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Abstract—The tremendous success of applying machine learning
techniques in science and industry leads to new challenges:
Developing new, faster, or more precise algorithms can not
compete with the continuously growing data volumes to process.
Thus, the computational resources must be increased, leading
to high costs and energy consumption. To overcome these
issues, quantum machine learning promises to utilize quantum
mechanical phenomena to train machine learning models more
efficiently. However, realizing such quantum machine learning
techniques is time-consuming and complex. This is especially the
case as new techniques are typically published as scientific papers
without suitable documentation for software developers. Patterns
are a well-established concept to document proven solutions to
recurring problems. Although a pattern language for quantum
computing has been introduced, it currently misses patterns
documenting how quantum machine learning can be successfully
applied. To bridge this gap, this paper presents three novel
patterns, focusing on quantum machine learning techniques.

Keywords-Quantum Computing; Pattern Language; QML.

I. INTRODUCTION

In recent years, machine learning has revolutionized the
industry by providing new means for solving problems in vari-
ous domains, e.g., natural language processing or medicine [1].
However, a significant part of this progress was achieved by
increasing the computational resources [2]. Thus, costs and
energy consumption for reaching new milestones in the machine
learning domain increased dramatically. For example, the train-
ing of modern neural networks, such as GPT4 [3], takes months
and costs millions of dollars [4]. Quantum machine learning
provides new concepts and algorithms taking advantage of
quantum mechanical phenomena, such as superposition and
entanglement, that promise to more efficiently train machine
learning models [5][6]. Hence, quantum machine learning vastly
differs from classical machine learning, e.g., in the structuring
of the training data [7][8]. However, these concepts of quantum
machine learning are complex, particularly for software develop-
ers without deep knowledge of physics and quantum computing.
Additionally, there currently exists no structured documentation
on how software developers can employ quantum machine
learning to benefit from its advantages.

A well-established concept for documenting proven solutions
to recurring problems in the software engineering domain is
patterns [9][10]. Patterns facilitate understanding the origin of a
problem and the forces that complicate solving it. Furthermore,
they describe an abstract solution to the problem, enabling
software developers to implement and customize the presented
solution strategy for their given application domain.

To support developers in building quantum applications,
Leymann [11] has introduced the quantum computing pattern
language, which was continuously expanded to cover different
areas of quantum computing. It documents fundamental
concepts of quantum computing and discusses various
techniques, e.g., error handling [12] or warm-starting [13].
While there are already patterns for solving optimization
problems [14], there are no patterns documenting how quantum
machine learning techniques can be successfully applied. In
this paper, we extend the quantum computing pattern language
by documenting three novel patterns for quantum machine
learning, describing well-known types of quantum algorithms.

The remainder of this paper is structured as follows: In Sec-
tion II, we introduce fundamentals about quantum algorithms
and hybrid quantum applications. Furthermore, we present
the utilized pattern format, as well as the authoring method.
Section III extends the quantum computing pattern language by
documenting the newly introduced quantum machine learning
patterns. In Section IV, the presented quantum machine
learning patterns are discussed and evaluated. Finally, Section V
presents related work, and Section VI concludes the paper.

II. FUNDAMENTALS

In this section, we discuss the fundamentals of quantum
algorithms and their use in quantum applications. Furthermore,
we present our pattern format and the pattern authoring method.

A. Quantum Algorithms & Applications

Quantum computing achieves speed-ups compared to classical
computations by leveraging quantum mechanical phenom-
ena [15]: Unlike classical computers that operate on 0 s and 1 s,
quantum devices utilize qubits that can exist in a superposition
of states |0⟩ := (1, 0)T and |1⟩ := (0, 1)T . Further, qubits can
be entangled with each other, making their states inseparable.
Various technologies to realize quantum devices exist, e.g.,
superconducting or photonic quantum devices, that utilize
different computation models for quantum computing. In this
paper, we focus on the gate-based computation model, which is
used by quantum hardware providers such as IBM and Rigetti.
To perform computations on gate-based quantum devices, the
states of the qubits are manipulated utilizing different quantum
gates, which are specified by a quantum program, a so-called
quantum circuit [16]. There are single-qubit gates, which only
affect the state of a single qubit, and multi-qubit gates, which
affect multiple qubits and can entangle multiple qubits with
each other. To retrieve a classical solution when executing



a quantum circuit, the state of the quantum system must
be measured. Since the state of the system collapses when
measuring it and quantum computing is probabilistic by nature,
quantum executions are typically executed multiple times to
retrieve the expectation value of the computation [17].

