet.

Cross-participant relations are of type connectsTo and between components
managed by different participants. To establish cross-participant relations, the
participants have to exchange the input parameters for the respective connectsTo-
operations. In the example in fig. 3 the relation con2 establishes a connection
from the Order Processor managed by P2 to the Order Queue managed by P1.
The connectsTo-operation requires the URL and the Q-Name as input. Both pa-
rameters have to be provided by P1. Since this information is first available dur-
ing deployment time, this data exchange has to be managed during deployment:
For each cross-participant relation a sending and receiving activity is required to
exchange the information after the target component is deployed and before the
connection is established. In addition, the deployment of the entire application
must be ensured. Independent which participant initiates the deployment, all
other participants have to deploy their parts as well. This is covered by three
cases that have to be distinguished for the local deployment workflow generation
as conceptually shown in fig. 4. In the upper part abstracted LDMs and in the
lower part generated activities from the different participants perspectives are
depicted. On the left (a) activities from a cross-participant relation target per-
spective, in the middle (b) from a cross-participant relation source perspective,
and on the right (c) activities generated to ensure the initiation of the entire
deployment are depicted. First, a definition of local deployment workflow models
based on the production process definition [14,18] is provided:
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Definition 5 (Local Deployment Workflow Model). For each participant
pi ∈ P a local deployment workflow model wi based on the LDM is defined as:

wi = (Awi , Ewi ,Vwi , iwi , owi , typewi
)

The elements of the tuple wi are defined as follows:

– Awi
: Set of activities in wi with ay ∈ Awi

.
– Ewi

⊆ Awi
×Awi

: Set of control connectors between activities, whereby each
ey = (as, at) ∈ Ewi

represents that as has to be finished before at can start.
– Vwi

⊆ ℘(Σ+) × ℘(Σ+) : Set of data elements, whereby Σ+ is the set of
characters in the ASCII table and vy = (datatype, value) ∈ Vwi .

– iwi : The mapping assigns to each activity ay ∈ Awi its input parameters and
it is called the input container iwi : Awi → ℘(Vwi).

– owi : The mapping assigns to each activity ay ∈ Awi its output parameters
and it is called the output container owi

: Awi
→ ℘(Vwi

).
– typewi

: The mapping assigns each ay ∈ Awi
to an activity type, typewi

:
Awi
→ {receive, send, invoke}. �

Based on this definition, local deployment workflow models can be generated
based on specific rules. In fig. 4 the resulting activities are depicted:

(a) For each component ct ∈ Cd that is target of a cross-participant relation
rc = (cs, ct) with participantg(ct) = pi and participantg(cs) = pj , an activity
at ∈ Awi

: typewi
(at) = invoke is added that invokes the start operation

of ct. After a component is started, a connection to it can be established
[5]. Thus, ac : typewi

(ac) = send is added to wi that contains all input
parameters of the connectsTo-operation of rc provided by pi in owi

(ac).
(b) For the component cs ∈ Cd, the source of the cross-participant relation

rc, an activity ac′ : typewj
(ac′) = receive is add to wj of pj . With the

control connector e(ainit, ac′) added to wj it is ensured that the activity is
activated after the initiate activity of pj . After the input values are received
and the start operation of cs is successfully executed, the actual connectsTo-
operation can be executed.

(c) Each workflow wi starts with the initiate activity ainit ∈ Awi : typewi
(ainit) =

receive. To ensure that after ainit is called the entire application deploy-
ment is initiated, a notification is sent to all other participants. For each
pj ∈ P \ {pi} an activity an : typewi

(an) = send with a control connector
e(ainit, an) is added to wi. Since each participant notifies all others, for n par-
ticipants, each participant has to discard n-1 messages. Since the payloads
are at most a set of key-value pairs this is not critical.

Each participant generates a local deployment workflow model, which together
implicitly form the deployment choreography. As correlation identifier the GDM
id and application instance id are sufficient. While the GDM id is known in
advance, the application instance id is generated by the initiating participant.
The approach enables a decentralized deployment while each participant controls
only his or her deployment and shares only necessary information.
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Fig. 5. System architecture and deployment choreography execution.

6 Implementation and Validation

To demonstrate the practical feasibility of the approach we extended the TOSCA-
based open-source end-to-end toolchain OpenTOSCA4 [6]. It consists of a model-
ing tool Winery, a deployment engine OpenTOSCA Container, and a self-service
portal. In TOSCA, deployment models are modeled as topology templates, the
components as node, and the relations as relationship templates with their types.
The types define properties, operations, capabilities, and requirements. Plans are
the imperative part of TOSCA, for which standard workflow languages such as
BPMN or BPEL can be used. All TOSCA elements and executables, implement-
ing operations and components, are packaged as Cloud Service Archive (CSAR).

