
Situation-Aware Updates for
Cyber-Physical Systems

Kálmán Képes, Frank Leymann, and Michael Zimmermann

Institute of Architecture of Application Systems, University of Stuttgart, Germany
{kepes, leymann, zimmermann}@iaas.uni-stuttgart.de

Abstract. The growing trend of integrating software processes and the
physical world created new paradigms, such as, the Internet of Things
and Cyber-Physical Systems. However, as applications of these paradigms
are rolled out, the management of their software and hardware compo-
nents becomes a challenge, e.g., an update of a mobile system must not
only consider the software but also the surrounding context, such as,
internet connection, current position and speed, or users activities, and
therefore must be aware of their current context and situations when
executed. The timing of executing management tasks is crucial as the
surrounding state of the system and its context must hold long enough to
enable robust execution of management tasks. We propose an approach
to model software updates in a Situation-Aware manner, enabling to
observe context, such as, time, environment, application state and peo-
ple, hence, enabling to execute update tasks at the right time and in
the right time-frame. We implemented our approach based on a train
scenario within the OpenTOSCA Ecosystem.

Keywords: Cyber-Physical Systems · Context-Aware Systems · TOSCA.

1 Introduction

The trend of integrating the physical world with the so-called cyber world builds
upon integration of software and hardware components creating new paradigms,
such as the Internet of Things (IoT) [2] and the more general paradigm of Cyber-
Physical Systems (CPS) [17]. The wide range of applicable domains, such as
health care [19], mobility [18] and energy [1], enable the seamless integration
of digital and physical processes with our everyday life. These systems must
combine different types of components, starting from commodity hardware to
embedded devices, from off-the-shelve software components to specialized real-
time functions, e.g., embedded devices that control motors sending data to local
databases hosted on edge cloud resources, which are used to aggregate the data
before sending it further to the cloud. Maintenance of these heterogeneous com-
ponents is a complex task, e.g., the exchange of complete components at runtime
to achieve a system update. As every system can have its bugs it is crucial to
enable updates in CPS, as errors that lead to faults within such a system can
have severe safety issues in the real world possibly harming people or resources.

2 Képes et al.

However, management processes that use or configure components must also
consider the surrounding environment, i.e., its overall context must be regarded.
For example, applying runtime updates of components effect their functional
availability and may create severe safety issues in case of errors that can be
caused by external environmental changes, such as, changing network connec-
tions or actions by people affecting the update process. Additionally, if a CPS
should be as autonomous as possible the execution of updates should be started
without the explicit affirmation by users every time an update is available. This
autonomy can only be achieved if the management system of a CPS is aware of
its context, and further, to enable a robust execution of updates, it is important
to observe the current state in the context and apply these at the right time.
Hence, such systems must be Context-Aware in nature [32]. To enable such an
execution it is not only important to know how long a situation will be active
in the application context, e.g., are all users absent from the CPS and don’t use
it, but also how long it takes to execute an update, e.g., how long applying a
new firmware takes or how long it takes to restart a database. In summary, it
is important to combine both views, how much time does an update have and
how long does it take to enable the robust execution of an update.

Therefore, we propose an approach to enable the modeling and execution
of management processes based on awareness of the context and worst-case ex-
ecution time of the needed management tasks, enabling to determine when a
system has a proper state and enough time to execute management processes.
The main idea of our approach is to model the desired update with addition of
specifying which components must be updated only when certain situations are
active for enough time to update. Our approach builds on previous work within
the DiStOpt project (successor of SitOPT) [23] that enabled to model Situation-
Aware workflows, but did not consider the timing of Situation-Aware tasks, and
therefore, was only reactive in nature, hence may turn applications not to be
available at the right time again. One of the project goals of DiStOpt is decou-
pling high level knowledge from low level data and queries on top of the received
data, and therefore, enable easier modeling of Situation-Aware workflows. The
concept of Situation-Aware workflows is used in this paper and applied to up-
dating CPS in a situation-aware manner to enable desired properties of safe and
autonomous execution of management processes. Another work we build upon
is to enable the generation of workflows from so-called declarative deployment
models that only specify what should be deployed and not how. The generated
processes from these models are able to install, configure and start software com-
ponents in an fully automated manner [7], but not under given time constraints
such as those given by the current context of a CPS. We extended and combined
concepts of both previous works enabling the observation of time in context and
execution, therefore, enabling proactive management of CPS.

This paper is structured as follows: In Section 2 we describe a motivating
scenario and background information, in Section 3 we describe our approach,
in Section 4 we describe our prototypical implementation and related work in
Section 5, followed by a conclusion and future work in Section 6.

Situation-Aware Updates for Cyber-Physical Systems 3

Firmware

Embedded	Device	

Break

Engine

…

Embedded	Device	Embedded	
Device

FirmwareFirmware
v1.0

Multimedia
Device

WiFi

Display

…

Multimedia
Device

Commodity
Hardware

AppAppApp
v1.0

When	
stationary? In	motion?

Disconnected	
from	the	
Internet?

Updates	of	safety	
critical	components?

Updates	of	commodity
components?

How	do	you	enable	the	
autonomous	and	robust	execution	

of		updates	in	mobile	Cyber-
Physical	Systems	at	runtime?

… …

v1.1 v1.1

Flash	FirmwareDeploy App

Fig. 1. Motivating example for Timing and Situation-Aware execution of updates.

2 Motivation & Background

In this section we describe a motivating scenario based on autonomous trains (see
Subsection 2.1) and give brief background information on CPS (see Subsection
2.2), worst-case execution time (see Subsection 2.3) and timed situations based
on the DiStOPT project, successor of the SitOPT project (see Subsection 2.4).

