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Abstract—Microservice-based architectures (MSAs) gained
momentum in industrial and research communities since finer-
grained and more independent components foster reuse and
reduce time to market. However, to come from the design
of MSAs to running applications, substantial knowledge and
technology-specific expertise in the deployment and integration of
microservices is needed. In this paper, we propose a model-driven
and pattern-based approach for composing microservices, which
facilitates the transition from architectural models to running
deployments. Using a unified modelling for MSAs, including both
their integration based on Enterprise Integration Patterns (EIPs)
and deployment aspects, our approach enables automatically
generating the artefacts for deploying microservice compositions.
This helps abstracting away the underlying infrastructure includ-
ing container orchestration platforms and middleware layer for
service integration. To validate the feasibility of our approach,
we illustrate its prototypical implementation, with Kubernetes
used as container orchestration system and OpenFaaS used for
managing integration logic, and we present a case study.

Index Terms—Microservice Architecture, Service Composition,
Enterprise Integration Pattern, Model-driven Engineering

I. INTRODUCTION

Microservice architectures (MSA) gained a lot of attention
from both industry and academia [1]. In this architectural
style, a single application is composed of independent and
fine-grained services, each running in its own process and
communicating using lightweight protocols such as HTTP or
MQTT [1], [2]. Microservices are intended to be simple and
focus on accomplishing one task well. Additionally, due to
a smaller scale, each service can be built using the most
appropriate tool for the job, e.g., based on the respective team’s
programming language preferences. Furthermore, MSAs na-
tively enable continuous delivery allowing frequent releases
and fast feedback loops, which fits perfectly into an agile de-
velopment setup where cross-functional teams are responsible
for a certain service over its full lifetime [3].

At the same time, MSAs come with some drawbacks, and
also inherit some common pitfalls of traditional distributed
systems [4]. For example, the higher number of units to
manage makes it more complex to compose and operate MSA-
based applications. For integrating services, developers have
to deal with various heterogeneous problems, e.g., asynchrony,
cascades of failures, and incompatible data models [3]. In
addition, developing services in various programming lan-

guages may lead to duplication of efforts for solving identical
issues, e.g., implementation of common integration patterns
for message routing and transformation. Moreover, services
often have different load patterns and must be deployed and
operated using diverse and specialised configurations [5].

Not surprisingly, transforming the design of a MSA into a
running system requires substantial knowledge of concepts in
the fields of service deployment and integration. Developers
are indeed required to devise solutions for deploying the
microservices constituting an application, e.g., specifying their
actual deployment on a container orchestration system such
as Kubernetes. They are also required to design and develop
an integration actually enabling service-to-service communi-
cation, e.g., using Enterprise Integration Patterns (EIP) [6]
and message-oriented middleware. This obviously results in a
time-consuming, cumbersome and error-prone process, which
requires developers to gain deep technical expertises on all
involved technologies and on the languages for programming
and configuring such technologies.

With the aim of easing the design and deployment
of MSAs, in this paper we propose the Microservices
COmposition (MICO) approach. MICO unifies and synergi-
cally combines the architectural, integration, and deployment
aspects of MSA-based applications, enabling a “one-click”
transition from modelled integration of microservices to run-
ning deployments. The main contributions of this paper are:

1) We propose a unified meta-model that synergically com-
bines architecture, integration, and deployment of mi-
croservices, based on the pipes and filters architectural
style, and with integration patterns as first-class citizens.

2) We present the MICO approach that enables transparent
transition from integration models to running deploy-
ments by generating the required deployment artefacts.

3) We introduce a technology-agnostic system enabling our
approach, and its prototypical implementation. We also
show how we exploited such implementation to conduct
a concrete case study based on a third-party application.

Notably, the overall MICO approach includes automatic
import of user-provided source code repositories into the sys-
tem as runnable building blocks to be used in a microservice
composition model. Furthermore, reusable and configurable



implementations of common enterprise integration patterns
can be used for modelling desired microservice compositions.
Resulting application models can then be automatically trans-
formed by the approach-enabling system into a deployable set
of source code and configuration files that are transparently
handled by the underlying infrastructure layer.

The remainder of the paper is organised as follows. Sections II
and III describe the background and motivating scenario. Sec-
tions IV and V introduce the pattern-based microservices com-
position meta-model and our approach. Section VI discusses
the approach-enabling system architecture and its prototype,
and Section VII presents a case study. Finally, Sections VIII
and IX discuss related work and the approach generalisation
directions, and Section X concludes the paper.

II. BACKGROUND

This section provides the necessary background information
on MSAs, container orchestration, and integration patterns.

