
2Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{falazi,breitenbuecher,leymann}@iaas.uni-stuttgart.de

Assessing Architecture Conformance to
Security-Related Practices in

Infrastructure as Code Based Deployments

Evangelos Ntentos1, Uwe Zdun1, Ghareeb Falazi2, Uwe Breitenbücher2,
Frank Leymann2

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

@inproceedings {Ntentos2022_ArchitectureSecurityPractices,
Author = {Ntentos, Evangelos and Zdun, Uwe and Falazi, Ghareeb and

Breitenb{\"u}cher, Uwe and Leymann, Frank},
Title = {Assessing Architecture Conformance to Security-Related Practices

in Infrastructure as Code Based Deployments},
Booktitle = {IEEE International Conference on Services Computing (SCC 2022)},
Publisher = {IEEE},
Pages = {123--133},
Month = aug,
Year = 2022,
DOI = {10.1109/SCC55611.2022.00029},
Url = {https://ieeexplore.ieee.org/document/9860198}

}

:

Institute of Architecture of Application Systems

1Faculty of Computer Science, Research Group Software Architecture,
University of Vienna, Austria

{firstname.lastname}@univie.ac.at

Assessing Architecture Conformance to
Security-Related Practices in Infrastructure as Code

Based Deployments
Evangelos Ntentos, Uwe Zdun

Faculty of Computer Science,
Research Group Software Architecture

University of Vienna
Vienna, Austria

firstname.lastname@univie.ac.at

Ghareeb Falazi, Uwe Breitenbücher, Frank Leymann
Institute of Architecture of Application Systems

University of Stuttgart
Stuttgart, Germany

firstname.lastname@iaas.uni-stuttgart.de

Abstract—Infrastructure as Code (IaC) enables developers and
operations teams to automatically deploy and manage an IT
infrastructure via software. Among other uses, IaC is widely used
in the context of continuously released deployments such as those
of microservice and other cloud-based systems. Although IaC-
based deployments have been utilized by many companies, there
are no approaches on checking their conformance to architectural
aspects yet. In this paper, we focus on security-related practices
including observability, access control, and traffic control in IaC-
based deployments. While best practices for this topic have been
documented in some gray literature sources such as practitioners’
blogs and public repositories, approaches enabling automated
checking of conformance to such best practices do not yet
exist. We propose a model-based approach based on generic,
technology-independent metrics, tied to typical architectural
design decisions on IaC-based deployments. With this approach,
we can measure conformance to security-related practices. We
demonstrate and assess the validity and appropriateness of these
metrics in assessing a system’s conformance to practices through
regression analysis.

Index Terms—Infrastructure as code, metrics, software archi-
tecture, modeling, best practices

I. INTRODUCTION

Cloud computing has significantly increased the number
of infrastructure nodes that a system requires [1]. Moreover,
nowadays systems are being released to production more
rapidly, often many times a day, resulting in more and more
frequent changes in the infrastructure [2], [1]. Infrastructure as
Code (IaC) is the management and provisioning of the infras-
tructure using reusable scripts instead of manual processes [3].
IaC can ensure that a provisioned environment remains the
same every time it is deployed in the same configuration, and
configuration files contain infrastructure specifications making
the process of editing and distributing configurations easier [3],
[4]. IaC can also contribute to improving consistency, security,
avoiding errors, and reducing manual configuration effort.
Without an IaC practice in place, it becomes increasingly
difficult to manage the scale of current systems’ components
and infrastructure.

IaC technologies (e.g., Ansible, Terraform) enable to provi-
sion, deploy, and configure arbitrary application architectures.
Thus, developers and operators, respectively, can model any
desired deployment. This freedom quickly results in severe
problems if security-related aspects are not taken into account.
For example, vulnerabilities in IaC deployment models (e.g.
weak access and traffic control) could allow attackers to access
procedures and run code to hack the application.

The focus of this work is to investigate security-related
practices in deployment architectures that can be configured
and managed via IaC scripts. In this context, we formulate
a number of Architectural Design Decisions (ADDs) with
corresponding decisions options that have been documented
as best practices in the gray literature, i.e. informal guidelines
for practitioners, blog posts, public repositories, and so on.
Based on this architectural knowledge, we aim to provide
an automatic assessment of architecture conformance to these
practices in the IaC deployment models.

So far, not many architectural patterns or formal guidelines
that reflect security best practices in the context of IaC have
been documented. Currently, the literature seems to rather
focus on specific code-level practices. In combination with
the fact that industry-scale systems support multiple such
architectural practices at once and different implementations
of them, this makes it difficult to assess whether an IaC de-
ployment model that implicitly describes also the application’s
architecture is conforming to recommended best practices or
not. In modern cloud-based architectures, such as microservice
architectures [5] and other frequently released systems [1],
an automatic assessment method would vastly improve cost-
effectiveness and produce more accurate results. For instance,
this could be applied in the context of continuous delivery
practices employed in these systems requiring the automated
setup of infrastructures in usually every run of the delivery
pipeline [2]; for example, consider production environments
and identical test environments. Therefore, this paper aims at
answering the following research questions:

• RQ1 How can conformance to IaC architecture security-

related decision options (i.e. patterns or practices) be
automatically assessed?

• RQ2 What kinds of measures can be applied to asses this
conformance and how well do they perform?

• RQ3 What is the minimal set of modeling elements
required in an IaC deployment model to compute these
measures?

To address these research questions, we introduced a set
of metrics for different security-related architectural decisions
to cover all their possible decision options. We derived a
ground truth from a manual assessment of a set of models that
evaluates their conformance to all considered decision options
and their combinations. In particular, the decisions focus on
Security Observability, Security Access Control, and Security
Traffic Control. To create the ground truth, we first objectively
assessed whether each decision option is supported in a system
and to which extent. We derived an ordinal rating scheme to
distinguish different levels of security support, and If security
flaws were indeed found, the rating scheme indicates how far
the conformance to best practices is nonetheless supported.
Both, the rating scheme and the ground truth assessment, have
been reviewed and discussed with two industrial experts (both
having experience in security of microservice systems) until
a consensus was reached. We then used the ground truth data
to assess how well the defined metrics can predict the ground
truth assessment by performing an ordinal regression analysis.

In this paper, we propose a deployment model-based ap-
proach, which uses only modeling elements that can be
derived from the typical scripts used by IaC technologies. A
deployment model implicitly also describes the architecture
of the application to be deployed, thus, enabling assessing the
conformance to architectural decisions. For this reason, it is
important to be able to work with a minimal set of elements,
else it might be difficult to parse them from the IaC scripts.

This paper is structured as follows: Section II compares
related work. Next, we describe the research methods and the
tools we have applied in our study in Section III. In Section IV
we explain the decisions considered in this paper and the
related patterns and practices. In Section V we report how the
ground truth data for each decision is calculated. Section VI
introduces our hypothesized metrics. Section VII describes
the metrics calculations results for our models and the results
of the ordinal regression analysis. Section VIII discusses the
RQs regarding the evaluation results and analyses the threats
to validity. Finally, in Section IX we draw conclusions and
discuss future work.