2.1 Motivating Scenario

Think about a mobile CPS such as trains consisting of heterogeneous compo-
nents (see middle in Figure 1), e.g., embedded devices that read sensor data
and control actuators to enable safety-critical functions (see firmware hosted on
embedded device in the middle of Figure 1). On the other side, software for
passengers, such as, multimedia services are running on commodity hardware
(see app hosted on commodity hardware in the middle of Figure 1). Each of the
component types have different requirements when regarding updates. Updat-
ing such commodity components doesn’t affect the availability of safety-relevant
functions and updating these components could be done at any time when the
needed update files are locally available. However, updating all of these compo-
nents while passengers may want to use them, the availability of those services
can be reduced and therefore reduce customer satisfaction. This issue is much
more severe when regarding availability of safety-critical components running
on embedded devices of the autonomous train. A failure when updating these
components, such as a firmware that enables control of brakes and motors, has
severe impact on the safety of CPS systems. To enable the automated and robust
execution of runtime updates in such a scenario two challenges arise: (i) when
do you start and (ii) how much time is left to execute updates before the system

4 Képes et al.

has to be available again. For example, in our scenario updating the end-user
components should be achieved when those are not needed, i.e., are not actively
used by passengers. In case of safety-critical components, the train should be in
state where it is safe to execute the update, such as when the autonomous train
has stopped at a station, i.e., the train is not in motion. Therefore the update
system must know when components are not used and know how much time
is left before the components are in use again. Depending on the components
to be updated it is not sufficient to only determine the state of the software
and hardware components to find a suitable time for update execution. As it is
done in research for dynamic software updating [26] it is observing the so-called
quiescence of components and executing updates only when the necessary com-
ponents are not in use. In this field of research the quiescence of components was
only observed in the context of applications itself without regarding the phys-
ical environment. To determine the perfect time to start an update the overall
environment of the system must be observed as well, e.g., whether the train is
stopped at a train station or somewhere outside on the tracks, or whether pas-
sengers are connected to the wireless network of a train wagon (see lower part
of Figure 1). In our train scenario the execution of software updates would be
most sufficient when the train is at halt at a station and passengers are discon-
nected from the network components. Enabling a robust execution of an update
in our scenario of autonomous trains means that updates should not disrupt the
availability of the system when it is actually needed and be started without the
need of human interaction. An update should be execute in a way that it is run
at a time slot where the update can take place completely and successfully, e.g.,
when an update takes five minutes and the train is at a train station for at least
the same time, it is safe to update.

2.2 CPS

In research and industry the trend of integrating the physical world and soft-
ware emerged to paradigms such as the Internet of Things [2] or the more general
paradigm of CPS[17]. The wide-range of application scenarios for CPS, such as,
energy [34], health care [19] and mobility [18] implies the growing integration
within our everyday lives. These applications build on heterogeneous hardware
and software components such as embedded devices to commodity hardware
or from off-the-shelve components to specialized software. As these components
may be deployed and run within physical environments and interacting with
users in a physical manner, CPS in cases can be seen as real-time systems execut-
ing (near-)real-time tasks that have deadlines on the execution of their functions
to enable properties such as safety. These properties are crucial for CPS as miss-
ing deadlines may put people into danger, e.g., when an airbag of a car reacts
to late. Therefore it is crucial that CPS are highly resilient to errors and do not
create severe faults, hence, it is crucial to immediately apply (critical) updates
of the heterogeneous CPS components to make the system more resilient over
their lifetime. This also must be regarded when executing management tasks
such as updates, as the execution of as such may have severe side effects as well.

Situation-Aware Updates for Cyber-Physical Systems 5

2.3 Tasks and their worst-case execution time

The timing of the update operations does not only depend on the duration a
situation is active, but, the execution time of the operations as well, especially
their worst-case execution time (WCET) [40]. This enables our approach to
proactively decide whether to execute operations based on the currently active
situations. However, determining the WCET of an operation is not trivial and in
general not possible to calculate an exact value in modern systems, i.e., it is only
possible to get approximations of the WCET [40]. But especially, in the case of
CPS calculating the WCET is crucial, e.g., airbag control in cars or emergency
braking in trains. The precision of a so-called WCET upper bound that specifies
how long an operation will take at most depends on the underlying hardware.
The closer the software is to the hardware the more precise a WCET bound can
be calculated, which can be done by so-called static analysis or measurement-
based approaches. While the static approaches calculate a WCET bound based
on the source code and target hardware, the measurement-based approaches cal-
culates upper bounds on previous executions of operations [40]. This problem
of calculating upper WCET bounds gets more complicated in modern Cloud or
Edge Computing scenarios, as the underlying hardware is visualized and het-
erogeneous, further complicating the problem getting proper WCET values. In
our example, the most sensitive part to update is the firmware on the embedded
device, as flashing the system disables safety-critical functionality and must not
be aborted while executing. However, as firmware is the first software layer on
top of embedded devices the WCET of flashing can be practically determined.
Hence, the WCET of tasks that are sensitive and close to the hardware is easier
to determine, and therefore, usable within our approach.

2.4 Timed Situations

The overall goal of our approach is to execute activities of a process at the
right time, e.g., in our motivating scenario updates on safety-critical components
should only be executed when the train is at a train station, while other software
components may only be updated when passengers don’t use them. Another im-
portant aspect is that the execution should be aborted as less as possible, in
case of hardware, such as ECUs in trains or cars, retries of the flashing process
reduces lifetime and may even make the hardware unusable when the flashing
process fails [20]. Therefore, we extends our previous approaches on modeling
situations within the SitOPT project [39][8], where a situation was defined as
a state in the context of an object. To observe situations, context data from
objects, such as, machines, software components or users are processed to calcu-
late a particular situations state. We extended situations to give a guarantee on
how long they are active, enabling to use the timing-aspect of situations directly
while executing situation-aware tasks. These specify at runtime for how long a
situation will be either active or inactive, hence, enable to proactively manage
the execution of tasks. For example, if we know that the necessary situations are
available for enough time, e.g., the train is stopped at a station and passengers
don’t use specific components for at least a minute, we can execute an update.

6 Képes et al.

Create	
Updated	Model

Specify
Situations and

Timing

Generate
Situation-Aware	

Process

Execute
Situation-Aware	

Process

flashPartition()
WCET:	1	min

Flash	v1.1.	
Firmware

Reset to
previous
Version

Install v1.1	
App Flash	v1.1.	

Firmware

Reset to
previous
VersionsetPartition()

WCET:	5	sec

Active	>	1	min?

ECU

ECU

v1.1

flash (v1.1)

v1.0

Firmware

Embedded	
Device	

Embedded	
Device	

Embedded	
Device

FirmwareFirmware
v1.1

Multimedia
Device…

Multimedia
Device

Commodity
Hardware

AppAppApp
v1.1

…

Firmware

Embedded	
Device	

Embedded	
Device	

Embedded		
Device

FirmwareFirmware
v1.0

Multimedia
Device…

Multimedia
Device

Commodity
Hardware

AppAppApp
v1.0

…

Firmware

Embedded	
Device	

Embedded	
Device	

Embedded		
Device

FirmwareFirmware
v1.1

Multimedia
Device…

Multimedia
Device

Commodity
Hardware

AppAppApp
v1.1

…

flash(v1.0)

Fig. 2. Overview of the UPTIME method.

3 UPTIME - Update Management for Things in Motion
and Environments

In this section we describe our concept to enable the situation-aware modeling
and execution of software updates, based on our method called UPTIME (see
Figure 2) which is based on a so-called Situation-Aware Deployment Metamodel
and Time-Aware Situational Scopes (see Subsection 3.2). The first is used to
model an update while the second is used to for situation-aware execution.