A. Microservices and Container Management

The notion of a microservice [1], [2] serves as a core building
block of MSAs in which applications are developed as a
set of small, single-purpose and loosely-coupled components
interacting with each other using lightweight communication
mechanisms such as HTTP-based REST APIs. While mi-
croservices are closely-related to service-oriented architec-
tures (SOA), the idea to introduce proper bounded contexts
that share as little as possible makes this architectural style
different from SOA where sharing among components is not
discouraged [7]. As a result, having small bounded contexts
size fosters the reusability and allows shipping microservices
independently of each other [8]. One of the core enablers
facilitating microservice-based application development is the
lightweight, container-based virtualization, e.g., using Docker
containers [9]. The core idea is to ship microservices in con-
tainers to remove the dependency on a particular technology
or platform, hence simplifying the delivery process. Since the
number of microservices in a typical component architecture
might get large, integration and management of multiple
running containers becomes a complex task to accomplish.
Container orchestration systems aim to simplify man-
agement of container-based applications in clustered envi-
ronments [10]. For instance, managing multiple manually-
deployed containers would require monitoring their availabil-
ity and restarting faulted containers, applying scaling rules,
and managing inter-container communication. Docker Swarm
and Kubernetes are prominent examples of container orches-
tration systems. For example, Kubernetes simplifies container
management features such as autoscaling, self-healing, re-
source monitoring, and deployment automation using declara-
tive deployment models [11] describing the desired state for all
containers in the given application. Furthermore, Kubernetes
serves as a basis for a rich ecosystem of complementary
software, e.g., service meshes such as Istio or Function-as-
a-Service (FaaS) platforms like OpenFaaS and Kubeless.
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Fig. 1. Example microservice architecture with service integration points.

B. Enterprise Integration Patterns

A pattern describes a proven solution for a particular problem
that reoccurs frequently in a certain context [12]. Typically,
patterns are documented in an abstract way and follow a
well-defined structure comprising a pattern’s name, a problem
description, details about the context in which they can be
applied, and a proven solution. Enterprise Integration Pat-
terns (EIPs) [6] describe well-known, proven solutions facil-
itating the integration of disparate enterprise systems using
messaging. The documented patterns explain multiple inte-
gration concepts, from messaging systems’ basics to specific
aspects such as message construction or routing techniques.

One important example of the basic concept related to
messaging systems is the Pipes and Filters pattern, which
describes an architectural style in which a large task is sub-
divided into a set of small interconnected tasks (called filters)
connected by channels (called pipes). Examples of specific
patterns are grouped in categories such as messaging channel
types, e.g., Point-to-Point or Publish-Subscribe channels rely-
ing on queues and topics respectively. Another large group of
patterns describes message routing, e.g., Content-based Router
or Message Filter patterns. The former describes how to
route messages to different consumers based on their content
type, whereas the latter describes the solution for filtering
by message’s type. Furthermore, when solving integration
challenges, messages can be split as described by the Splitter
pattern or aggregated using Aggregator pattern. Chaining
aforementioned patterns results in composite solutions such
as the Scatter-Gather pattern. Combining arbitrary number
of patterns using pipes-and-filters provides a flexible way of
defining integration of business logic components [6].

Another powerful property of integrating components using
EIPs is the increased readability of complex combinations of
patterns that represent desired integration solutions. Moreover,
messaging patterns align well with the concept of event-
driven computing, e.g., an Event Message pattern can be
combined with other message routing and processing patterns
to implement even-driven task pipelines.

III. MOTIVATING SCENARIO

Consider the rides management application that is commonly
used in Amazon’s hands-on workshops [13]. Figure 1 illus-
trates an excerpt of such application, which consists of four
microservices, namely Rides Service, Perfect Rides Service,
Standard Loyalty Service, and Premium Loyalty Service. The
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Fig. 2. The pattern-based microservice composition (MICO) meta-model (abstract types are drawn with the dashed line).

overall interaction flow requires solving two integration tasks
relying on ride order notifications originating from the Rides
Service. The first integration task consists in filtering order
notifications and select only perfect rides for processing them
using the Perfect Rides Service, e.g., rides with the user-given
rating higher than usual. The second integration task is to
check the customer’s subscription type in the ride order and
process the purchased travelling miles using the corresponding
loyalty service, i.e., the Standard or Premium Loyalty Service.
Even if simple, such an example illustrates how crucial ser-
vice integration is for suitably enabling the composition and
deployment of microservices as a whole application.

There already exist different technologies facilitating de-
ployment and integration aspects. For example, container
orchestration systems such as Kubernetes can be used to
automatically deploy and manage microservices. Integration
frameworks such as Apache Camel support the integration
of services using well-known enterprise integration patterns.
However, these solutions are either focused on the deployment
or integration of services. Moreover, such technologies require
deep technical expertise about the applied concepts and used
programming or configuration languages. For example, to
deploy our example using Kubernetes, one needs to understand
Kubernetes concepts such as Pods, Deployments, and Services.
Furthermore, developers need to understand the chosen mes-
saging technology to integrate the services using implemented
patterns, e.g., Filter pattern and Content-based Router pattern
for the first and second integration tasks respectively.

The discussed issues, hence, raise the following research
question: How to bridge the gaps among architectural models,
integration, and deployment of microservice compositions by
also abstracting from technology-specific details to reduce
the entry-level requirements? To answer this question, we
introduce a model-driven and pattern-based approach, which
combines the architectural, integration, and deployment views
of microservices. We also show how this enables automatically
generating the source code, configuration files, and deploy-
ment files that are needed for the transparent deployment of
the modelled microservice compositions.