II. RELATED WORK

A. Related Works on Best Practices and Patterns

As IaC practices are becoming more and more popular and
widely adopted by the industry, there is also more scientific
research into collecting and systematizing IaC-related patterns
and practices. Kumara et al. [6] present a broad catalog of
best and bad practices, both language-agnostic and language-
specific, that reflect implementation issues, design issues, and

violations of essential IaC principles. Morris [3] presents a
collection of guidance on how to manage Infrastructure as
Code. In his book, there is a detailed description of tech-
nologies related to IaC-based practices and a broad catalog
of patterns and practices embodied in several categories.
Language-specific practices have been proposed by Sharma
et al. [7] who present a catalog of design and implementation
smells for Puppet. Schwarz et al. [8] present a catalog of smells
for Chef. Our work also follows IaC-specific recommendations
described in AWS [9], OWASP [10], [11], [12] and the Cloud
Security Alliance [13], [14]. In contrast to our work, many of
these works are less focused on architectural decisions in the
deployment architecture of the systems to be deployed. Fur-
thermore, these works do not support conformance checking
as suggested in our work.

B. Related works on Frameworks and Metrics

a) Tool-based and Network Metrics Approaches: There
are several studies that propose tools and metrics for assessing
and improving the quality of IaC deployment models. Dalla
Palma et al. [15], [16] propose a catalog of 46 quality metrics
focusing on Ansible scripts to identify IaC-related properties
and show how to use them in analyzing IaC scripts. Wurster
et al. [17] present TOSCA Lightning, an integrated toolchain
for specifying multi-service applications with TOSCA Light
and transforming them into different production-ready deploy-
ment technologies. They also present a case study on the
toolchain’s effectiveness based on a third-party application
and Kubernetes. A tool-based approach for detecting smells in
TOSCA models is proposed by Kumara et al. [18]. Sotiropou-
los et al. [19] develop a tool-based approach that identifies
dependencies-related issues by analyzing Puppet manifests
and their system call trace. Van der Bent et al. [20] define
metrics that reflect also the best practices to assess Puppet code
quality. Pendleton et al. [21] present a comprehensive survey
on security metrics. It focuses on how a system security state
can evolve as an outcome of cyber-attack defense interactions.
They then propose a security metrics framework for measuring
system-level security.

Although some of these works focus on quality assurance
of IaC systems, none of them address and focus specifically
on security critical concerns and measures in IaC deployment
models, which is the case in our work.

b) Software Architecture Conformance Checking:
In [22], [23], an approach for automatically checking the
compliance of declarative deployment models during design
time is introduced. The approach allows modeling compliance
rules in the form of a pair of deployment model fragments.
One of the fragments represents a detector subgraph that
determines whether the rule applies to a given deployment
model or not. If a compliance rule is found to be applicable,
the second fragment determines a desired structure that the
deployment model must contain. Comparing the model frag-
ments to a given deployment model happens using subgraph
isomorphism. In contrast to our study, this approach is generic
and does not introduce specific compliance rules, e.g. for the

security domain, and assumes the rule modeler is capable of
translating best practices into compliance rules of the expected
format. Moreover, it only provides a Boolean outcome indicat-
ing whether a compliance rule is violated or not, rather than
indicating to what degree it is violated.

Our approach can be considered as a metrics-based, IaC-
specific approach for deployment architecture conformance
checking. Many approaches related to architecture confor-
mance checking are usually based on automated extrac-
tion techniques [24], [25]. Conformance to architecture pat-
terns [24], [26] or other kinds of architectural rules [25] can
often be checked by such approaches. As proposed in our
work, here techniques that are based on various interrelated
metrics of IaC-related metrics to cover security related fea-
tures and practices do not yet exist. Furthermore, none of
these approaches treat deployment architectures as a set of
nodes and connectors i.e. a deployment architecture. Also,
none are able to produce assessments that combine different
assessment parameters (i.e. metrics). Such metrics, if automat-
ically computed, can be utilized as part of larger assessment
models/frameworks during design and development time.

III. RESEARCH AND MODELING METHODS

A. Overview

Figure 1 shows the research steps followed in this study. We
first studied knowledge sources related to IaC-specific security
best practices from industry organizations, practitioners blogs
and scientific literature [14], [13], [12], [11], [10], [27],
[9], [6], [3], [8], [7]. We then analyzed the data collected
using qualitative methods based on Grounded Theory [28]
coding methods, such as open and axial coding, and extracted
the three core IaC security-related decisions described in
section IV along with their corresponding decision drivers
and impacts. Based on our dataset, which contains generated
models, we derived a ground truth as well as a set of metrics
to measure the proportion of the support of each practice.
Next, we defined a rating scheme on support or violation
of best practices and refined the ground truth assessment.
The generated models, the rating scheme, and ground truth
assessment were independently analyzed by two industrial
security experts, each with around 5 years of experience in
developing and architecting cloud-based systems. We dis-
cussed each assessment with the experts until a consensus
was reached and used the ground truth data to assess how
well the hypothesized metrics can possibly predict the ground
truth data by performing an ordinal regression analysis..

B. Model Selection Methods

This study focuses on conformance to security-related fea-
tures and practices in IaC deployment models. To be able to
study this, we first performed an iterative study of a variety
of IaC knowledge sources. Next, we refined a meta-model,
which contains all the required elements to help us reconstruct
the actual architecture that gets deployed by the IaC model.
For problem investigation and as an evaluation model set for
eventually creating a ground truth for our study, we gathered a

Analyze Data: Grounded
Theory

IaC
Deployment

Model Evaluate Metrics

Define Metrics

Search Repositories

Formulate Core Decisions

Establish a Rating Scheme for
System Assessment

Define Ground Truth

Search Web
Resources

Fig. 1: Overview of the research method followed in this study

number of IaC systems, summarized in Table I. Each of them
is taken directly from a system published by practitioners (on
GitHub and/or practitioner blogs) from 9 independent sources.
We mostly used search engines to find all systems used in
this study. Searching in such engines might lead to selection
bias and to different types of data [29]. For avoiding such a
selection bias we initially started our research with keywords
taken from AWS [9], OWASP [10], [11], [12] and the Cloud
Security Alliance [13], [14] such as Infrastructure Architecture
Security, Infrastructure Hardening, Monitoring and Logging
and Security Groups and Traffic Control etc. We used major
search engines (e.g. Google, Bing, DuckDuckGo) and topic
portals (e.g. InfoQ, DZone) to find relevant practitioner texts.

The systems we found were developed by practitioners
with relevant experience, which justifies the assumption that
they provide a good representation of the IaC security-related
best practices summarized in Section IV. We performed a
fully manual static code analysis for the IaC models that are
in the repos together with the application source code. For
model creation, we used our existing modeling tool Codeable
Models1, a Python implementation for the precise specification
of meta-models, models, and model instances in code. The
result is a set of precisely modeled component models of
the software systems. Variations were modeled to cover the
complete design space, including also the bad practices that
can cause a violation, of our three ADDs and described in
Section IV, according to the referenced practitioner sources.
Apart from the variations described in Table I, all other system
aspects remained the same as in the base models. This resulted
in a total of 21 models summarized in Table I. We assume that
our evaluation models are close to models used in practice and
real-world practical needs. As many of them are open source
systems with the purpose of demonstrating practices, they are

1https://github.com/uzdun/CodeableModels

https://github.com/uzdun/CodeableModels

at most of medium size, though.