3.1 Overview

The main idea of the UPTIME method is to specify components and their ex-
posed operations with the situations that must be active long enough in the
current context of the application to execute such operations properly. The first
step in the UPTIME method is to model the desired update from a source to a
target deployment model, i.e., model the components and relations which shall
be installed and configured in the running systems via deployment models (see
first step in Figure 2). In the second step the target deployment model is an-
notated with situations (see Subsection 2.4) and the worst-case execution time
(WCET, see Subsection 2.3) of the available operations and their compensation
operations. For example, in our scenario an operation to flash embedded devices,
and also to compensate previously executed flash operations, is annotated with
a WCET of one minute and the situation that a train shall be at a station, indi-
cating that the update of a firmware should only be executed when the train is
at a station for at least a minute at runtime (see on the right side in Figure 2). In
case of components used by passengers, we only specify the situation that no pas-
senger is using these components. Both steps are based on the Situation-Aware
Deployment Metamodel described in Subsection 3.2 in detail. After specifying
situations and execution times, in step three we generate an imperative deploy-
ment model, i.e., a process from the given source and target deployment models
that contains activities using the operations of modeled components in an order

Situation-Aware Updates for Cyber-Physical Systems 7

Relation	
Type

Component	
Type

is	source	of

is	target	ofis	of	type

Model
Element

Model
Element	Type

is	of	type Relation

Property has Model
Entity

Situation-Aware	
Deployment	Model

contains

has

Situation
Type

Situation
is	of	type

Component

assigned	to

Fig. 3. Metamodel of Situation-Aware Deployment Models (SADM).

to update the system (see Subsection 3.3). The order of generated processes are
derived by determining which components must be removed, updated or newly
installed, and using the available management operations to achieve this. In ad-
dition, each annotated operation from the original declarative models which are
needed within the generated process is added to a so-called Time-Aware Situa-
tional Scope. These scopes control the execution of these operations by observing
the specified situations and therefore can calculate whether there is enough time
to execute an operation according to its annotated WCET. The execution of
operations in such scopes is only started when the proper situations are active
for a duration that is enough to execute management tasks and possibly their
compensation, i.e., revert already executed operations. This strategy enables to
keep a system in a consistent state even if the execution of operations fail as a
scope will start to compensate already executed update operations in time.

3.2 Situation-Aware Deployment and Process Metamodels

The Situation-Aware Deployment Metamodel (SADMM) enables to model the
deployment of an application by specifying components, relations and situations
. In our method the current state and updated state of an applications’ config-
uration is modeled within two models of a SADMM. Figure 3 gives an overview
of the metamodel with our extension for situations, which will be presented in
the following. An instance of a SADMM, a SADM, is a directed and weighted
multigraph that represents structural configuration of an application under a
set of situations, i.e., it represents components and relations that can be started
and configured at runtime, however, only when the specified situations are ac-
tive their exposed operations can be used. LetM be the set of all SADMs, then
d ∈M is defined as a tuple:

d = (C,R, S,CT,RT, ST, type, operation, sits, active)
The elements of the tuple d are defined as follows:

8 Képes et al.

– C: The set of components in d. Each ci ∈ C represents an application com-
ponent that should be configured and started.

– R ⊆ C × C: The set of relations, whereby each ri = (ci, cj) ∈ R represents
a relationship between two components: ci is the source and cj the target.

– S: The set of situations in d, whereby each si ∈ S specifies a certain situation
in the context of an application.

– CT : The set of component types whereby each cti ∈ CT describes the se-
mantics of components, e.g., it specifies that a component is firmware.

– RT : The set of relation types whereby each rti ∈ RT describes the semantics
of relations, e.g., it specifies whether a relation is used to model that a
component is hosted on or connected to another.

– ST : The set of situation types whereby each sti ∈ ST describes the semantics
of situations, e.g., it specifies that a situation is used to determine whether
a train is moving.

– type: The mapping function, which assigns the component type, relation
type and situation type to each component, relation and situation.

– operation: The mapping function, which assign operations to components
via their type, therefore, the mapping operation maps each ct ∈ CT to
a set of tuples (id, wcet) where id ∈ Σ+, with Σ being an alphabet and
Σ+ denoting all strings over Σ, and wcet ∈ R>0, specifying the available
operations and their WCET.

– sits: The mapping function, which assigns each component in d its set of
situations under which it is valid to be deployed. Therefore, sits maps to
each ci ∈ C a set si ⊆ S ∪ ε where ε denotes that any situation is feasible,
allowing that a component is always valid to be deployed.

– active : S × R>0 → {true, false}, where active(s, t) = true if and only if
the situation s is active for the duration t.

To achieve the adaptation needed within our method, i.e., update from the
current configuration to target configuration, different methods can be applied
to determine an abstract process of needed activities to be used in executable
languages. In the following we will define a meta model for such processes and
so-called Time-Aware Situational Scopes (TASS).

Let a process G with a set of TASS be a directed and labeled graph repre-
sented by the tuple G = (A,L, c, scopes).

– A is the set of activities. We separate A into AB ∪AC = A where AB is the
set of activities implementing the desired deployment logic and AC is the set
of compensation activities.

– L defines the order of the control flow of process G and a control connector
l ∈ L is defined as a pair (s, t) where s, t ∈ AB specifies to execute the
activity s before t.

– c is the mapping of activities to their compensation activities via c : AB →
AC ∪ {NOP}, allowing activities to not have a compensation activity by
using NOP .

– scopes is the set of TASS in G.

Situation-Aware Updates for Cyber-Physical Systems 9

Activity Activity…

Timed
Situation

EntryMode:														[Wait	|	Abort]
SituationViolation: [Continue	|	Abort	|	Compensate]

Compensation
Activity

Situation:			[SituationName]
Objects:						[ObjectIdentifier]+
EntryTime:	[Timestamp]
ExitTime:				[Timestamp]

…

Compensation
Activity

Activity:			[ActivityName]
WCET:						[TimeDuration]

Activity:			 [ActivityName]
WCET:						 [TimeDuration]

Activity:			[ActivityName]

Fig. 4. Time-Aware Situational Scope.

We define a TASS scope ∈ scopes to be an acyclic subgraph of G defined as
scope = (Ascope, Lscope, S, situations, active, guarantee, wcetduration) with the
elements defined as the following:

– Ascope, Lscope is the subgraph of G spanned by Ascope

– S is the set of situations, whereby each si ∈ S specifies a certain situation
in the context of an application.