Quantum algorithms are often hybrid, comprising classical
pre- and post-processing steps, e.g., encoding data into a
quantum circuit or mitigating occurring errors [16][18]. A
special class of quantum algorithms is so-called Variational
Quantum Algorithms (VQAs) [19]. VQAs typically utilize
shallow circuits, i.e., they have a low number of consecutive
gates and use a small number of qubits. Therefore, they enable
the execution of practically relevant quantum computations on
today’s error-prone and intermediate-size quantum devices. The
execution of VQAs alternates between executing parameterized
quantum circuits and classically optimizing their parameters,
e.g., using gradient-based or gradient-free optimization ap-
proaches. In each iteration of the VQA, the execution results
are used to estimate the value of the cost function that encodes
the problem. Its value is utilized by an optimizer to find
more suitable circuit parameters, e.g., by minimizing the cost
function. The quantum cost function is generally defined as:
C(θ⃗) = f({ρi}ki=1, {Oi}ki=1, U(θ⃗)), where θ⃗ is a vector of
parameters, f is some function, k is the size of the training set
T . The set {ρi} represents the input states from the training set,
while {Oi} denotes the set of observables. The parametrized
quantum circuit U(θ⃗), defined by the parameters θ⃗, is iteratively
optimized classically.

B. Patterns & Authoring Method

Patterns are an established concept for documenting proven
solutions to commonly recurring problems in a well-structured
manner [9]. Typically, a uniform pattern format is used for all
patterns of a domain to facilitate understanding the patterns
within a pattern language [20]. Therefore, we use the pattern
format utilized by the previously published quantum computing
patterns, which is structured as follows: Each pattern is identi-
fied by a unique name within the pattern language. Furthermore,
patterns are associated with a mnemonic icon to enable a visual
recognition of the pattern. The problem solved by the pattern
is concisely summarized in a problem statement. Next, the
context in which the problem appears is described and the forces
complicating the solution of the problem are discussed. In the
solution section, a proven strategy for solving the previously
discussed problem is presented alongside a corresponding
solution sketch. Subsequently, examples of the solution are
explained. The result section describes the consequences of
applying the solution and discusses what further steps might be
necessary to handle them. Each pattern is semantically linked
to related patterns in the eponymous section, e.g., to patterns
that are commonly used in combination or that are alternatives
to each other. Finally, the known uses section showcases real-
world occurrences of the pattern. To identify and document the
patterns for quantum machine learning, we applied the pattern
authoring method introduced by Fehling et al. [20]. First, we
analyzed the literature, as well as the documentation of current

quantum software development kits for best practices and
established solution strategies for quantum machine learning.
Subsequently, the collected information was filtered based on
its relevancy for practically applying quantum machine learning.
The identified solutions were documented and iteratively refined
to extract patterns comprising quantum machine learning
algorithms. For the documentation of patterns, their previously
described format is utilized.

III. QUANTUM MACHINE LEARNING PATTERNS

In this section, we first provide a brief overview of the
existing quantum computing pattern language and subsequently
introduce three novel patterns for quantum machine learning.

A. Quantum Computing Pattern Language Overview

Figure 1 gives an overview of the quantum computing pattern
language. It comprises both the already existing, as well as the
newly added patterns from this work. The different patterns
are assigned to one category, depending on the phase of the
hybrid quantum application lifecycle they belong to [18]:

First, the unitary transformations patterns [21] describe
best practices for transformations after an initial state has
been created. The warm-starting patterns [13] show various
techniques to improve the performance of quantum algorithms.
Next, the program flow patterns [14] summarize concepts to
split computations between quantum and classical hardware.
The circuit cutting patterns [22] document techniques to
cut large quantum circuits into smaller circuits that can
be successfully executed on today’s quantum devices. To
encode classical data into quantum circuits, the data encodings
patterns [21] describe so-called state preparation routines. The
error handling patterns [12] summarize approaches to reduce
noise on today’s quantum devices. Fundamental quantum
states [11], how they are created, and for which quantum
algorithms they are used as a basis are discussed in the
eponymous category. For executing quantum circuits and hybrid
quantum applications, different quantum cloud offerings are
available. These offerings provide heterogeneous features, e.g.,
the execution via a queue or the exclusive reservation of a
quantum device, and the execution patterns [23] document these
execution styles, as well as their benefits and disadvantages.
The development patterns [24] provide solutions and best
practices for typical problems when developing hybrid quantum
applications. Complementary, the operations patterns [25] cover
abstract solutions for operating and managing hybrid quantum
applications. Finally, the measurement patterns [21] present
concepts and techniques for extracting classical data from
quantum states.