C. Metrics Definition, Ground Truth Calculation, and Statis-
tical Evaluation Methods

We defined a set of metrics for each ADD to measure
conformance to the respective practices in the design decisions
from Section IV, i.e. at least one metric per major feature/prac-
tice. Based on the manual assessment of the models from
Table I, we derived a ground truth for our study (the ground
truth and its calculation rules are described in Section V). The
ground truth is established by assessing whether each decision
option is supported, partially supported, or not supported.
We combined the outcome of all decision’s options and then
derived an ordinal assessment on how well the decision is
supported in each model, using the scale:

• ++: very well supported;
• +: well supported, but aspects of the solution could be

improved;
• ∼: serious flaws in the security design, but substantial

support can already be found in the system;
• −: serious flaws in the security design, but initial support

can already be found in the system;
• −−: no support for the security tactic can be found in

the system.
We discussed this assessment scheme with the two industrial

security experts until a consensus was reached. The authors as-
sessed all the system models and the variants for conformance
to each of the ADDs, and the assessments are again reviewed
by the two industrial security experts.

Our scale does not assume equal distances, but it assumes
the given order. We then used the ground truth data to assess
how well the defined metrics can predict the ground truth data
by performing an ordinal regression analysis.

Ordinal regression is a widely used method for modeling
an ordinal response’s dependence on a set of independent
predictors. For the ordinal regression analysis we used the lrm
function from the rms package in R [30].

D. Methods for IaC Architectural Reconstruction

From an abstract point of view, an IaC system is composed
of nodes and connectors with a set of nodes types and a set of
connector types. Our paper has the goal to automate metrics
calculation and assessment based on the node model of an
IaC system. That is, if the system is manually modeled or the
model can be derived automatically from the IaC scripts, our
approach is applicable. For modeling IaC deployment models
we followed the method reported in our previous work [31].
All the code and models used in and produced as part of this
study have been made available online for reproducibility2.

In the context of this approach, and based on our work
[32], we have introduced a number of detectors in order
to automatically reconstruct the IaC architecture from the
source code. Combining the automatic reconstruction with the
automatic metrics calculation, the overall assessment process

2https://doi.org/10.5281/zenodo.6559385

can be improved. So far we have done this only for one system
and for one technology (S4 in Table I) fully and are developing
extensions for the other systems at the moment. A detector is
a piece of code that looks for specific characteristics in the
IaC deployment model and produces architectural information.
The idea is that by having many of these, all lightweight
and possibly looking at different languages (e.g. Ansible,
Terraform), then deployment architectures can be extracted in
an automatic way. Figure 3 shows the resulting model after
applying our detectors. Moreover, from the grounded theory
analysis, we defined deployment meta-models, in which nodes
are extended by the stereotype nodes types and connectors by
the stereotype connector types, to reconstruct model instances
for the deployments.

E. The Tool Flow of the Approach

Figure 2 illustrates the general tool flow architecture on how
the building blocks interact. Using the detectors it’s possible to
generate models from our modeling tool Codeable Models. As
Figure 2 shows, the user can be either a developer or an archi-
tect. The architect specifies the architecture abstraction specifi-
cation for an IaC system, while the developer implements it in
the IaC scripts potentially of different technologies. However,
both can be involved in the development of detectors. The
user can use the architecture specification, IaC scripts and the
detector toolchain to generate the IaC deployment model. The
architecture specification and the IaC scripts are the inputs of
the detector component. The detector performs the detections,
and, if successful, uses a code generator to generate the
Codeable Models code. The generator uses the deployment
meta-model to generate the IaC deployment model. It also
contains a visualization generator for generating PlantUML
diagrams such as the one in Figure 3.

IV. IAC SECURITY-RELATED ADDS

In this section, we briefly introduce the three security-related
decisions along with their decision options (i.e. the relevant
patterns and practices) which we studied for this paper. We
also discuss the impact on relevant security aspects, which we
later on use as an argumentation for our manual ground truth
assessment in Section V.

a) Security Observability: An important aspect in de-
ployment architectures is to be able to identify and respond to
what is happening within a system, what resources need to be
observed, and inspect what is causing a possible issue. Using
observability practices to collect, aggregate, and analyze log
data and metrics is a key for establishing and maintaining more
secure, flexible, and comprehensive systems [13]. Moreover,
collecting and analysing information improves the detection of
suspicious system behavior or unauthorised system changes
on the network and can facilitate the definition of different
behavior types, in which an alert should be triggered. A crucial
decision in infrastructure observability is Server Monitoring
which is an essential process of observing the activity on
servers, either physical or virtual. A single server can support
hundreds or even thousands of requests simultaneously. As

ARCHITECT

Architecture
Abstraction

Specification

IaC
Deployment

Model

Detector-based
Architecture
Abstraction

Model
Generator

Visualization
Generator PlantUML

Model

IaC Scriptsspecification for

creates

Deployment
Meta-model

used by

instance of

Detectors Developmentimplemented by Reusable
Detector

develops

DEVELOPER

used for Optional Process

Fig. 2: Tool Flow Architecture of the Proposed System

«Monitoring/Logging Data Provider,
Centralized Log Management»
 Filebeat Webserver 10.0.0.8

:Component

«Monitoring/Logging Data Provider,
System Metrics Collection»

 Metricbeat Webserver 10.0.0.8
:Component

«Monitoring/Logging Data Provider,
Centralized Log Management»
 Filebeat Webserver 10.0.0.9

:Component

«Monitoring/Logging Data Provider,
Centralized Log Management»
 Filebeat Webserver 10.0.0.10

:Component

«Monitoring/Logging Data Provider,
System Metrics Collection»

 Metricbeat Webserver 10.0.0.9
:Component

«Monitoring/Logging Data Provider,
System Metrics Collection»

 Metricbeat Webserver 10.0.0.10
:Component

«Web Server»
 Webserver 10.0.0.8

:Device

«Web Server»
 Webserver 10.0.0.10

:Device

«Web Server»
 Webserver 10.0.0.9

:Device

«Logging»
Logtash

:Component

«Monitoring»
Elasticsearch
:Component

«Monitoring Dashboard»
Kibana

:Component

«Cloud Server»
ELK Server:Device

«Container»
ELK Docker Container

:Execution Environment

«deployed on»

«deployed on»

«deployed on»

«deployed on»

«deployed on»

«deployed on»

«RESTful HTTP»

«RESTful HTTP»

«RESTful HTTP»

«RESTful HTTP»

«RESTful HTTP»

«RESTful HTTP»

«RESTful HTTP»

«RESTful HTTP»

«RESTful HTTP»

«RESTful HTTP»

«connects to»

«connects to»

«connects to»

«deployed on container»

«deployed on container»

«deployed on container»

«runs on»