– situations : A→ P(S) is the mapping from A to S to indicate that activities
may only be executed when all annotated situations are active.

– active is the mapping active : S×R>0 → {true, false}, where active(s, d) =
true if and only if the situation s is active for the duration d, analogous to
those in a SADM.

– guarantee is the function to determine the minimal duration of a scope to
be safely executed. We define it as guarantee(Ascope) := min({d|a ∈
Ascope ∧ s ∈ situations(a) ∧ active(s, d) = true}), i.e., we search for the
minimal duration all relevant situations are active.

– wcetduration is the mapping of activities to their WCET with wcetduration :
A→ R≥0 ∪ {⊥} denoting the duration it takes for an activity to finish with
its execution, or wcetduration(a) = ⊥ means that it has no duration defined.

In addition, a TASS must hold that ∀a ∈ Ascope : wcetduration(c(a)) 6= ⊥,
i.e., all activities in a scope have a compensation activity with a WCET de-
fined and ∃a ∈ Ascope : situations(a) 6= ∅ meaning that at least one activ-
ity of scope defines which situations of S must be regarded at runtime. From
these definitions the WCET time of a scope can be calculated by finding a path
p = a1 .. ai .. an, ai ∈ scope for which

∑n
1 wcetduration(ai) is max-

imal, as the graph in scope is acyclic by definition. We define the set pmax to
be the set of paths with the maximal WCET for a TASS. However, to enable
the robust execution the most important aspect is that, even in case of errors,

10 Képes et al.

compensating already executed tasks must be achieved before the currently ac-
tive situations are changing their state. Therefore it is important to know how
much time the overall compensation can take, we need to calculate how much
time the longest path of compensation activities takes to finish. In our model
the compensation of activities is in reverse order of the actual tasks and there-
fore we must find a path pc = b1 .. bi .. bm, bi = c(ai) for which∑m

1 wcetduration(bi) is maximal, analogous to the WCET for a set of activities in
a scope. We define the set pmax

c to be the set of paths with the maximal WCET
for the compensation activities of scope. Calculating how long a scope has time
to execute the tasks or compensation is based on the time situations are active.
After, finding the longest paths pmax and pmax

c inside a scope we take all situa-
tions si ∈ situations(a), a ∈ Ascope and take the minimum guaranteed duration
that the situations si are active, via guarantee(Ascope). The guarantee(Ascope)
becomes the deadline for the execution of scope, which means to properly enter
such a scope at runtime the compensation path pc ∈ pmax

c of scope must take less
time to compensate as the situations have time to change their state, therefore,∑

b∈pc
wcetduration(b) < guarantee(Ascope). However, this just guarantees, that

when the tasks themselves take to long they can be compensated in time, in ad-
dition, to give a better assurance that the task will actually be executed, we can
check that

∑
a∈p wcetduration(a) +

∑
b∈pc

wcetduration(b) < guarantee(Ascope),
stating that we have enough time to execute the provisioning tasks and are still
able to compensate if any error may occur.

3.3 Generating Situation-Aware Processes

In Algorithm 1 we describe a simple method to generate such processes as di-
rected and labeled graphs. It starts by first calculating the maximum common
and deployable subgraph mcs between the current configuration currentConf
and the target configuration targetConf (see line 2 in Algorithm 1). The set
mcs contains all components between the two configurations which hold the fol-
lowing: if a component in mcs needs another to be used properly it must also be
in mcs, e.g, a software component must be hosted on hardware component. To
know which components we have to terminate to get to the target configuration,
we calculate the component set toRemove by removing mcs from the current
configuration currentConf , because mcs contains components we can reuse (see
line 4 in Algorithm 1). On the other hand, to know which components need to
be started we create the set toStart, by removing all components in mcs from
the set targetConf as we only need to start components which are not in the
set of reusable components mcs (see line 5 in Algorithm 1).

Afterwards terminate and start tasks for each of the sets toTerminate and
toStart are created, respectively (see lines 9-16 in Algorithm 1), as well as for
their compensation tasks. The ordering of terminate activities are to stop first
source nodes (see lines 18-20 in Algorithm 1) and the start activities start with
sink nodes of the graph (see lines 21-23 in Algorithm 1). Note that πi selects
the i-th component of a tuple. In other words, we update components from
the ’bottom’ of the graph, on the other hand termination tasks are executed

Situation-Aware Updates for Cyber-Physical Systems 11

Algorithm 1 createProcess(currentConf, targetConf ∈M)

1: // Get maximum set of common components and ensure that it is deployable
2: mcs := maxCommonAndDeployableSubgraph(currentConf, targetConf)
3: // Find with mcs the components that have to be started or terminated
4: toTerminate := currentConf \mcs
5: toStart := targetConf \mcs
6: AB := {}, AC := {}, L := {}, scopes := {}
7: // For each component that will be terminated or started add a terminate or start
8: // task that will use its operations to terminate or start an instance
9: for all c ∈ toTerminate do

10: AB ← AB ∪ (c, terminate)
11: AC ← AC ∪ (c, start)
12: end for
13: for all c ∈ toStart do
14: AB ← AB ∪ (c, start)
15: AC ← AC ∪ (c, terminate)
16: end for
17: // Add control link based on relations between components
18: for all r ∈ {e|e ∈ π2(currentConf)} : π1(r), π2(r) ∈ toTerminate do
19: L← L ∪ ((π1(r), terminate), (π2(r), terminate))
20: end for
21: for all r ∈ {e|e ∈ π2(targetConf)} : π1(r), π2(r) ∈ toStart do
22: L← L ∪ ((π2(r), start), (π1(r), start))
23: end for
24: termSinks := {t | t ∈ AB : π2(t) = terminate ∧ 6 ∃e ∈ L : π1(e) = t}
25: startSources := {t | t ∈ AB : π2(t) = start∧ 6 ∃e ∈ L : π2(e) = t}
26: // Connect the sinks and sources, termination tasks before start tasks
27: L← L ∪ (e, r) : ∀t1 ∈ termSinks,∀t2 ∈ startSources
28: // For paths of activities with annotated compensation activities create a TASS
29: for all p = a1 .. ai .. an, ai ∈ AB , c(ai) 6= NOP, sits(c(ai)) 6= ε do
30: scopes← scopes ∪ ({a1, .., an}, {(a1, a2), .., (an−1, an)},
31: sits(a1) ∪ sits(c(a1)) ∪ sits(a2) ∪ sits(c(a2)).., ..)
32: end for
33: return graph (AB ∪AC , L, c, scopes)

in reversed order. We connect the termination and start activities so they are
ordered with the goal that everything is terminated first and started after (see
lines 24-27 in Algorithm 1) by connecting the sinks of termination tasks with
the sources of start tasks. The last step of the algorithm is to add all TASS
of the process by finding all paths for which there are compensation activities
defined. In addition, all of the compensation activities of such a path must have
annotated situations which must hold inside a TASS.