IV. MICO META-MODEL: COMPOSING MICROSERVICES
USING ENTERPRISE INTEGRATION PATTERNS

In this section, we introduce the pattern-based composition
meta-model our approach relies on, and briefly describe how
the motivating scenario described in Section III can be ex-
pressed using this meta-model.

A. MICO Meta-model

The core part of the MICO approach is the microservice
composition meta-model shown in Figure 2, which enables
describing how microservices need to be integrated using well-
known integration patterns, together with the abstracted away
deployment information that enables transparent transition
from the model to running deployments. The overall idea
of the MICO meta-model derives from the pipes-and-filters
architectural style, a well-documented enterprise integration
pattern [6]. In this architectural style, processing components
(i.e., the filters) are connected together by means of chan-
nels (i.e., the pipes). Modelled integrations of microservices,
e.g., the motivating example shown in Figure 1, can also be
expressed as a composition of filters interacting by means of
different types of communication channels.

To combine such view on the integration with the deploy-
ment information, the first-class citizens of a MICO Applica-
tion are the Filters that represent the application’s building
blocks, and the Pipes that specify required communication
channels. The filters are further divided into two possible
subtypes, namely Microservices and Integration Patterns. Mi-
croservices represent components that implement business
logic, whereas Integration Patterns serve for tackling microser-
vices integration tasks, e.g., the Collect Perfect Rides and
Count Miles in Figure 1. In general, patterns represent custom
integration logic that is bound to a particular integration
problem, e.g., message routing. To facilitate the structuring and
reuse of integration patterns, the MICO meta-model provides
an explicit type system representing implementations of en-
terprise integration patterns [6], e.g., Message Filter, Content-
based Router, or Normalizer patterns.
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Fig. 3. An instance of the MICO meta-model depicting the integration for the motivating scenario discussed in Section III.

For integrating microservices, the MICO meta-model al-
ready supports modelling two kinds of pipes, i.e., topic-
based and queue-based communication channels, which rep-
resent Publish-Subscribe and Point-to-Point communication
patterns, respectively. These options provide a flexible way
of composing available microservices. The aforementioned
Integration Pattern entities are used specifically for modelling
message-based communication in which available business
logic components are interconnected via an Integration Pattern
and matching output and input Topics or Queues. Additionally,
Microservice entities define the deployment model that in-
cludes the information required for deploying the microservice
with its underlying sub-components such as databases, and ad-
ditional meta-data such as owner details. After specifying the
required data, resulting integration models can be processed to
derive a set of deployment artefacts for transparent deployment
of the application instances to the used infrastructure.

B. Exploiting the Meta-Model in our Motivating Example

An instance of the MICO meta-model shown in Figure 3
depicts one possible solution for the integration tasks presented
in the motivating scenario from Section III. As described
in Section IV-A, the entire integration is modelled as a set
of filters connected by means of pipes, i.e., the Microservices
responsible for processing rides data integrated by means
of two Integration Patterns using Point-to-Point and Publish-
Subscribe channels. For example, the “Collect Perfect Rides”
service integration task in Figure 1 is modelled by the follow-
ing interconnection: the Rides Service’s output topic needs
to be connected with the Integration Pattern that processes
produced messages by selecting only rides that have high
rating, and passes the resulting messages to Perfect Rides
Service’s input queue. The Integration Pattern in this case is a
specifically-configured instance of the Message Filter pattern.
The “Count Miles” integration task in Figure 1 is instead
modelled as an interconnection of the Rides Service’s output
topic with the specifically-configured Content-based Router as
Integration Pattern which routes the rides data to the suitable
Loyalty Service’s input queue, i.e., Standard or Premium,
depending on the message’s data.

In the following sections, we elaborate on how such a high-
level architectural view on integration of aforementioned mi-
croservices can be used to enable the automatic generation of
all corresponding artefacts needed for enacting the deployment
of modelled MICO applications.

V. MICO APPROACH: FROM MODELS TO DEPLOYMENTS

In this section, we present the MICO approach that relies on
the unified model described in Section IV, and which enables
the transition from the modelled pattern-based microservice
integrations to running deployments without the need to man-
ually configure the underlying technologies. Under the hood,
modelled microservice integrations are automatically trans-
formed into running deployments using the dedicated MICO
software layer hosted on top of the chosen infrastructure,
e.g., container orchestration platforms such as Kubernetes.

A. Overview

Figure 4 shows a general view on the process of pattern-based
composition of microservice applications using the MICO
meta-model discussed in Section IV. The MICO approach
consists of four steps, i.e., (1) importing microservices as
application’s building blocks, (2) modelling pattern-based in-
tegrations, (3) generating deployment artefacts, and (4) de-
ploying application instances. For simplicity, the steps are
presented in sequence, even if the transition between steps
is intended to be agile, e.g., allowing to returning from
the deployment phase back to importing components, then
modifying the model and redeploying the updated application.