Fig. 3: Overview of a reconstructed model (Model S4 in Table I).

such, ensuring that all of the servers are operating according
to expectations is a critical part of managing an infrastructure.
Another equally critical decision is Application Monitoring
which is a process of collecting log data to support aspects
such as track availability, bugs, resource use, and changes
to performance in an application. Moreover, features such
as Metrics Collection, Services Availability, Centralized Log
Management and Monitoring and Performance Analytics Sup-
port would additionally improve a system’s security.

b) Security Access Control: A critical security factor in
cloud-based systems is how stable, verifiable, and secure the
interactions between a user and a cloud-application are. For
this, a secure authentication practice would address most of the
possible issues. Authentication is the process of determining
a user’s identity. Moreover, authorization practices provide
access control for systems by checking if a user’s credentials
match the credentials of an authorized user or in a data
authentication server. Also, it assures secure systems, secure
processes and enterprise information security [10]. There are a

number of ways authentication can be achieved. At the level of
deployment architectures, one strongly recommended practice
is the SSL Protocol-Based Authentication [33] in which a
cryptographic protocol (SSL/TLS) encrypts the data that is
exchanged between a web server and a user [11] and provides
means for authentication of the connection. An alternative
practice is Token-Based Authentication [34], a protocol which
allows users to verify their identity, and in return receive a
unique access token for a specified time period. A similar
practice but without granting tokens for a limited time period
is API Keys based authentication [27], which utilizes a unique
identifier to authenticate a user or a calling program to an API.
However, they are typically used to authenticate a project with
the API rather than a human user. A less secure practice and
not recommended for security critical interactions is Plaintext
Authentication (or Shared Secret Based Authentication), where
the user name and password are submitted to the server in
plaintext, being easily visible in any intermediate router on the
Internet. An authentication practice that can be implemented

Model ID Model Size Description / Source
S1 12 nodes

13 connectors
Consul-based application with specified security groups (from https://github.com/apiacademy/
microservices-deployment).

S2 12 nodes
13 connectors

Variant of S1 which uses API keys authentication practice.

S3 8 nodes
9 connectors

Variant of S1 which uses Plaintext authentication practice.

S4 14 nodes
25 connectors

Elasticsearch, Logstash, and Kibana (ELK)-based system using metrics collection and log management
tools (from https://github.com/babtunee/azure-cloud-security-architecture).

S5 14 nodes
25 connectors

Variant of S4 using Ingress Traffic Control and partial support of SSL-Based Authentication.

S6 14 nodes
25 connectors

Variant of S4 using Ingress Traffic Control and full support of Token-Based Authentication.

S7 10 nodes
17 connectors

ELK-based system using metrics collection and application monitoring related tools (from https://github.
com/deviantony/docker-elk).

S8 10 nodes
17 connectors

Variant of S7 with additional servers and Plaintext Authentication.

S9 17 nodes
48 connectors

Variant of S8 using additional tools for centralized log management, service availability and performance
analytics as well as Ingress and Egress traffic control, Token-Based Authentication and Single Sign-On
authentication.

S10 8 nodes
11 connectors

ELK-based system using metrics collection related tools (from https://github.com/ManuelMourato25/
elastic-stack-architecture-example).

S11 10 nodes
14 connectors

Variant of S10 using Application monitoring, Ingress traffic control and Security groups

S12 16 nodes
30 connectors

ELK-based system using metrics collection and log management tools as well as security groups (from
https://github.com/frahmeto/Elk-Stack-Project-1).

S13 19 nodes
57 connectors

Variant of S12 using additional Application monitoring, service availability, performance analytics and
API keys authentication.

S14 10 nodes
15 connectors

ELK-TLS-based system using metrics collection, log management, performance analytics and endpoint
security tools (from https://github.com/swimlane/elk-tls-docker).

S15 14 nodes
35 connectors

Variant of S14 using additional servers and Application monitoring, performance analytics and SSL-Based
Authentication, ingress traffic control and Single Sign-On authentication

S16 8 nodes
11 connectors

Java ELK-based system with service availability and log management tools (from https://github.com/
twogg-git/java-elk).

S17 6 nodes
5 connectors

Variant of S16 using only Plaintext authentication and no additional tool to support other features.

S18 14 nodes
21 connectors

Variant of S16 which uses application monitoring, Ingress and Egress traffic control and security groups.

S19 9 nodes
8 connectors

Openshift-based application with application monitoring and metrics collection tools (from https://github.
com/redhat-helloworld-msa/k).

S20 9 nodes
8 connectors

Variant of S19 with SSL-based and Single Sign-On authentication.

S21 8 nodes
7 connectors

Terraform application deployed in AWS with metric collection tool and security groups (from https:
//github.com/ryanmcdermott/terraform-microservices-example).

TABLE I: Selected IaC Deployments Models: Size, Details, and Sources

additionally is the Single Sign-On (SSO) [35]. This is a method
that can allow users to log into one application and gain
access to multiple applications. The goal of SSO is to make it
unnecessary for users to have numerous kinds of credentials
also benefits them because it allows them to log-off from all
system components that use SSO with a single request. In this
way, SSO can enable users to improve passwords by getting
rid of the need to remember and use them for every single
application, offering the best combination of simplicity and
security for users.

c) Security Traffic Control: Controlling incoming and
outgoing traffic in a system can significantly improve the
overall security. Two common practices in this field are Ingress
and Egress Traffic Control. Optimally, a system should fully
support both practices. Egress Traffic Control [36] refers to
traffic that exits a network boundary, while Ingress Traffic
Control [37] refers to traffic that enters the boundary of a
network. The ability to control what is entering a system

is of significant importance for security assurance, since it
can prevent possible attacks from outside of the network,
where many possible attacks originate. Furthermore, it is
important to reduce the vulnerability as much as possible and
prevent the attackers from using a cluster for further attacks
on external services or systems outside of the cluster. This
requires securing control of egress traffic. Both practices can
be specified by security rules implementing security groups [9]
that act as a virtual firewall for a system.

V. GROUND TRUTH CALCULATIONS FOR THE STUDY

In this section, we report for each of the ADDs from
Section IV how the ground truth data is calculated based on
manual assessment whether each of the relevant practices is ei-
ther Supported (S), Partially Supported (P), or Not-Supported
(N) in Table II. Following the information taken from the
description of the impacts of the various decision options in
Section IV, we combined the outcome of all decision options

https://github.com/apiacademy/microservices-deployment
https://github.com/apiacademy/microservices-deployment
https://github.com/babtunee/azure-cloud-security-architecture
https://github.com/deviantony/docker-elk
https://github.com/deviantony/docker-elk
https://github.com/ManuelMourato25/elastic-stack-architecture-example
https://github.com/ManuelMourato25/elastic-stack-architecture-example
https://github.com/frahmeto/Elk-Stack-Project-1
https://github.com/swimlane/elk-tls-docker
https://github.com/twogg-git/java-elk
https://github.com/twogg-git/java-elk
https://github.com/redhat-helloworld-msa/k
https://github.com/redhat-helloworld-msa/k
https://github.com/ryanmcdermott/terraform-microservices-example
https://github.com/ryanmcdermott/terraform-microservices-example

to derive an ordinal assessment on how well the decision as
a whole is supported in each model, using the ordinal scale
in Section III-C. This was done according to best practices
documented in literature and experts assessment. For instance,
following the ordinal scale the assessment for the model S4
is ∼: serious flaws in the security design, but substantial
support can already be found in the system, since the practices
ServicesAvailability Bugsand Performance Management and
ApplicationMonitoring are not supported. The ordinal results
of assessments are reported in the Assessments rows of
Table II.