In summary, the main idea of our approach is to model and execute updates
tasks based on combining the context of an application with the worst-case exe-
cution time of the used management tasks. This combination allows to execute
tasks at runtime without the need to reduce the availability, as they can be
executed when the overall system and its context are in a suitable state.

12 Képes et al.

Apache	ODE
Eclipse Winery

Deployment
Models Situations….

OpenTOSCA
Runtime

….

Arduino

Firmware
v1.0

Raspberry
Pi

AppArduino

Firmware
v1.1

Raspberry
Pi

App
v1.1

Plan
Builder

Flash	v1.1.	
Firmware

Flash	v1.0
Firmware

Install v1.1	
App

Install v1.0
App

v1.0

TOSCA

BPEL

1

2

3

4

Model

Generate
Plan

Execute	Plan

Observe
Situations

Fig. 5. Prototypical implementation within the OpenTOSCA Ecosystem.

4 Prototypical Implementation and Discussion

In this section we describe our prototypical implementation. To validate the
practical feasibility of our concepts, we used the deployment modeling language
TOSCA [30] for the following reasons: (i) it provides a vendor- and technology-
agnostic modeling language and (ii) it is ontologically extensible [4]. Further, for
our prototype we extended the OpenTOSCA ecosystem [9]1 providing an open
source TOSCA modeling and orchestration implementation. While the declara-
tive modeling within the ecosystem is based on TOSCA, the imperative deploy-
ment models are generated and implemented in the workflow language BPEL
[29] which use the specified operations of components.

To implement the first two steps of our proposed method we used the TOSCA
modeling tool Eclipse Winery [25]2 and modeled a prototypical deployment
model based on a Makeblock mBot 3 programmable robot consisting of an em-
bedded device (i.e. an Arduino based mCore Control Board) and different sensors
and actuators, such as, ultrasonic sensor or a motor. The robot was also con-
nected to an attached Raspberry Pi 2 4 to enable to control the robot via WiFi
by a software adapter that receives control messages via the MQTT protocol.
To enable updates while the robot is in use we annotated to each component of
the deployment model a situation. The Raspberry Pi represents the commod-
ity hardware hosting software for users, therefore, the Not in Use situation is
annotated, while the embedded device of the robot was annotated with a At

1 https://github.com/OpenTOSCA/container
2 https://github.com/eclipse/winery
3 https://www.makeblock.com/mbot
4 https://www.raspberrypi.org/products/raspberry-pi-2-model-b/

Situation-Aware Updates for Cyber-Physical Systems 13

…

Subscribe to
Situation	1

Subscribe to
Situation	n

… X X

Situations okay? Enough time?

X

yes yes

no
no

abort

wait

X X

Situations okay? Enough time?

X

yes yes

no no

Activity Activity

Compensation Ativities
+

Receive
Situation	1

Receive
Situation	n… Update	

Situation	n
Update	

Situation	1

Fig. 6. Mapping TASS to BPMN to illustrate the mapping to BPEL.

Station situation, which where calculated by scripts implemented in Python.
We measured the flashing times of the embedded device by the Raspberry Pi
and annotated an WCET upper bound of 1 minute for the flashing operation.
Additionally, we used data by the Deutsche Bahn5, the german railway, about
the local metro, S-Bahn, from the year 2017. A simple analysis of the data deliv-
ered that the mean time a train is at a stop is 65.31 and median at 60.0 with a
standard deviation of 41.87 seconds 6. The minimal time a train was at a station
was 60 seconds, while the longest was to be 101 minutes, therefore the worst-
case time of 1 minute of updating the robot is feasible. The WCET, situations
and TASS specification annotations where mapped to so-called TOSCA Policies
that can be used to specify non-functional requirements, e.g., as in our case,
the situation-aware execution of operations. The generation of a situation-aware
process in step 3 of our method is based on our previous work on generating
so-called TOSCA Plans [7] to enable the automated deployment and configu-
ration of application components and their relations. We added the generation
of TOSCA Plans which can update running application instances from a source
deployment model to a target deployment model. To implement our Time-Aware
Situational Scope concept we extended the code generation according to subsec-
tion 4.1 to add the subscription to situations, evaluating the current state of
situations and the allowed execution time. The generated process, i.e. TOSCA
Plans, are implemented in the workflow language BPEL and executed on the
compatible workflow engine Apache ODE, while the necessary data, such as
TOSCA models, instance data, situations and operations execution time are
stored within the OpenTOSCA TOSCA runtime.

5 https://data.deutschebahn.com/dataset/data-s-bahn-stuttgart-ris-archiv-daten
6 https://github.com/nyuuyn/sbahnstuttgart

14 Képes et al.

4.1 Mapping to standard-compliant process languages

We implemented our concept of TASS within the OpenTOSCA Plan Builder
that can generate imperative processes in the workflow language BPEL [29]7.
The Plan Builder is based on previous work [7] and was extended to enable gen-
eration processes able to adapt a running application instance to a new model
it belongs to, hence, enable to model and execute updates. However, in the fol-
lowing we will describe a mapping of TASS to BPMN[31]8 which is depicted in
Figure 6, allowing a better understanding of the mapping as BPEL has no stan-
dardized graphical notation like BPMN. The mapping assumes that situations
are available via a service, such as middlewares sharing context [24]. We used
the Situation Recognition Layer from the SitOPT project which we integrated
in previous work within OpenTOSCA, it was however extended to enable soft-
ware components to write the entry- and exit times of situations, i.e., enabling
to manipulate the data of how long situations are either active or not.

The general idea of mapping TASS to BPMN (see Figure 6) is first to sub-
scribe to all situations referenced in the process and, additionally, enable to
receive notifications when they change and update internal situation variables.
A concrete Time-Aware Situational Scope is added to a BPMN process as fol-
lows: At the beginning of the activities to execute, three gateways are used to
check whether the situations are active at all and whether the time the situations
are active is enough to execute the operations and compensation activities of the
scope. If one of the conditions doesn’t hold, the control flow either aborts the
overall execution of the activities by throwing a fault, or starts a loop for the con-
dition evaluation, depending whether the TASS has the EntryMode defined as
abort or wait, respectively. When all of the conditions hold the first time they are
evaluated, the activities specified within the TASS are executed according to the
control flow. While these are executed, the conditions of the situations and the
available time is continuously monitored in parallel to the actual business logic,
and if the conditions aren’t met anymore or the business logic takes longer then
the available time, the currently running tasks are aborted and compensated by
the surrounding compensation handlers.