Before starting to compose microservices, modellers have to
import the application’s components into the system first, to be
able to use them as building blocks in the desired integration
model. Examples of sources for components import can be
code hosting platforms such as GitHub or Bitbucket, or local
code repositories versioned using Git or Subversion. After the
import, the specified source code repository is converted in a
format that can be deployed to the chosen infrastructure layer,
e.g., a deployable container image, which can be used as a
part of the MICO application.

After importing required microservices, modellers are able
to represent desired integrations, which define how application
components are connected together and provide the deploy-
ment details required for each involved component in a form of
deployment models to support transparent transformation into
running applications. Using topic- and queue-based commu-
nication channels, modellers also define desired integrations,
which can then be transformed into a set of artefacts required
by the underlying infrastructure such as container orchestration
platform to instantiate the model as a running deployment.

The saved application models can easily be modified, e.g.,
by adding new components, updating existing components’
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Fig. 4. Overview of the pattern-based microservice composition approach.

versions, or defining new compositions between components
in existing models. Modified models can then be translated
into deployments without requiring to manually specify any
information on the underlying infrastructure.

B. Step 1: Import Application Building Blocks

As discussed in Section IV, the main building blocks for creat-
ing microservice compositions in MICO are Filters of different
kinds. On the technical level, a Filter of type Microservice
can represent, for example, a container image together with
a deployment model providing details on how to deploy it.
On the other hand, the implementation of the Integration
Pattern filter type entirely depends on the MICO-enabling
software layer. For example, the platform might provide
a set of default, configurable implementations for common
integration patterns, hence enabling transparent integration
of chosen business logic components. On the other hand,
a pattern implementation might also be a custom software
component imported into the software layer in a similar way
as business logic components. MICO’s Filters can be imported
and stored in a dedicated service repository maintained in a
MICO software layer to be available for use within a MICO
application. The reasons why such repository is needed are
twofold, namely (i) to have a common format for storing
application building blocks, i.e., local or published Docker
images which have to be generated if the source code is
provided, and (ii) to simplify reusing components.

For importing filters of type microservice in particular, we
envision a source-to-image workflow. This means that the
Microservice can simply be imported in a runnable format
by specifying the URL to its code repository containing the
source code of the microservice and a corresponding deploy-
ment model containing the instructions, e.g., for building the
container image using the Dockerfile and deploying it with
its related dependencies. Based on the provided sources, the
respective container image is built and staged into an image
repository. In addition, users can provide a service specifica-
tion describing complementary details about the service such
as the messages produced and consumed by the service, e.g.,
by defining the structure of a message and the type of content
of each data element within the message.

To ensure a common message format, we envision MICO-
enabling platforms to rely on CloudEvents!, a vendor-neutral
specification of event data. CloudEvents specification stan-
dardises a set of event’s metadata to facilitate proper routing
and processing of the messages, including such details as the
(1) unique identifier, (ii) source, (iii) type, and (iv) schema
the event data adheres to. The event data of the message is
encapsulated within the data attribute and follow the defined
schema. This results in two possible types of services to
import, namely (i) MICO-enabled microservices that com-
ply with MICO development requirements, i.e., CloudEvents-
based message format, and (ii) regular microservices that can
still be imported, but will need to be composed using Integra-
tion Patterns that implement required message transformation
patterns such as Normalizer pattern [6]. Hence, Integration
Patterns allow flexibly mixing existing business logic with
MICO-enabled microservices.

C. Step 2: Define Integration Model

Microservices available in the service repository can then
be used as part of MICO Models, representing the desired
integration of microservices. As described in Section IV, to
create microservice compositions in which services are loosely
coupled and highly scalable, developers are able to define
messaging-based communication channels using generic Infe-
gration Patterns, which are based on the Enterprise Integration
Patterns [6] and implement functionalities such as splitting,
aggregating, routing, and transformation of messages.
Essentially, an Integration Service reads messages from
a specific topic or queue, modifies the message according
to the provided integration logic and routes the resulting
message to one or multiple output queues or topics. Examples
of integration logic include enrichment, splitting, or filtering
of messages. For example, to model an integration from
microservice A to microservice B, one firstly needs to specify
an output communication channel such as topic or queue for
microservice A, which is then used as an input communication
channel for microservice B. Afterwards, the modelled channels
have to be associated with the desired Integration Pattern,
e.g., routing or filtering messages produced by service A and

Thttps://cloudevents.io



sending them to the input channel of service B. This pipes-and-
filters-based modelling style makes integration models very
flexible, easily allowing to introduce new or reuse existing
Integration Patterns in-between for accomplishing the given in-
tegration task. After connecting required Integration Patterns,
modellers need to configure the actual integration logic, which
may be implemented differently on the technical level.
Basically, the pattern implementation is coupled with the
message formats produced or consumed by the connected mi-
croservices. Hence, the overall configuration process depends
on the underlying MICO software layer implementation. For
example, modellers can directly specify the integration logic
on the level of the model, which will be transformed into the
required deployment format, e.g., hosted on the Function-as-a-
Service platform and bound to the required messaging events.
Another option is to import Integration Pattern implementa-
tions similar to how microservices are imported. While the
integration logic can be stored together with the microservices,
it is also possible to have a dedicated integration logic manage-
ment component, e.g., integration container images repository.