Following the argumentation, for the Security Observability
related practices, we can derive the following scoring scheme
for our ground truth assessment of this decision:

• ++: All server nodes support Server Monitoring, Appli-
cation Monitoring, Centralized Log Management, System
Metrics Collection, Services Availability and Monitoring
and Performance Analytics.

• +: All server nodes support Server Monitoring and Ap-
plication Monitoring and one or more of the practices
Centralized Log Management, System Metrics Collection,
Services Availability and Monitoring and Performance
Analytics is supported.

• ∼: The majority of the server nodes support Server
Monitoring and Application Monitoring and one or more
of the practices Centralized Log Management, System
Metrics Collection, Services Availability and Monitoring
and Performance Analytics is supported.

• −: Some of the server nodes support Server Monitoring
and/or Application Monitoring.

• −−: None of the server nodes support monitoring.

From the argumentation for the Security Access Control
decision, we can derive the following scoring scheme for our
ground truth assessment:

• ++: All server nodes support SSL-Based Authentication
or Token-Based Authentication and Single Sign-On au-
thentication.

• +: All server nodes support Token-Based Authentication
or SSL-Based Authentication.

• ∼: All server nodes are authenticated and some of those
only support API Keys-Based Authentication.

• −: All server nodes are authenticated and some of those
only support Plaintext-Based Authentication.

• −−: None of the server nodes support authentication.

Finally, from the argumentation for the Security Traffic
Control decision, we can derive the following scoring scheme
for our ground truth assessment:

• ++: All server nodes support Ingress Traffic Control and
Egress Traffic Control.

• +: All server nodes support Ingress Traffic Control and
Egress Traffic Control to the majority of system nodes.

• ∼: All server nodes support Ingress Traffic Control and
Egress Traffic Control not to the majority of system
nodes.

• −: The majority of server nodes support Ingress Traffic
Control.

• −−: No traffic control is supported.

VI. METRICS

In this section, we describe the metrics we have hypothe-
sized for each of the decisions described in Section IV. They
are deliberately rather simple, as to represent each decision
point in our design decisions. The metrics, are a continuous
value with range from 0 to 1, with 1 representing the optimal
case where a set of patterns is fully supported, and 0 the worst-
case scenario where it is completely absent, except Plaintext
Authentication utilization metric in which the scale is reversed
in comparison to the others, because here we detect the
presence of an anti-pattern: the optimal result of our metrics is
0, and 1 is the worst-case result.. Using the model computed
in the ordinal regression analysis below, we then provide more
complex metrics per decision in section IV.

A. Metrics for the Security Observability Decision

Server Monitoring metric (SEM). This metric returns the
proportion of Server Nodes that support server monitoring.

SEM =
Server Monitoring Support
Number of Server Nodes

Application Monitoring Support metric (AMS). This
metric measures the proportion of servers that support Ap-
plication Monitoring.

AMS =
Number of Application Monitoring Links

Number of Server Nodes

System Metrics Collection Support metric (SMC). This
metric measures the proportion of servers that support System
Metrics Collection tools.

SMC =
Number of System Metrics Collection Links

Number of Server Nodes

Centralized Log Management Support metric (CLM).
This metric measures the proportion of servers that support
Centralized Log Management tools.

CLM =
Number of Centralized Log Management Links

Number of Server Nodes

Service Availability Support metric (SAS). This metric
measures the proportion of servers that support Service Avail-
ability tools.

SAS =
Number of Service Availability Links

Number of Server Nodes

Monitoring and Performance Analytics Support metric
(PAS). This metric measures the proportion of servers that
support Monitoring and Performance Analytics tools.

PAS =
Number of Monitoring and Performance Analytics Links

Number of Server Nodes

Security Observability

S1 S2 S3 S4 S5 S6 S7 S8 S9 S1
0

S1
1

S1
2

S1
3

S1
4

S1
5

S1
6

S1
7

S1
8

S1
9

S2
0

S2
1

Server Monitoring S S P S S S S S S S N S S S P S N S N S S
Application Monitoring N N N N S N S P S N N N S N P N N S S S N
System Metrics Collection N N N S P N S P S S N S S S S N N N S N S
Centralized Log Management N N N S S N N N S N N S S S S S N S N N N
Services Availability N N N N N N N N S N N N S N N S N S N N N
Bugs and Performance Management N S P N N N N N S N N N S S S N N N N N N
Assessments - ∼ ∼ ∼ + ∼ + o ++ o -- ∼ ++ ∼ - ∼ – + - + ∼
Security Access Control

S1 S2 S3 S4 S5 S6 S7 S8 S9 S1
0

S1
1

S1
2

S1
3

S1
4

S1
5

S1
6

S1
7

S1
8

S1
9

S2
0

S2
1

SSL Protocol-Based Authentication N N N N P N N S N N N N N S S N N N N S N
Token-Based Authentication S N N N N S N N S N N N N N N N N N N N N
Plaintext Authentication N N S S N N S N N N N N N N N N S N N N S
API Keys N S N N N N N N N N N N S N N N N N S N N
Single Sign-On (SSO) N N N N N N N N S N N N N N S N N N N S N
Assessments + ∼ - - ∼ + - + ++ -- -- -- ∼ + ++ -- - -- ∼ ++ -
Security Traffic Control

S1 S2 S3 S4 S5 S6 S7 S8 S9 S1
0

S1
1

S1
2

S1
3

S1
4

S1
5

S1
6

S1
7

S1
8

S1
9

S2
0

S2
1

Ingress Traffic Control S P N N S S N S S N N S P N P N S S N P S
Egress Traffic Control S N N N P N N N P N N S P N N N N S N N S
Assessments ++ - -- -- + ∼ -- ∼ + -- -- ++ - -- - -- ∼ ++ -- - ++

TABLE II: Ground Truth Data

B. Metrics for Security Access Control Decision
SSL Protocol-based Authentication utilization metric

(SSLA). We defined this metric to measure the proportion of
servers that support SSL Protocol-based Authentication.

SSLA =
SSL Protocol-based Authentication Support

Number of Server Nodes

Token-Based Authentication utilization metric (TBA).
This metric measures the proportion of servers that support
Token-Based Authentication.

TBA =
Token-Based Authentication Support

Number of Server Nodes

API Keys utilization metric (API). This metric measures
the proportion of servers that support API Keys.

API =
API Keys Support

Number of Server Nodes

Plaintext Authentication utilization metric (PLA). This
metric measures the proportion of servers that support Plain-
text Authentication.

PLA =
Plaintext Authentication Support

Number of Server Nodes

Single Sign-On Authentication utilization metric (SSO).
This metric measures the proportion of servers that support
Single Sign-On Authentication.