The implemented mapping to BPEL is almost analogous to BPMN and dif-
fers based on wrapping the business functions into their own BPEL scope (used
as an equivalent to a BPMN in-line subprocess) activity which is added to a flow
activity (enabling the graph-based ordering of activities) containing two scope
activities which are used to check the situations state, just as in the BPMN map-
ping. However, instead of looping via control flow edges we wrap the situation
observation activities into a while loop activity, as it is not allowed to model
cycles in a flow activity. When the situations states are checked within the while
loop and are found to be not valid anymore a fault will be raised that starts the
compensation activities and therefore compensates already completed activities
which were added in the generation phase of our approach.

7 http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
8 https://www.omg.org/spec/BPMN/2.0/

Situation-Aware Updates for Cyber-Physical Systems 15

5 Related Work

In the following we describe the related work of our approach, which are from dy-
namic software updating [26], Context-Aware Systems (CAS) [3][24], real-time
systems/transactions [21] and runtime adaptation [38]. While the field of dy-
namic software updating tries to solve the problem of runtime updates, CAS
enable applications to observe their environment to enable reactively or proac-
tively change application behavior and structure, and real-time systems focus
on the execution of tasks under timing constraints.

Kramer and Magee [26] present a model to enable Dynamic Software Changes,
i.e., the execution of software updates at runtime. One part of the model is to
detect a so-called quiescent state of software components, i.e., detect software
components that are not used or do not affect the running application and its
running transactions when updating. In a CPS observing only these types of
components is not sufficient as CPS are integrated within physical environments
consisting of software, hardware, people and other physical resources, which can
create different kinds of errors that can have severe impact on the surround-
ing. Therefore, runtime update methods must include context information to
determine a proper update state, and therefore be Context-Aware.

In the field of Context-Aware Systems the research goal is to enable applica-
tions to work contextually, i.e., adapt the behavior or structure according to their
context. Context according to Dey [14] is every information that can describe
the situation of an entity. To model context different modeling techniques can be
used, such as, ontologies, markup or simple key-value models [5][36][6]. On top
of these models middlewares can be used to distribute the current state of the
context to the applications[3][24]. In research, context-aware systems were ap-
plied to multiple different fields, e.g. the Internet of Things [32]. However, most
approaches lack the timing aspect in regards to context-aware deployment and
management of applications [35]. One application on Context-Awareness to pro-
cesses is presented by Bucchiarone et al. [10] to enable the runtime adaptation
of business processes. The main parts of their method is a main business process
containing abstract activities that are implemented at runtime by business pro-
cess fragments that are added to the main process based on goals. These goals
describe what a process or fragments can achieve at runtime and is therefore
used to adapt the process to the desired goal of the overall business process.
While the presented approach enables context-aware adaptation of processes, it
doesn’t handle aspects such as timing and therefore robust execution. This is the
case in the work of Avenoğlu and Eren [?] as well. They combined a workflow
engine with a Complex-Event Processing system to enable observing context.
Another Context-Aware Workflow approach is presented by Choi et al. [12] that
integrates context data into the workflows on top of the presented middleware,
however, it misses the timing as well. Although the presented works integrate
context into their approaches they only enable reactive adaptation while to prop-
erly manage software updates in CPS the adaptation, i.e., or execution of tasks
must be managed proactively. For example, Grabis demonstrates in [15] how the
proactive adaptation of workflows can benefit the performance of the adaptation,

16 Képes et al.

however, focuses only aspects of the workflow itself not the context as within
our approach. Vansyckel et al. [37] present an approach which uses proactive
adaptation of application configurations based on context and it’s cost to adapt
the application in the present and future context. Although they regard timing
of the adaptation and context they regard it as a part of a cost function. The
proactive context-aware execution of workflows builds on the timing, i.e., how
long a particular context is valid in the environment and therefore introduces
timing constraints. Specifying time constraints, such as, deadlines on execution
of a certain task (e.g. triggering of airbags in the automotive field), are crucial for
the development of applications regarding QoS, such as, safety, performance and
proper handling of context. In research works integrating time into process mod-
els is not new, previous work focused on applying different timing constraints on
tasks of a process [33][11], however these do not consider the dynamic change of
deadlines, which is natural in context.

In contrast, the field of real-time transactions or scheduling tasks are ex-
ecuted before a certain soft- or hard deadline [13]. A soft deadline is a point
in time where a task should be finished, while a hard deadline is a point in
time where the task must be finished. The work by Zeller et al. [41] optimized
automotive systems in regards to real-time components. In contrast, our ap-
proach focuses on the execution of such (re-)configurations at the right time and
before a deadline. Most real-time transaction scheduling algorithms work with
fixed deadlines, however, in the real world hard deadlines are not always easy to
calculate, especially when regarding context and situations. To cope with such
problems Litoiu and Tadei [27] presented work which regards deadlines as well
as the execution time of tasks as fuzzy. This enables the execution of tasks in
uncertain context, whereas our approach assumes hard deadlines for situations.
However, it does not regard the compensation of running tasks and assume that
behavior of deadlines can be mapped to fixed functions.

In the field of runtime adaptation a related study was done by Grua et al. [16]
on self-adaptation in mobile applications, which found that methods for adapta-
tion mostly regarded timeliness in a reactive manner. However, a study by Keller
and Mann [22] found contributions that tackle the issue of timing adaptation of
an application. Their findings show that there is limited work which handles all
parts of an adaptation from the timeliness view, in the study they found only a
single paper which handles all phases (time to detect the need for adaptation,
executing the adaptation,..) when adapting an application. A detailed view on
the issue of timing adaptation is given by Moreno [28]. Moreno tackled the issue
of timing adaptation within a MAPE-K loop with different methods such as
using a Markov Decision Process or Probabilistic Model Checking.

In general, applying updates in CPS can be viewed as adapting an application
under timing constraints to not disrupt its availability. However, which timing
constraints are used to manage the adaptation is depending on the use case
itself. Some works only regard system properties such as message delays of the
approach or the application itself, however, we argue it is equally important to
regard the system context to cope with timing issues when adapting.