D. Steps 3: Generate Target Deployments

To achieve a “one-click” transition from the modelling of an
application to its running deployment, a created MICO Model
can be automatically deployed to an underlying infrastructure
such as container orchestration platform. The deployment of
a microservice composition using the MICO software layer
consists of three main steps, i.e., (i) deployment of the messag-
ing infrastructure by creating the message queues and topics
needed for message-based communication, (ii) deployment
of Integration Patterns implementing integration functionali-
ties, and (iii) deployment of MICO Filters implementing the
business logic. Typically, this process involves translation of
the data in MICO Models into a required set of deployment
actions for every component in the model. For example, this
may involve executing the provided declarative deployment
model and a specific sequence of API calls or complementary
commands, e.g., establishing the modelled communication
channels. Hence, the concrete execution of these steps is
infrastructure-specific, e.g., with respect to the employed con-
tainer orchestration platform, message-oriented middleware,
and the chosen software for hosting and managing the integra-
tion pattern implementations. As a result, to generate the target
deployment logic for underlying infrastructure requires having
dedicated transformation solutions, e.g., generating Kubernetes
deployments, creating Apache Kafka topics, and deploying
integration logic to a dedicated container repository.

E. Step 4: Deploy Application Instances

After the deployment artefacts for the target infrastructure
are generated, the deployment can be executed by the MICO-
enabling platform. As additional features, the system should
also provide capabilities for management, observability, and
testing of modelled microservice compositions. Modellers
must be able to visualise the service dependency graph,
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Fig. 5. A system architecture enabling the MICO approach.

which facilitates understanding the structure of a microser-
vice composition and also provides some basic metrics for
monitoring the health of the deployment, e.g., to quickly
identify failed deployments. Moreover, to ease the burden
of testing deployments, it should be possible to specify test
messages that can be used to verify the correct functionality
of message processing components, e.g., to verify the correct
transformation and routing of messages. Another required
management abstractions are related to transitioning between
the steps of the approach, e.g., modification of versions and
scaling configurations, updating already deployed components,
or redeployment and undeployment of running applications.

VI. SYSTEM ARCHITECTURE AND PROTOTYPE

We hereby introduce a system architecture enabling the MICO
approach and discuss several architectural decisions with re-
spect to certain components of the system. Furthermore, we
present a prototypical implementation that enables modelling
and deploying MICO applications on top of Kubernetes, with
the aim of illustrating the feasibility of our approach. The
implemented MICO system can be used to facilitate the tran-
sition from modelled microservice compositions to managing
deployed instances on a Kubernetes cluster by abstracting
away technology-specific details.

A. System Architecture

Figure 5 illustrates a system architecture enabling the MICO
approach, which includes all main components needed to
implement the described functionalities. Users can interact
with the system by means of a Graphical modelling and
Management Uls providing a graphical modelling tool and
management interfaces for composing and deploying MICO
applications as described in Sections V-C and V-D.

The business logic layer consists of several major compo-
nents that implement the described functionalities of MICO
for managing microservice compositions, exposed using an
API, e.g., a REST APIL The Microservice Manager provides
functionalities for managing MICO Filters implementing busi-
ness logic, e.g., importing new microservices into the system
and storing them in the Service Implementations Repository.
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The system coordinates the source-to-image workflow for
generating the corresponding runnable building blocks based
on provided source code repository links as discussed in
Section V-B. Similarly, the Integration Pattern Manager pro-
vides functionalities for managing and storing the Integration
Patterns in Pattern Implementations Repository as described
in Section V-C, e.g., default implementations configured based
on the user-provided integration logic, or custom implemen-
tations of entire patterns.

From the technical perspective, the event-driven nature of
Integration Patterns makes Function-as-a-Service (FaaS) cloud
service model a good candidate for hosting implementations
of integration logic. In such case, FaaS-hosted functions can
be triggered by messages originating from given queues or
topics and scaled to zero after completing the integration task,
helping to reduce the usage of available compute resources.
Moreover, since FaaS hosts provided source code directly, it
is easier for modellers to introduce custom integration logic
by simply providing the required implementation to the MICO
software layer, hence reducing the required management ef-
forts. Hence, we envision the usage of a FaaS platform as a
component for managing and processing integration tasks.

The MICO Application Manager provides the functionalities
for composition, management, and monitoring of components
within a microservice application by providing the function-
alities described in Section V-C and Section V-E. For the de-
ployment of created microservice compositions to a container-
based orchestration platform and managing message-oriented
middleware as discussed in Section V-D, technology specific
Infrastructure Plugins are utilised, e.g., for the deployment to
Kubernetes and configuring Apache Kafka-based integrations.