SSO =
Single Sign-On Authentication Support

Number of Server Nodes

C. Metrics for Security Traffic Control Decision

Ingress Traffic Control utilization metric (ING). We
defined this metric to measure the proportion of servers that
support Ingress Traffic Control.

ING =
Ingress Traffic Control Support

Number of Server Nodes

Egress Traffic Control utilization metric (EGR). We
defined this metric to measure the proportion of servers that
support Egress Traffic Control.

EGR =
Egress Traffic Control Support

Number of Server Nodes

VII. EVALUATION OF OUR APPROACH

In this section, we present and discuss the results of the
metrics calculations for our models as well as the results of the
ordinal regression analysis. The metrics calculations for each
model per each decision metric are presented in Table III. The
dependent outcome variables are the ground truth assessments
for each decision, as described in Section V and summarized
in Table II. The metrics defined in Section VI and summarized
in Table III are used as the independent predictor variables.
The ground truth assessments are ordinal variables, while all
the independent variables are measured on a scale from 0.0 to
1.0. The objective of the analysis is to predict the likelihood
of the dependent outcome variable for each of the decisions
by using the relevant metrics for each decision.

Each resulting regression model consists of a baseline inter-
cept and the independent variables multiplied by coefficients.
There are different intercepts for each of the value transitions
of the dependent variable (≥ [-]: serious flaws in the security
design, but initial support can already be found in the system,
≥[∼]: serious flaws in the security design, but substantial
support can already be found in the system, ≥ [+]: well
supported, but aspects of the solution could be improved, ≥
[++]: very well supported), while the coefficients reflect the
impact of each independent variable on the outcome.

The statistical significance of each regression model is as-
sessed by the p-value; the smaller the p-value, the stronger the
model is. A p-value smaller than 0.05 is generally considered
statistically significant [38]. In Table IV, we report the p-

TABLE III: Metrics Calculation Results

Metrics S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21

Security Observability

SEM 1.00 1.00 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.40 1.00 0.00 1.00 0.00 1.00 1.00

APM 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.66 1.00 0.00 0.00 0.00 1.00 0.00 0.40 0.00 0.00 1.00 1.00 1.00 0.00

SMC 0.00 0.00 0.00 1.00 0.66 1.00 1.00 0.33 1.00 1.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00

CLM 0.00 0.00 0.00 1.00 1.00 0.66 0.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00

SAS 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00

PAS 0.75 1.00 0.75 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Security Access Control

SSLA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00

TBA 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

API 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

PLA 0.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00

SSO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00

Security Traffic Control

ING 1.00 0.75 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00 0.33 0.00 0.80 0.00 1.00 1.00 0.00 0.50 1.00

EGR 1.00 0.00 0.00 0.00 0.66 0.00 0.00 0.00 0.66 0.00 0.00 1.00 0.33 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00

values for the resulting models, which in all cases are very
low, indicating that the sets of metrics we have defined are
able to predict the ground truth assessment for each decision
with a high level of accuracy.

Often, the C-index, which is also called concordance index
and is equivalent to the area under the Receiver Operat-
ing Characteristic (ROC) curve, is reported in the statistical
literature as a measure of the predictive power of ordinal
regression models [39]. The C-index is a metric to evaluate
the predictions made by an algorithm. Values over 0.7 indicate
a good model, whereas values over 0.8 indicate a strong
model. A value of 1 means that the model perfectly predicts
those group members who will experience a certain outcome
and those who will not. As Table IV shows, the values of
C-indexes are generally larger than 0.8 indicating a good
enough model for predicting the outcomes of individuals.
Harrell [30] suggests bootstrapping as a method for obtaining
nearly unbiased estimates of a model’s future performance
based on re-sampling. We used lrm’s validate function to
perform bootstrapping and calculate the bias-corrected C-
index.

VIII. DISCUSSION

A. Discussion of Research Questions

To answer RQ1 and RQ2, we proposed a set of generic,
technology-independent metrics for each IaC decision, and
to each decision option corresponds at least one metric. We
established the ground truth to objectively assessed how well
patterns and/or practices are supported in each model, and
extrapolated this to how well the broader decision is supported.
We defined a set of generic, technology independent metrics
to automatically and numerically assess each pattern’s imple-
mentation in each model, and performed an ordinal regression
analysis using these metrics as independent variables to predict
the ground truth assessment. Our results show that every set
of decision-related metrics can predict with high accuracy our

TABLE IV: Regression Analysis Results

Intercepts/Coefficients Value
Security Observability
Intercept: ≥ [-] -1.0154
Intercept: ≥ [∼] -4.0071
Intercept: ≥ [+] -7.9753
Intercept: ≥ [++] -10.956
Metric Coefficient (SEM) 4.4224
Metric Coefficient (APM) 2.7670
Metric Coefficient (SMC) 1.7050
Metric Coefficient (CLM) 0.2630
Metric Coefficient (SAS) 2.1536
Metric Coefficient (PAS) 0.3730
Model p-value 1.153036e-06
Model C-index (original) 0.929
Model C-index (bias-corrected) 0.8934091
Security Access Control
Intercept: ≥ [-] 0.1688
Intercept: ≥ [∼] -2.0267
Intercept: ≥ [+] -3.6306
Intercept: ≥ [++] -6.6639
Metric Coefficient (SSLA) 4.3872
Metric Coefficient (TBA) 4.4533
Metric Coefficient (API) 1.2695
Metric Coefficient (PLA) 2.5834
Metric Coefficient (SSO) 3.8701
Model p-value 3.871694e-07
Model C-index (original) 0.951
Model C-index (bias-corrected) 0.9456178
Security Traffic Control
Intercept: ≥ [-] -29.792
Intercept: ≥ [∼] -69.340
Intercept: ≥ [+] -90.643
Intercept: ≥ [++] -120.88
Metric Coefficient (ING) 77.7199
Metric Coefficient (EGR) 52.539
Model p-value 2.031708e-14
Model C-index (original) 0.904
Model C-index (bias-corrected) 0.8827108

objectively evaluated assessment. This suggests that an auto-
matic metrics-based assessment of a system’s conformance to
ADD’s options is possible with a high degree of confidence.

Here, we make the assumption that the infrastructure code
can be mapped to the models used in our work. For enabling

this, we used rather simplistic modeling means, which can
easily be mapped from a specific code to the models

Regarding RQ3, we can assess that our deployment meta-
model has no need for major extensions and is easy to map to
existing modeling practices. More specifically, in order to fully
model our evaluation model set, we needed to introduce 13
device type nodes and 11 execution environment nodes types
such as Cloud Server and Virtual Machine respectively, and 6
deployment relation types and 4 deployment node relations.
Furthermore, we also introduced a deployment node meta-
model to cover all the additional nodes of our decisions, such
as Centralized Log Management, which is a subclass of node
type. The decisions in Security Observability require modeling
several elements such as the Web Server, Container, and Cloud
Server nodes types and technology-related connector types
(e.g. RESTful HTTP) as well as deployment-related connector
types (e.g. Runs on, Deployed in Container). For the Security
Access Control and Security Traffic Control decisions, we have
introduced additional attributes in the system nodes (e.g. in
Web Server) to specify whether an authentication practice is
supported or not, and which specific practice is used (e.g.
SSL Protocol-Based Authentication). Based on these consider-
ations, we can assess that our decisions and the corresponding
model elements can easily be extracted automatically, e.g. with
an approach as described in Section III-E.