Situation-Aware Updates for Cyber-Physical Systems 17

6 Conclusion and Future Work

The execution of software updates in Cyber-Physical Systems combines chal-
lenges from different fields. First they integrate a plethora of heterogeneous soft-
ware and hardware components that have to be managed differently, but in addi-
tion to software and hardware, such systems have to be able to regard the current
state in the environment, i.e., Cyber-Physical Systems must be Context-Aware
and especially when executing management tasks such as software updates. As
updates disrupt the functionality of systems and therefore availability they must
regard context at runtime. When the execution is started at the wrong time or
is disrupted by the environment itself, they can create serious safety issues and
at least reduce the availability of components. In our scenario of trains, compo-
nents either used by passengers or to control safety-critical functions wouldn’t be
available if the update would be executed at runtime without regarding context,
such as, the current usage of components or the position of a train. Therefore it
is beneficial to regard Cyber-Physical Systems as Context-Aware Systems.

In this paper we presented a method to enable the Situation-Aware execu-
tion of software updates in Cyber-Physical Systems. The method is based on
modeling the update in a declarative model and specifying the situations which
have to be active and timing constraints on the operations of the updated com-
ponents to determine their worst-case execution time. Based on this model our
method generates a Situation-Aware process with so-called Time-Aware Situ-
ational Scopes which can update the system according to the initial model by
calling the component operations, however, these are only executed when the
modeled situations are active and their worst case execution time doesn’t ex-
ceed the available time situations are active. Therefore, operations will only be
executed when the context is suitable for updates. We implemented our approach
within the OpenTOSCA systems which was already able to start update pro-
cesses when situations occured, however, missed the proper timing and therefore
could lead to issues as mentioned.

In the future we plan to extend the presented concept to enable Situation-
Aware execution of operations with deadlines and execution times that are not
crisp, enabling to apply the Situation-Aware execution of operations on cloud
resources as well as their execution times are significantly harder to determine,
because of multiple virtualization layers on top of the actual hardware. This
could be achieved by using measurement-based methods to determine a worst-
case execution time of operations, which take the times of previous executions.
Another track of future work is the evaluation of the proposed method on avail-
able simulation data, such as, a whole countrys’ train network.

Acknowledgements

This work was funded by the DFG project DiStOPT (252975529).

18 Képes et al.

References

1. Andr, C., Quijano, N., Mojica-nava, E.: A Survey on Cyber Physical En-
ergy Systems and their Applications on Smart Grids. 2011 IEEE PES Con-
ference on Innovative Smart Grid Technologies (ISGT Latin America) (2011).
https://doi.org/10.1109/ISGT-LA.2011.6083194

2. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: A survey. Computer
Networks (2010). https://doi.org/10.1016/j.comnet.2010.05.010

3. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware sys-
tems. International Journal of Ad Hoc and Ubiquitous Computing (2007).
https://doi.org/10.1504/IJAHUC.2007.014070

4. Bergmayr, A., Breitenbücher, U., Ferry, N., Rossini, A., Solberg, A., Wimmer, M.,
Kappel, G., Leymann, F.: A systematic review of cloud modeling languages. ACM
Comput. Surv. 51(1), 22:1–22:38 (Feb 2018). https://doi.org/10.1145/3150227

5. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ran-
ganathan, A., Riboni, D.: A survey of context modelling and reason-
ing techniques. Pervasive and Mobile Computing 6(2), 161 – 180 (2010).
https://doi.org/https://doi.org/10.1016/j.pmcj.2009.06.002

6. Bolchini, C., Curino, C.A., Quintarelli, E., Schreiber, F.A., Tanca, L.: A Data-
oriented Survey of Context Models. SIGMOD Rec. 36(4), 19–26 (Dec 2007).
https://doi.org/10.1145/1361348.1361353

7. Breitenbücher, U., Binz, T., Képes, K., Kopp, O., Leymann, F., Wettinger, J.:
Combining Declarative and Imperative Cloud Application Provisioning based on
TOSCA. In: International Conference on Cloud Engineering (IC2E 2014). pp. 87–
96. IEEE (Mar 2014)

8. Breitenbücher, U., Hirmer, P., Képes, K., Kopp, O., Leymann, F., Wieland, M.:
A situation-aware workflow modelling extension. In: Proceedings of the 17th
International Conference on Information Integration and Web-based Applica-
tions & Services. pp. 64:1–64:7. iiWAS ’15, ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2837185.2837248

9. Breitenbücher, U., Endres, C., Képes, K., Kopp, O., Leymann, F., Wagner, S.,
Wettinger, J., Zimmermann, M.: The OpenTOSCA Ecosystem - Concepts & Tools.
In: European Space project on Smart Systems, Big Data, Future Internet - Towards
Serving the Grand Societal Challenges - Volume 1: EPS Rome 2016,. pp. 112–130.
INSTICC, SciTePress (2016). https://doi.org/10.5220/0007903201120130

10. Bucchiarone, A., Marconi, A., Pistore, M., Raik, H.: Dynamic adaptation of
fragment-based and context-aware business processes. Proceedings - 2012 IEEE
19th International Conference on Web Services, ICWS 2012 pp. 33–41 (2012).
https://doi.org/10.1109/ICWS.2012.56

11. Chama, I.E., Belala, N., Saidouni, D.E.: Formalization and analysis of timed
bpel. In: Proceedings of the 2014 IEEE 15th International Conference on In-
formation Reuse and Integration (IEEE IRI 2014). pp. 483–491 (Aug 2014).
https://doi.org/10.1109/IRI.2014.7051928

12. Choi, J., Cho, Y., Choi, J., Choi, J.: A Layered Middleware Architecture for Auto-
mated Robot Services. International Journal of Distributed Sensor Networks 10(5),
201063 (2014). https://doi.org/10.1155/2014/201063

13. Davis, R.I., Burns, A.: A Survey of Hard Real-time Scheduling for Mul-
tiprocessor Systems. ACM Comput. Surv. 43(4), 35:1–35:44 (Oct 2011).
https://doi.org/10.1145/1978802.1978814

Situation-Aware Updates for Cyber-Physical Systems 19

14. Dey, A.: Understanding and using context. Personal and ubiquitous computing
5(1), 4–7 (2001). https://doi.org/10.1007/s007790170019

15. Grabis, J.: Application of predictive simulation in development of adaptive work-
flows. In: Proceedings of the Winter Simulation Conference 2014. pp. 996–1004
(Dec 2014). https://doi.org/10.1109/WSC.2014.7019959

16. Grua, E.M., Malavolta, I., Lago, P.: Self-Adaptation in Mobile Apps: a Systematic
Literature Study. In: 2019 IEEE/ACM 14th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). pp. 51–62 (May
2019). https://doi.org/10.1109/SEAMS.2019.00016

17. Gunes, V., Peter, S., Givargis, T., Vahid, F.: A survey on concepts, applications,
and challenges in cyber-physical systems. KSII Transactions on Internet and In-
formation Systems (2014). https://doi.org/10.3837/tiis.2014.12.001