B. Prototype

We implemented a prototype of MICO-enabling platform?,
which follows the system architecture presented in Sec-
tion VI-A, and targets the Kubernetes container orchestration

Zhttps://github.com/UST-MICO/mico

platform. As shown in Figure 6, we use Apache Kafka® and
OpenFaaS as means to enable the message-based integration
of microservices. For the implementation of the MICO system
architecture we use the Java-based framework Spring Boot*.
In addition, Angular’ is used for the development of the web
interface that provides an extensible graph-based modelling
component for creating microservice compositions and a set
of management interfaces for managing MICO applications.
The prototype provides an implementation of the main man-
agement components, i.e., Microservice Manager, Integration
Pattern Manager, and MICO Application Manager, as de-
scribed in Section VI-A. Furthermore, the backend provides
Infrastructure Plugins required for supporting all the func-
tionalities needed to deploy and manage MICO applications
on Kubernetes with Apache Kafka and OpenFaaS used for
messaging-based integration. In addition, the Image Builder
component is implemented for coordinating source-to-image
builds of Docker container images for imported MICO Ser-
vices. Docker images are built directly in a Kubernetes cluster,
using Tekton® and Kaniko’, and staged into a DockerHub
repository for further use as MICO application’s building
blocks. For interacting with Kubernetes and Tekton, the proto-
type relies on the corresponding clients maintained by fabric8®.
The information about MICO services and designed MICO
applications is stored using the graph database management
system Neo4j’, whereas the data about background jobs is
stored using Redis'?, an in-memory data structure store.

We also implemented two default Integration Services rep-
resenting the common enterprise integration patterns, namely
Content-Based Router and Message Filter. The implementa-
tions of patterns use a generic Integration Service that handles

3https://kafka.apache.org/
“https://spring.io/projects/spring-boot
Shttps:/angular.io

Shttps://tekton.dev/
7https://github.com/GoogleContainerTools/kaniko
Shttps://github.com/fabric8io/kubernetes-client
%https://neodj.com

10https://redis.io
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Fig. 7. An integration of microservices described in Section III, modelled using the graphical modelling UI in MICO prototype.

communication with Kafka, in combination with functions
hosted on OpenFaaS that implement the actual integration
logic, e.g., for message routing, splitting, and transformation.
Functions are provided in a function store and users can adjust
these functions based on custom requirements. Internally, a
generic component communicating with Kafka read messages
from specified topics, hands them over to the corresponding
functions, and sends the resulting message to one or multiple
output topics determined by the function.

VII. CASE STUDY

In the following, we discuss how we modelled, deployed,
and managed the microservice composition described in Sec-
tion III on Kubernetes using the MICO system.

Step 1: Importing Application Building Blocks. As an initial
step, we prototypically implemented!! the four microservices
depicted in Figure 1 as simple message producers and con-
sumers, and imported them into the Service Implementations
Repository of MICO by providing the URLs to their source
code repository and a service specification with the metadata
about the services. For example, in case of the Rides Service,
the service specification describes that the service provides an
interface that is accessible via port 80 on HTTP and can be
used to communicate with the service via a REST-API. The
specification also describes that the service uses messaging
to communicate with other services and produces messages
that contain information about completed rides that follow a
given schema. As mentioned in Section V-B, the messages
produced by MICO-enabled services follow the CloudEvents
specification. Listing 1 shows an excerpt of an exemplary
CloudEvents message produced by the Rides Service serialised
as JSON. The event is of type completedRideEvent and
originates from the event source RidesService. The schema,
the event data of this message adheres to is provided in form of
an URI in the dataschema attribute. For the sake of simplicity,

https://github.com/UST-MICO/mico-case-study

in our example, the schema only contains a single data element
with key customerRating. The event data itself is encapsulated
in the data attribute following the defined schema.

Listing 1. Excerpt of a message following the CloudEvent schema
{
"type" "completedRideEvent",
"source" "RidesService",
mign "A234-1234-1234",
"dataschema": "someURI",

"data" : { "customerRating" "o9.1", ... },

}

Step 2: Designing the MICO Model. Next, we used the
imported services as building blocks of a MICO application
that represents the microservice composition from Figure 1.
To solve the given integration tasks, we implemented the
Integration Patterns, and used them in the model to con-
nect Business Logic Services together. Figure 7 displays the
modelled composition of microservices using the graphical
modelling component of the MICO system.

To solve the first integration task, i.e., to filter out messages
sent to the Perfect Rides Service, we exploited the built-
in Message Filter pattern (as Integration Pattern), which we
configured to deal with the appropriate input and output topics.
In our example, “perfect rides” is filtered based on the rating
given by customers. A ride is considered to be perfect in case
the rating is above 9.0. Hence, for configuring the Message
Filter accordingly, we provided the data element that holds
this information together with the defined threshold of 9.0.

The second integration task is solved by exploiting the built-
in Content-based Router pattern (as Integration Pattern), which
routes messages to Standard or Premium Loyalty Services
depending on the value of message’s respective field. After
finalising the MICO Model of the considered application, we
were able to deploy it on the underlying infrastructure layer
using respective plugin for Kubernetes.

Steps 3 and 4: Generating and Enacting the Deployment. To
deploy and test the created composition, we used a single



node Kubernetes cluster that we run using Docker Desktop
with installed Apache Kafka as a message-oriented middle-
ware to enable message-based communication, and OpenFaaS
for managing and handling the interaction with integration
patterns. We initiated the deployment of the application via
the MICO Management Ul, which resulted in automatically
generating the artefacts needed for deploying the application,
and in their actual deployment on the Kubernetes cluster.