B. Threats to Validity

We mostly relied on third-party systems as the basis for
our study in order to increase the internal validity and thus
avoid distorting the system composition and structure. It is
possible that our search procedures have resulted in some
kind of unconscious exclusion of certain sources; we have
mitigated this by putting together a team of authors with
years of experience in this field and doing a very general
and broad search. As our search was not exhaustive and
most of the systems we found were created for demonstration
purposes and they were relatively small in size, meaning that
some potential architectural elements were not included in
our metamodel. Moreover, this contains a potential threat to
the external validity of generalization to other, more complex
systems. However, we are confident that the documented
systems represent a representative cross-section of current
practices in this area. Another potential risk is the fact that
the system variants were developed by the team of authors
themselves. However, this was done in accordance with the
best practices documented in the literature. We made sure to
only change certain aspects in one variant and to keep all other
aspects stable.

Another possible source of compromising internal validity
is the modeling process. The team of authors has considerable
experience with similar methodologies, and the models of
the systems have been repeatedly and independently cross-
checked, but the possibility of some interpretive bias remains:
other researchers might have coded or modeled differently,
resulting in different models. Since our aim was only to find
a model that could specify all observed phenomena, and this

was achieved, we do not consider this risk to be particularly
problematic for our study. The assessment of the basic truth
could also be interpreted differently by different practitioners.
The individual metrics that are used to evaluate the presence
of the individual patterns were deliberately kept as simple as
possible in order to avoid false positive results and to enable
an evaluation that is independent of technology.

IX. CONCLUSIONS AND FUTURE WORK

In this work we have studied how far it is possible to develop
a method to automatically assess security practices in archi-
tectural design decisions in the scope of an IaC deployment
model. We have shown that this is possible for IaC security-
related decisions that contain patterns and practices as decision
options. In our approach, we modeled the key aspects of the
decision options using a minimal set of deployment model
elements, which means that it is possible to automatically
extract them from the IaC scripts. Then we defined a number
of metrics to cover all the possible decision options and
utilized the generated models as a ground truth. We then
used statistical methods (ordinal regression analysis) to derive
a prediction model. The results show that our metrics set
can predict the ground truth assessment with a high level of
accuracy.

So far, for security aspects of IaC deployment models, no
generic, technology-independent metrics have been studied in
depth. According to the discussion in Section II, there are
studies which are focused on quality assurance of IaC systems,
but none specifically address security critical measures. Fur-
thermore, our approach treats deployment architectures as set
of nodes and connectors factoring out the technologies used,
which is not the case for other studies. Our approach’s goal is
a continuous assessment, considering the impact of continuous
delivery practices, in which the metrics are assessed in a
continuous manner, indicating improvements, stability, and
security of deployment architecture conformance.

As future work, we plan to study more decisions and related
metrics, and to create a larger data set, thus better supporting
tasks such as early architecture assessment in a project.

X. ACKNOWLEDGMENTS

This work was supported by: FWF (Austrian Science Fund)
project IAC2: I 4731-N.; Our work has received funding from
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 952647 (AssureMOSS
project).

REFERENCES

[1] M. Nygard, Release It! Design and Deploy Production-Ready Software.
Pragmatic Bookshelf, 2007.

[2] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Addison-
Wesley Professional, 2010.

[3] K. Morris, Infrastructure as Code: Dynamic Systems for the Cloud.
O’Reilly, 2015.

[4] M. Artac, T. Borovssak, E. Di Nitto, M. Guerriero, and D. A. Tamburri,
“Devops: Introducing infrastructure-as-code,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-
C), 2017, pp. 497–498.

[5] S. Newman, Building Microservices: Designing Fine-Grained Systems.
O’Reilly, 2015.

[6] I. Kumara, M. Garriga, A. U. Romeu, D. Di Nucci, F. Palomba,
D. A. Tamburri, and W.-J. van den Heuvel, “The do’s and don’ts of
infrastructure code: A systematic gray literature review,” Information
and Software Technology, vol. 137, p. 106593, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584921000720

[7] T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your configuration
code smell?” in Proceedings of the 13th International Conference on
Mining Software Repositories, ser. MSR ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 189–200. [Online].
Available: https://doi.org/10.1145/2901739.2901761

[8] J. Schwarz, A. Steffens, and H. Lichter, “Code smells in infrastructure
as code,” in 2018 11th International Conference on the Quality of
Information and Communications Technology (QUATIC), 2018, pp. 220–
228.

[9] AWS Documentation, “Security groups for your vpc,” https://docs.aws.
amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html, 2021.

[10] OWASP Cheat Sheet Series, “Authentication cheat sheet,”
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_
Sheet.html#logging-and-monitoring, 2021.

[11] ——, “Transport layer protection cheat sheett,” https://cheatsheetseries.
owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html#
ssl-vs-tls, 2021.

[12] ——, “Infrastructure as code security cheatsheet,” https:
//cheatsheetseries.owasp.org/cheatsheets/Infrastructure_as_Code_
Security_Cheat_Sheet.html, 2021.

[13] Cloud Security Alliance, “Continuous monitoring in the
cloud,” https://cloudsecurityalliance.org/blog/2018/06/11/
continuous-monitoring-in-the-cloud/, 2018.

[14] ——, “Five approaches for securing identity in cloud
infrastructure,” https://cloudsecurityalliance.org/blog/2021/05/20/
five-approaches-for-securing-identity-in-cloud-infrastructure/, 2021.

[15] S. Dalla Palma, D. Di Nucci, F. Palomba, and D. A. Tamburri, “Toward
a catalog of software quality metrics for infrastructure code,” Journal
of Systems and Software, vol. 170, p. 110726, 2020.

[16] S. Dalla Palma, D. Di Nucci, and D. A. Tamburri, “Ansiblemetrics:
A python library for measuring infrastructure-as-code blueprints in
ansible,” SoftwareX, vol. 12, p. 100633, 2020.

[17] M. Wurster, U. Breitenbücher, L. Harzenetter, F. Leymann, and J. Sol-
dani, “Tosca lightning: An integrated toolchain for transforming tosca
light into production-ready deployment technologies,” in Advanced
Information Systems Engineering, N. Herbaut and M. La Rosa, Eds.
Cham: Springer International Publishing, 2020, pp. 138–146.