In this work, we introduce three novel patterns describing
well-known approaches for tackling crucial problems from
the quantum machine learning domain: To overcome the
difficulties when clustering large and complex data sets,
QUANTUM CLUSTERING algorithms have been introduced.
They partition data sets into different clusters based on their
similarity, which is calculated using quantum devices. The
QUANTUM CLASSIFICATION pattern provides a means for
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Figure 1. Overview of the quantum computing pattern language with some existing (light gray) and the new patterns proposed in this work (dark gray).

training a classifier based on a set of labeled data. This classifier
enables assigning new data points to one of multiple classes.
Finally, the QUANTUM NEURAL NETWORK pattern documents
how quantum devices can be used to improve the accuracy
and performance of neural networks by leveraging quantum
mechanical phenomena.

B. Quantum Clustering

Problem: How to partition a data set into dif-
ferent clusters based on their similarity utilizing
a quantum device?

Context: A set of unlabeled data needs to be grouped into
different clusters. The clusters should organize the data points
according to identified similarities.
Forces: Data sets may exhibit non-linear separability, which
increases the complexity when clustering. Moreover, data sets
utilized in machine learning continuously grow in size, leading
to increased training times [3]. Therefore, algorithms whose
runtime scales well with the number of data points in the data
set and the dimensions of the feature space are required. In
addition to the general machine learning forces, also quantum-
specific forces have to be taken into account. For example,
loading large data sets consisting of many tuples into current
quantum devices is difficult due to the high circuit depth of
the required state preparation routines [26][27].
Solution: Figure 2 gives an overview of the general clustering
process. Use a quantum device to cluster the m data points

{xi}mi=1 of a data set. First, the classical data points are encoded
into quantum states {|xi⟩}mi=1 by applying a unitary transfor-
mation Uϕ, enabling the quantum computer to process the data.
Once the data points are encoded, a given ansatz V (θ⃗) is used
to calculate the similarity between data points. The ansatz is
a parameterized quantum circuit designed to approximate the
quantum state that captures the relevant features of the data
for similarity measurement. The ansatz computes the similarity
either between pairwise data points or between all data points,
depending on its structure [28]. The cost function used in this
approach is designed to assign similar points to the same cluster
and points with low similarity to different clusters. In the cost
function, this is represented by a penalty term that penalizes
distant points that are assigned to the same cluster. Additionally,
the clustering process is controlled by adding constraints. To
ensure that each data point is assigned to exactly one cluster, the
following condition must hold

∑k
a=1 q

a
i = 1. Thereby, classical

variables qai are introduced to denote whether a data point xi

is assigned to cluster a. The quantum circuit parameters are
updated iteratively to minimize the cost function.
Examples: An exemplary quantum clustering algorithm is the
quantum k-means algorithm [29][30]: First, k initial data points
are randomly selected as centroids for the clustering. Then, the
states for both the centroids, as well as the remaining data points
are prepared. The number k, which corresponds to the number
of clusters, can either be specified by the user or automatically
determined [31]. Subsequently, for each data point, the distance
to all centroids is calculated utilizing a distance metric, e.g.,
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Figure 2. Solution sketch for the QUANTUM CLUSTERING pattern.

the Manhattan distance [30] or Euclidean distance [32]. For
example, the SWAP test [33] can be used to determine the
Euclidean distances efficiently on a quantum device. Each data
point is assigned to the cluster corresponding to the centroid
with the smallest distance to the data point. Afterward, the new
centroids are calculated classically by computing the mean of
all data points assigned to that cluster. If the retrieved centroids
differ substantially, i.e., more than a certain threshold specified
by the user, from the previous iteration, the previously described
procedure is performed again utilizing the new centroids.
Result: Utilizing a quantum clustering algorithm may enable
identifying clusters in a data set exponentially faster than with
a classical clustering algorithm [32]. Often, the computational
advantage of quantum clustering algorithms relies on the
availability of the input data in a suitable format. Once an
implementation of Quantum Random Access Memory (QRAM)
is available, data can be encoded efficiently, enabling the full
potential of quantum clustering.
Related Patterns: The QRAM ENCODING pattern [21] can be
used to efficiently encode the data points for a quantum device.
To facilitate the clustering of complex data sets, the data points
can be mapped into a higher dimensional feature space using
the QUANTUM KERNEL ESTIMATOR pattern. The QUANTUM
CLUSTERING pattern uses the QUANTUM-CLASSICAL SPLIT
pattern [11] to efficiently distribute the computations using
quantum and classical hardware and can be realized as a
HYBRID MODULE [24].
Known Uses: Ramirez [34] presents different quantum clus-
tering techniques, such as quantum spectral clustering and
quantum hierarchical clustering. Kavitha et al. [35] utilize
quantum k-means clustering for detecting heart diseases.
Patil et al. [36] introduce two measurement-based quantum
clustering algorithms. The first algorithm follows a hierarchical
clustering approach. The second algorithm uses unsharp mea-
surements for the clustering process. Gopalakrishnan et al. [37]
propose a quantum clustering algorithm that achieves linear
scalability with respect to both the number of data points and
their density.