We also tested the deployment using the monitoring end-
points provided by implemented microservices. In particular,
to verify the correct message passing of the deployed appli-
cation, we observed the received messages to check if they
comply with the integration requirements for filtering perfect
rides, and routing to the suitable loyalty service.

VIII. RELATED WORK

Microservices are on the rise, with several research efforts
analysing their potentials and possible pitfalls, e.g., [4], [14],
and [15], just to mention some. From all such efforts, it
emerges a need for supporting developers and administrators
of MSA-based applications, especially during the design,
integration and deployment of their applications.

Since Newman’s guide to building microservices [1], vari-
ous approaches have been proposed to provide such support,
typically focusing either on the high-level design of microser-
vices, on their actual integration, or on their deployment. For
instance, [16], [17], [18] and [19] all focus on supporting
the design of MSA-based applications. [16] investigates the
applicability of existing methodologies for the design of
enterprise architectures to MSA, and show how these can
be used to suitably design microservice compositions. [17]
presents MicroART, a tool for automatically determining the
architecture of a running MSA-based system, hence enabling
to view and reason on its architecture to refine its design. [18]
proposes an approach to model MSA by means of so-called
“microservice ambients”, which allow to analyse and refine
(if needed) the granularity of the microservices forming an
application. Finally, [19] propose a solution for representing
MSA in TOSCA, and for identifying and resolving architec-
tural smells in such MSA.

Other approaches worth mentioning are [20], [21], [22],
[23], [24] and [25], all focusing on the actual integration of
the microservices forming an application. [20], [21] and [22]
indeed propose three different approaches for developing the
integration among the microservices in an application, based
on RESTish protocols, on aspect-oriented programming and on
iterative refinements, respectively. [23] and [24] illustrate how
integrate and engineer MSA-based application by exploiting
Jolie, a programming language for microservice compositions.
[25] instead proposes an approach for automatically generating
the test cases needed for testing the developed integrations in
a MSA-based application.

[26], [27], [28] and [29] instead focus on the runtime
support for MSA-based application. [26] and [27] indeed
illustrate two different cloud-based deployment platforms for
continuously managing microservices, dynamically scaling

them based on their load and capable of restoring failed
microservice instances. [28] presents Beethoven, an event-
driven lightweight middleware platform for orchestrating the
microservices forming an application based on their event/-
data flow. [29] instead proposes an integrated dashboard for
deploying, managing and monitoring MSA-based application.

All above approaches however differ from ours, as they
focus on only one among design, integration and runtime
support of microservices, and relying on the technical expertise
of application developers and administrators to carry out
the other phases. The MICO approach we propose in this
paper instead tries to provide a first “one-click” solution, by
synergically combining the design, integration and runtime
support of MSA-based application, and by abstracting away
from all needed technology-specific expertise.

In this perspective, the closest to the MICO approach
are the solutions proposed in [30] and [31]. [30] proposes
a UML-based approach for designing the composition of
microservices forming an application, by exploiting Enterprise
Integration Patterns (EIP [6]) to design their integration. [30]
also illustrate a semi-automated solution to generate the actual
sources implementing the integration among the microservices
in an application. This reduces the amount of technical efforts
required to application developers and administrators, who are
anyway still required to profound their technical expertise in
completing the development of the integration and in speci-
fying the deployment of their applications on container-based
orchestrators. Similar considerations apply to the composition
solution proposed by [31]. Even if the latter fully automates
the generation of service-to-service integrators, it still relies
on the technical expertise of application operators to set up
the deployment of an application.

In summary, to the best of our knowledge, the MICO ap-
proach is the first trying to support application administrators
throughout the design, integration, and deployment of their
MSA-based application, by trying to synergically combine
such phases while at the same time abstracting away from
technology-specific details.

IX. APPROACH GENERALISATION DIRECTIONS

Essentially, the main goal of the MICO approach is to fa-
cilitate the transition from microservice integration models to
deployments on a desired target infrastructure. Similar to other
model-driven approaches, the extent to which the respective
MICO concepts can be adapted and generalised, e.g., to
support different kinds of infrastructure layers or to employ
additional service interaction types, is an interesting issue
to investigate. In the following, we outline several possible
directions related to generalisation of the MICO approach. In
particular, we discuss (i) how generic the infrastructure layer
can be and whether the approach is bound only to message-
based communication, and (ii) to what extent the set of patterns
used in the MICO meta-model can be extended.

Since our approach and the underlying meta-model dis-
cussed in Sections IV and V focus solely on the EIP pat-
terns [6], the modelled communication channels are bound to



messaging-based interaction by design. Such design restric-
tions, essentially, limit the applicability of the approach to
modelling data pipelines. Especially, considering the require-
ments imposed on message formats, the modelled MICO appli-
cations would benefit more from microservices implemented
as reusable “data processors” that can be integrated into multi-
ple different pipelines rather than microservices crafted for one
specific use case. On the other hand, to introduce additional
means of interaction between microservices the meta-model
can easily be extended by adding new types of Pipes connect-
ing Microservices. Such generalisation would allow modelling
messaging-based integrations combined together with, e.g.,
service-to-service interactions via HTTP-based APIs. As a
first step towards mixing different communication styles in
modelled MICO applications, our prototype supports connect-
ing microservices using the interface connections, which are
implemented by establishing mappings among ports exposed
by a microservice and Kubernetes Services. These Kubernetes-
specific mappings are then used for service discovery at
runtime'?. Although as an early feature it is possible to deploy
MSAs interacting by means of HTTP-based interfaces, the
technical implications arising when combining two different
kinds of communication channels require further assessment.