[18] I. Kumara, Z. Vasileiou, G. Meditskos, D. A. Tamburri, W.-J. Van
Den Heuvel, A. Karakostas, S. Vrochidis, and I. Kompatsiaris,
“Towards semantic detection of smells in cloud infrastructure code,” in
Proceedings of the 10th International Conference on Web Intelligence,
Mining and Semantics, ser. WIMS 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 63–67. [Online].
Available: https://doi.org/10.1145/3405962.3405979

[19] T. Sotiropoulos, D. Mitropoulos, and D. Spinellis, “Practical fault
detection in puppet programs,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, ser. ICSE ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
26–37. [Online]. Available: https://doi.org/10.1145/3377811.3380384

[20] E. van der Bent, J. Hage, J. Visser, and G. Gousios, “How good is your
puppet? an empirically defined and validated quality model for puppet,”
in 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2018, pp. 164–174.

[21] M. Pendleton, R. Garcia-Lebron, J.-H. Cho, and S. Xu, “A survey on
systems security metrics,” ACM Comput. Surv., vol. 49, no. 4, Dec.
2016. [Online]. Available: https://doi.org/10.1145/3005714

[22] M. P. Fischer, U. Breitenbücher, K. Képes, and F. Leymann, “Towards
an approach for automatically checking compliance rules in deployment
models,” in Proceedings of The Eleventh International Conference on
Emerging Security Information, Systems and Technologies (SECUR-
WARE). Xpert Publishing Services (XPS), 2017, pp. 150–153.

[23] C. Krieger, U. Breitenbücher, K. Képes, and F. Leymann, “An Approach
to Automatically Check the Compliance of Declarative Deployment
Models,” in Papers from the 12th Advanced Summer School on Service-
Oriented Computing (SummerSoC 2018). IBM Research Division,
Oktober 2018, Konferenz-Beitrag, pp. 76–89.

[24] G. Y. Guo, J. M. Atlee, and R. Kazman, “A software architecture
reconstruction method,” in Software Architecture. Springer, 1999, pp.
15–33.

[25] A. Van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and C. Riva,
“Symphony: View-driven software architecture reconstruction,” in 4th
Working IEEE/IFIP Conf. on Software Architecturen(WICSA 2004).
IEEE, 2004, pp. 122–132.

[26] T. Haitzer and U. Zdun, “Semi-automated architectural abstraction
specifications for supporting software evolution,” Science of Computer
Programming, vol. 90, pp. 135–160, 2014.

[27] Google Cloud, “Using api keys,” https://cloud.google.com/docs/
authentication/api-keys, 2021.

[28] J. Corbin and A. L. Strauss, “Grounded theory research: Procedures,
canons, and evaluative criteria,” Qualitative Sociology, vol. 13, pp. 3–
20, 1990.

[29] W. M. Piasecki, J. and V. Dranseika, “Google search as an additional
source in systematic reviews,” Sci Eng Ethics 24, vol. 55, no. 4, p.
809–810, 2018.

[30] J. Frank E. Harrell, Regression Modeling Strategies: With Applications to
Linear Models, Logistic and Ordinal Regression, and Survival Analysis,
2nd ed. Springer, 2015.

[31] U. Zdun, E. Navarro, and F. Leymann, “Ensuring and assessing ar-
chitecture conformance to microservice decomposition patterns,” in
Service-Oriented Computing, M. Maximilien, A. Vallecillo, J. Wang,
and M. Oriol, Eds. Cham: Springer International Publishing, 2017, pp.
411–429.

[32] E. Ntentos, U. Zdun, K. Plakidas, P. Genfer, S. Geiger, S. Meixner,
and W. Hasselbring, “Detector-based component model abstraction for
microservice-based systems,” Computing, vol. 103, pp. 2521–2551,
August 2021. [Online]. Available: http://eprints.cs.univie.ac.at/6926/

[33] A. K. Ranjan, V. Kumar, and M. Hussain, “Security analysis of tls
authentication,” in 2014 International Conference on Contemporary
Computing and Informatics (IC3I), 2014, pp. 1356–1360.

[34] Okta, “Token-based authentication,” https://www.okta.com/identity-101/
what-is-token-based-authentication/, 2021.

[35] auth0Docs, “Single sign-on (sso),” https://auth0.com/docs/authenticate/
single-sign-on, 2021.

[36] The Security Skeptic, “Firewall best practices - egress traf-
fic filtering,” https://securityskeptic.typepad.com/the-security-skeptic/
firewall-best-practices-egress-traffic-filtering.html, 2021.

[37] Kubernetes Documentation, “Ingress traffic control,” https://kubernetes.
io/docs/concepts/services-networking/ingress/, 2021.

[38] C. D. Michael Cowles, “On the origins of the .05 level of statistical
significance,” in American Psychologist, 37(5), 553–558.

[39] A. Airola, T. Pahikkala, W. Waegeman, B. De Baets, and T. Salakoski,
“An experimental comparison of cross-validation techniques for esti-
mating the area under the roc curve,” Computational Statistics & Data
Analysis, vol. 55, no. 4, pp. 1828–1844, 2011.

https://www.sciencedirect.com/science/article/pii/S0950584921000720
https://doi.org/10.1145/2901739.2901761
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#logging-and-monitoring
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#logging-and-monitoring
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html#ssl-vs-tls
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html#ssl-vs-tls
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html#ssl-vs-tls
https://cheatsheetseries.owasp.org/cheatsheets/Infrastructure_as_Code_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Infrastructure_as_Code_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Infrastructure_as_Code_Security_Cheat_Sheet.html
https://cloudsecurityalliance.org/blog/2018/06/11/continuous-monitoring-in-the-cloud/
https://cloudsecurityalliance.org/blog/2018/06/11/continuous-monitoring-in-the-cloud/
https://cloudsecurityalliance.org/blog/2021/05/20/five-approaches-for-securing-identity-in-cloud-infrastructure/
https://cloudsecurityalliance.org/blog/2021/05/20/five-approaches-for-securing-identity-in-cloud-infrastructure/
https://doi.org/10.1145/3405962.3405979
https://doi.org/10.1145/3377811.3380384
https://doi.org/10.1145/3005714
https://cloud.google.com/docs/authentication/api-keys
https://cloud.google.com/docs/authentication/api-keys
http://eprints.cs.univie.ac.at/6926/
https://www.okta.com/identity-101/what-is-token-based-authentication/
https://www.okta.com/identity-101/what-is-token-based-authentication/
https://auth0.com/docs/authenticate/single-sign-on
https://auth0.com/docs/authenticate/single-sign-on
https://securityskeptic.typepad.com/the-security-skeptic/firewall-best-practices-egress-traffic-filtering.html
https://securityskeptic.typepad.com/the-security-skeptic/firewall-best-practices-egress-traffic-filtering.html
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/

	Introduction
	Related Work
	Related Works on Best Practices and Patterns
	Related works on Frameworks and Metrics

	Research and Modeling Methods
	Overview
	Model Selection Methods
	Metrics Definition, Ground Truth Calculation, and Statistical Evaluation Methods
	Methods for IaC Architectural Reconstruction
	The Tool Flow of the Approach

	IaC Security-Related ADDs
	Ground Truth Calculations for the Study
	Metrics
	Metrics for the Security Observability Decision
	Metrics for Security Access Control Decision
	Metrics for Security Traffic Control Decision

	Evaluation of our Approach
	Discussion
	Discussion of Research Questions
	Threats to Validity

	Conclusions and Future Work
	Acknowledgments
	References