In fig. 5 the system architecture for two participants is depicted. Winery is
extended by the placeholder generation and the placeholder substitution. Either
P1 or P2 models the application-specific components and generates the GDM
using the Placeholder Generation that generates node types with the respective
properties and capabilities. The resulting GDM is then packaged with the CSAR
Im-/ Exporter and sent to each participant. The Substitution Mapping detects
the local part of managed by the respective participant in the GDM and selects
topology templates from the repository to substitute the placeholder host compo-
nents. The substituted topology template is then uploaded to the OpenTOSCA
Container. The Plan Builder generates a deployment plan based on the declar-
ative model. We use BPEL for the implementation. Either P1 or P2 can then
initiate the deployment. The Plan Runtime instantiates the plan and invokes
the operations. The actual operation, e.g., to create a VM, is executed by the
Operation Runtime. The communication between the OpenTOSCA Containers
is managed by the Management Bus. The Management Bus is the participant’s
endpoint in our setup. However, also arbitrary messaging middleware or any
other endpoint that can process the messages can be used. We used the deploy-
ment model presented in fig. 1 with two and three participants for the validation.

4 https://github.com/OpenTOSCA
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7 Validity, Limitations, and Implications

In contrast to general workflow approaches [14,15], we do not have to deal with
splitting workflows according to the participants, since we can completely rely
on the declarative deployment model and only implicitly generates a choreog-
raphy. However, a prerequisite is that each participant only uses the predefined
interfaces so that the choreography can be executed. At present, we also limit
ourselves to the deployment aspect and do not consider the subsequent man-
agement. While management functionalities such as scaling are often covered by
the cloud providers themselves, other functionalities such as testing, backups,
or updates are not offered. Management increases the complexity of automa-
tion, especially when local management affects components managed by other
participants. We currently only support TOSCA as a modeling language and
OpenTOSCA as a deployment engine. So far, we lack the flexibility to support
technologies like Kubernetes, Terraform, or Chef, which are often already in use
in practice. However, this is part of the planned future work.

8 Related Work

The research in the field of multi-cloud, federated cloud, and inter-cloud [22,10]
focuses on providing unified access to different cloud providers, making place-
ment decisions, migration, and management. All these approaches consider mul-
tiple cloud providers satisfying the requirements of a single user. The cloud forms
differ in whether the user is aware of using several clouds or not. However, the
collaboration between different users each using and controlling his or her envi-
ronment, whether it is a private, public, or multi-cloud, is not considered, but
this is highly important, especially in cross-company scenarios which arose with
new emerging use cases in the fourth industrial revolution. Arcangeli et al. [2]
examined the characteristics of deployment technologies for distributed appli-
cations and also considered the deployment control, whether it is centralized
or decentralized. However, also the decentralized approaches with a peer-to-peer
approach does not consider the sovereignty of the involved peers and the commu-
nication restrictions. In previous work [13], we introduced an approach to enable
the deployment of parts of an application in environments that restrict incoming
communication. However, the control is still held by a central orchestrator.

Kopp and Breitenbücher [17] motivated that choreographies are essential
for distributed deployments. Approaches for modeling choreographies, e.g., with
BPEL [8] or to split orchestration workflows into multiple workflows [15,14] have
been published. However, most of the deployment technologies are based on a
declarative deployment models [27], since defining the individual tasks to be per-
formed in the correct order to reach a desired state are error-prone. Thus, instead
of focusing on workflow choreographies we implicitly generated a choreography
based on declarative deployment models. Breitenbücher et al. [5] demonstrated
how to derive workflows from declarative deployment models. However, their ap-
proach only enables to generate orchestration workflows which cannot be used
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for decentralized cross-organizational deployments. Herry et al. [11] introduced
a planning based approach to generate a choreography. However, they especially
focus on generating an overall choreography that can be executed by several
agents. For us the choreography is only an implicit artifact, since we mainly fo-
cus on enabling the cross-organizational deployment by minimizing the globally
visible information and obtaining the sovereignty of the participants.

9 Conclusion and Future Work

In this paper, we presented an approach for the decentralized deployment au-
tomation of cross-organizational applications involving multiple participants. A
cross-organizational deployment without a central trusted third-party is enabled
based on a declarative deployment modeling approach. The approach facilitates
that (i) each participant controls the local deployment, while the global deploy-
ment is coordinated and (ii) only the minimal set of information is shared. A
declarative global multi-participant deployment model that contains all globally
visible information is generated and split to local deployment models that are
processed by each participant. Each participant adapts the local model with
internal information and generates an imperative deployment workflow. These
workflows form the deployment choreography that coordinates the entire appli-
cation deployment. We implemented the concept by extending the OpenTOSCA
ecosystem using TOSCA and BPEL. In future work the data exchange will be
optimized since each participant sends notification messages to all other partic-
ipant and thus for n participants n-1 messages have to be discarded. We further
plan not only to enable multi-participant deployments but also multi-technology
deployments by enabling to orchestrate multiple deployment technologies.
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(01MA17008G), the DFG project DiStOPT (252975529), and the DFG’s Excel-
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