Another important question is how to support other kinds
of infrastructure layers for deploying modelled MICO applica-
tions, e.g., deployments that also combine provider-managed
service offerings such as AWS SQS or AWS Kinesis for
microservice-specific communication. In such cases, deploying
the integration middleware is not always straightforward, e.g.,
the integration can be implemented using functions hosted on
AWS Lambda interacting via AWS SQS. Moreover, the ways
microservices are implemented and deployed themselves vary
too, from Container-as-a-Service and Platform-as-a-Service
offerings to purely serverless, FaaS-based implementations.
In our prototype, we focus solely on Kubernetes-based de-
ployments due to a large popularity of container orchestration
systems for deploying microservices. However, the underlying
system architecture and meta-model are technology-agnostic,
which allows enabling other kinds of infrastructure layers
by implementing corresponding infrastructure plugins. For
example, for enabling AWS-based deployments one might
implement an infrastructure plugin generating AWS Cloud
Formation templates to deploy modelled MICO applications.
Similar approaches exist in the context of canonical deploy-
ment modelling [32].

Another interesting extension direction concerns how to
employ other kinds of patterns in the MICO meta-model, and
especially the microservice-centric patterns [33], e.g., how the
model such patterns as API Gateway [33] or Microservice
Chassis [33] as parts of the MICO application. Although
the MICO meta-model is flexible enough to allow forming
composite patterns such as Composed Message Processor [6],
it is worth emphasising that in certain cases placing the

2https://mico-docs.readthedocs.io/en/latest/tutorials/02-manage-
service.html#manage-service-interfaces

pattern implementation outside the microservice’s boundaries
is unnecessary. For example, the Polling Consumer [6] pattern
fits perfectly as an internal part of a microservice, hence
being encapsulated into the respective Microservice entity
in the MICO application model. The Microservice Chassis
pattern has a similar effect as it is intended to be an internal
part of a microservice, hence also being encapsulated in
Microservice entities. On the other hand, the derivatives of
the Gateway'? pattern such as Messaging Gateway [6] or API
Gateway patterns, essentially, are separate components that can
be crafted manually or rely on well-established solutions like
Kong!'#. This allows having such patterns as first-class citizens
in the MICO application model, but only, if the meta-model
is extended with other forms of communication channels as
discussed previously. The possible need to refine the commu-
nication channels also applies to more sophisticated patterns
such as Process Manager [6], where multiple microservices
interact with each other via a dedicated orchestrator compo-
nent. Depending on infrastructure-related technicalities, mod-
elling of corresponding communication channels might require
more information than regular message-based communication
channels, e.g., to configure the orchestrator implementation.
While the MICO approach focuses on message-based inte-
gration patterns, extending the underlying meta-model with
other subtypes of the Filter and Pipe modelling constructs
is a core requirement for generalising the applicability of
our approach, which in turn requires further classification of
pattern placement in the MICO meta-model.

X. CONCLUSION

We introduced MICO, a model-driven approach for deploying
and managing microservice compositions and a system archi-
tecture enabling it. The main part of the approach is the MICO
meta-model that blends together architectural and deployment
aspects facilitating the transition from integration models to
running deployments. Alongside with modelling interface-
based service integration, the MICO Model enables using so-
called integration services to model messaging-based service
interaction. Integration services rely on implementations of
common enterprise integration patterns, facilitating loosely-
coupled integration of microservices while at the same time
abstracting from the technical details related to the underly-
ing infrastructure deployment requirements. To validate our
approach, we implemented the presented system architecture
prototypically using Kubernetes for container orchestration,
Apache Kafka as a message-oriented middleware, and Open-
FaaS for handling the service integration logic, and we run a
concrete case study based on a third-party application.

In future work, we plan to focus on research directions
discussed in Section IX and extend our approach to modelling
and deploying composition of cloud-native applications also
including multi-cloud use cases and serverless-only application
topologies. Furthermore, we plan to investigate how existing

Bhttps://martinfowler.com/eaaCatalog/gateway.html
14https://konghq.com/kong



architecture modelling languages such as ArchiMate and cloud
modelling languages can be used to expand potential usage
scenarios for the MICO meta-model. Additionally, there exist
multiple pattern languages describing patterns refining other
higher-level patterns [34]. For example, Strauch et al. [35]
refine the higher-level EIPs such as Aggregator and Splitter
patterns to tackle issues related to data confidentiality. In
our work, we plan to combine these ideas for modelling
and deployment of integration patterns related to particular
problem domains in MICO applications, e.g., compliance with
company’s data confidentiality requirements.
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