C. Quantum Classification

Problem: How to train a classifier to assign
new data points to one of multiple classes using
a quantum device?

Context: New data points need to be classified into one of
several different classes. A labeled set of training data is given.
Forces: Classifying data is getting increasingly more difficult
when the feature space becomes larger [38]. While quantum
computing enables solving this problem by utilizing efficient
quantum algorithms, it also leads to additional challenges.
For example, high-dimensional data sets can lead to large
quantum circuits that may not be successfully executable on
today’s Noisy Intermediate-Scale Quantum (NISQ) devices [27].
Additionally, quantum approaches can suffer from exponential
cost concentration, which makes models less sensitive to input
data, leading to generalization problems [39][40].
Solution: Train a classifier using a quantum device to classify
new data points precisely. In Figure 3, an overview of
two different approaches for training a classifier is depicted.
Classifiers can either be trained using (i) a kernel-based method
or (ii) a variational method. Generally, the input for training a
classifier is an initial set of labeled data {(xi, yi)}ni=1, where xi

are the feature vectors, yi are the labels, i.e., real numbers, and
n is the size of the training set. In the kernel-based approach,
a quantum kernel is used to measure the similarities between
data points by mapping them into a high-dimensional Hilbert
space and computing the inner product of their corresponding
quantum states. This quantum kernel is computed for all pairs
of training data by applying a unitary Uϕ(xi) to encode each
data point xi into a quantum state. The adjoint operation
U†
ϕ(xj) is then applied to calculate the overlap between the

states corresponding to xi and xj . Then, a classical algorithm,
e.g., a classical support vector machine [41], is used for
computing the classifier based on the previously calculated
kernel. Alternatively, the variational method optimizes the
parameters of a quantum circuit to directly realize the classifier.
In this approach, a data point x is first encoded into a quantum
state using a unitary Uϕ(x), which maps the classical data into
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Figure 3. Solution sketch for the QUANTUM CLASSIFICATION pattern.



a quantum state. Once the data are encoded, a parameterized
quantum circuit is applied. The circuit produces an output
whose expectation value < V > determines the predicted label
for a given data point x. The parameters of the circuit are
iteratively optimized by a classical optimizer that minimizes a
quantum cost function that calculates the differences between
the predicted and actual labels from the data set.
Examples: An example is the kernel-based quantum support
vector machine [42], achieving logarithmic complexity with
respect to both the data dimension and the number of training
examples. Another example is the variational quantum support
vector machine [38][43], which uses a parameterized quantum
circuit to directly implement a SVM on a QPU.
Result: After the training process, the classifier can be used to
assign new data points to one of the existing classes. Utilizing
a quantum classifier may enable training a more accurate classi-
fier than using a classical classification technique [44]. Quantum
classifiers still function under the influence of noise as they
are resistant to a small number of misclassifications [38]. This
is particularly important with the noisiness of today’s quantum
devices. However, mitigation mechanisms must be implemented
to address the challenges, such as cost concentration in kernel
values or flatness in the optimization landscape [19][39].
Related Patterns: The QRAM ENCODING pattern [21] can be
utilized to achieve a speed-up when encoding data. A quantum
classifier can be realized using a VARIATIONAL QUANTUM
ALGORITHM [14].
Known Uses: To train the quantum classifier, different ap-
proaches can be used, e.g., variational quantum support vector
machines [34][38], quantum decision trees [45], and quantum
nearest neighbor classification [46]. Furthermore, quantum
classifiers have been applied in different application areas,
e.g., image recognition [47], analyzing the sentiments of
sentences [48], and predicting air pollution [49].