18. Guo, Y., Hu, X., Hu, B., Cheng, J., Zhou, M., Kwok, R.Y.K.: Mobile Cyber Physi-
cal Systems: Current Challenges and Future Networking Applications. IEEE Access
XX(c), 1–1 (2017). https://doi.org/10.1109/ACCESS.2017.2782881

19. Haque, S.A., Aziz, S.M., Rahman, M.: Review of Cyber-Physical System in Health-
care. International Journal of Distributed Sensor Networks 10(4), 217415 (2014).
https://doi.org/10.1155/2014/217415

20. Hassan, R., Markantonakis, K., Akram, R.N.: Can You Call the Software in Your
Device be Firmware? Proceedings - 13th IEEE International Conference on E-
Business Engineering, ICEBE 2016 - Including 12th Workshop on Service-Oriented
Applications, Integration and Collaboration, SOAIC 2016 pp. 188–195 (2017).
https://doi.org/10.1109/ICEBE.2016.040

21. Kejariwal, A., Orsini, F.: On the definition of real-time: Applications and sys-
tems. In: 2016 IEEE Trustcom/BigDataSE/ISPA. pp. 2213–2220 (Aug 2016).
https://doi.org/10.1109/TrustCom.2016.0341

22. Keller, C., Mann, Z.Á.: Towards understanding adaptation latency in self-adaptive
systems. In: 15th InternationalWorkshop on Engineering Service-Oriented Appli-
cations and Cloud Services (WESOACS). Springer (2019)

23. Képes, K., Breitenbücher, U., Leymann, F.: Situation-aware management of cyber-
physical systems. In: Proceedings of the 9th International Conference on Cloud
Computing and Services Science (CLOSER 2019). pp. 551–560. SciTePress (May
2019). https://doi.org/10.5220/0007799505510560

24. Knappmeyer, M., Kiani, S.L., Reetz, E.S., Baker, N., Tonjes, R.: Survey of con-
text provisioning middleware. IEEE Communications Surveys and Tutorials 15(3),
1492–1519 (2013). https://doi.org/10.1109/SURV.2013.010413.00207

25. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – A Modeling Tool
for TOSCA-based Cloud Applications. In: Proceedings of the 11th International
Conference on Service-Oriented Computing (ICSOC 2013). pp. 700–704. Springer
(Dec 2013)

26. Kramer, J., Magee, J.: The Evolving Philosophers Problem: Dynamic Change Man-
agement. IEEE Transactions on Software Engineering 16(11), 1293–1306 (Nov
1990). https://doi.org/10.1109/32.60317

27. Litoiu, M., Tadei, R.: Real-time task scheduling with fuzzy deadlines
and processing times. Fuzzy Sets and Systems 117(1), 35 – 45 (2001).
https://doi.org/https://doi.org/10.1016/S0165-0114(98)00283-8

28. Moreno, G.A.: Adaptation Timing in Self-Adaptive Systems. Ph.D. thesis,
Carnegie Mellon University (4 2017)

29. OASIS: Web Services Business Process Execution Language (WS-BPEL) Version
2.0. Organization for the Advancement of Structured Information Standards (OA-
SIS) (2007)

20 Képes et al.

30. OASIS: Topology and Orchestration Specification for Cloud Applications
(TOSCA) Version 1.0. Organization for the Advancement of Structured Informa-
tion Standards (OASIS) (2013)

31. OMG: Business Process Model and Notation (BPMN) Version 2.0. Object Man-
agement Group (OMG) (2011)

32. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context Aware Com-
puting for The Internet of Things: A Survey. Communications Surveys Tutorials,
IEEE 16(1), 414–454 (2014). https://doi.org/10.1109/SURV.2013.042313.00197

33. Pichler, H., Eder, J., Ciglic, M.: Modelling processes with time-dependent control
structures. In: Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O. (eds.) Conceptual
Modeling. pp. 50–58. Springer International Publishing, Cham (2017)

34. Shrouf, F., Miragliotta, G.: Energy management based on Internet of Things: Prac-
tices and framework for adoption in production management. Journal of Cleaner
Production (2015). https://doi.org/10.1016/j.jclepro.2015.03.055

35. Smanchat, S., Ling, S., Indrawan, M.: A Survey on Context-aware Workflow Adap-
tations. In: Proceedings of the 6th International Conference on Advances in Mobile
Computing and Multimedia. pp. 414–417. MoMM ’08, ACM, New York, NY, USA
(2008). https://doi.org/10.1145/1497185.1497274

36. Strang, T., Linnhoff-Popien, C.: A Context Modeling Survey. In: First Interna-
tional Workshop on Advanced Context Modelling, Reasoning And Management at
UbiComp 2004, Nottingham, England, September 7, 2004 (September 2004)

37. Vansyckel, S., Schäfer, D., Schiele, G., Becker, C.: Configuration Management for
Proactive Adaptation in Pervasive Environments. In: 2013 IEEE 7th International
Conference on Self-Adaptive and Self-Organizing Systems. pp. 131–140 (Sep 2013).
https://doi.org/10.1109/SASO.2013.28

38. Weyns, D., Iftikhar, M.U., de la Iglesia, D.G., Ahmad, T.: A sur-
vey of formal methods in self-adaptive systems. In: Proceedings of the
Fifth International C* Conference on Computer Science and Software
Engineering. p. 67–79. C3S2E ’12, Association for Computing Machin-
ery, New York, NY, USA (2012). https://doi.org/10.1145/2347583.2347592,
https://doi.org/10.1145/2347583.2347592

39. Wieland, M., Schwarz, H., Breitenbücher, U., Leymann, F.: Towards situation-
aware adaptive workflows: SitOPT - A general purpose situation-aware work-
flow management system. In: 2015 IEEE International Conference on Pervasive
Computing and Communication Workshops, PerCom Workshops 2015 (2015).
https://doi.org/10.1109/PERCOMW.2015.7133989

40. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution-time prob-
lem—overview of methods and survey of tools. ACM Trans. Embed. Com-
put. Syst. 7(3), 36:1–36:53 (May 2008). https://doi.org/10.1145/1347375.1347389

41. Zeller, M., Prehofer, C., Weiss, G., Eilers, D., Knorr, R.: Towards Self-Adaptation
in Real-Time, Networked Systems: Efficient Solving of System Constraints for
Automotive Embedded Systems. In: 2011 IEEE Fifth International Confer-
ence on Self-Adaptive and Self-Organizing Systems. pp. 79–88 (Oct 2011).
https://doi.org/10.1109/SASO.2011.19