D. Quantum Neural Network (QNN)

ȁ ۧ𝑥 ? ȁ ۧ𝑦
Problem: How to learn an unknown unitary
operator using a quantum device?

Context: An unknown unitary operator needs to be learned
from a training set containing the quantum inputs and the
expected quantum outputs.
Forces: Identifying a unitary operator that is capable of
mapping input data to their respective output is getting
increasingly more difficult with the complexity and variety
of the data. Determining such a mapping requires a lot of
input data, and the training procedure requires significant
computational power [3]. However, this number can be
reduced as outlined by the Quantum No-Free-Lunch Theorem
since only obtaining a subset of the training samples as
entangled quantum states is already beneficial [50].
Solution: Figure 4 shows the training process of a QNN to learn
an unknown unitary operator U : To realize a corresponding
quantum circuit, first, the input data are encoded to a quantum
state |x⟩. Similarly to classical neural networks, quantum
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Figure 4. Solution sketch for the QUANTUM NEURAL NETWORK pattern.

circuits realizing a QNN comprise various parameterized
hidden layers Vi(θ⃗) to approximate U . The parameters θ⃗ are
iteratively adjusted by an optimizer, which minimizes a cost
function until the quantum circuit produces approximately the
expected outputs. The cost function uses the expected outputs
and similarity measures, such as fidelity, to evaluate how
closely the produced outputs |ỹ⟩ match the expected ones |y⟩.
Examples: A special kind of QNNs are quantum convolutional
neural networks, which are utilized for processing structured
grid data, e.g., for image processing [51][52]. It comprises four
different types of layers: (i) First, state preparation layers are
used to encode the classical input data. (ii) The convolutional
layers enable the detection of spatial patterns within the input
data. (iii) Pooling layers reduce some of the spatial dimensions
to focus on the optimization of the most important features.
(iv) Finally, fully connected layers are used to produce the
final output of the quantum convolutional network.
Result: The result is a set of parameters that configures the
QNN to approximate the expected output of the unknown
unitary operator. The quality of the approximation depends on
the size of the training set, its linear structure, and the degree
of entanglement [53]. While entangled data provides benefits
for the training of QNNs, a too high level of entanglement
can lead to barren plateaus [54].
Related Patterns: Quantum neural networks are a realization
of the VARIATIONAL QUANTUM ALGORITHM pattern [14].
Different state preparation routines, such as ANGLE ENCODING
or BASIS ENCODING [21], can be utilized to encode the input
data of the QNN. To integrate a QNN in existing applications,
it can be provided as a HYBRID MODULE [24].
Known Uses: Jeswal et al. [55] and Vasuki et al. [56] provide
surveys overviewing the various application areas of QNNs,
ranging from prediction to pattern recognition problems.
Kashif et al. [57] present an approach for efficiently training
QNNs in the presence of noise when using NISQ devices.

IV. DISCUSSION

In this section, we discuss the challenges and limitations of
applying the presented quantum machine learning patterns and
elaborate on the validity of the documented patterns.

Quantum machine learning is a rapidly evolving field
that promises to overcome the limitations of state-of-the-art



classical machine learning methods [58]. However, the high
error rates and low number of qubits of today’s quantum
devices prevent the application of the introduced concepts for
many real-world problems. The roadmaps of quantum device
providers, such as IBM [59] and QuEra [60], promise that
in the near future, the potential of quantum machine learning
can be demonstrated for practically relevant use cases.

An essential part of achieving speed-ups with quantum
devices is efficient access to classical and quantum data [54].
Thereby, the classical data is prepared for the quantum device
utilizing state preparation routines [21]. While there are efficient
implementations for many state preparation routines, QRAM
has not yet been successfully implemented [61]. This limits the
effectiveness of many quantum machine learning algorithms,
such as the quantum support vector machine, as the assumption
of the algorithms is that data is available via QRAM [38]. There-
fore, alternative, less efficient state preparation routines must be
utilized until an efficient QRAM implementation is available.

To confirm the validity of patterns in the software engineering
domain, a number of different real-world implementations of
the patterns are identified [62]. Hence, several occurrences of
each quantum machine learning pattern have been documented
in the known uses section of the respective pattern. To ease
the configuration and abstract technical details, patterns can be
used to automate the generation of quantum applications [63].

V. RELATED WORK

The patterns for quantum machine learning introduced in this
work extend the existing quantum computing pattern language
presented in Section III-A. Perez-Castillo et al. [64] analyze
code repositories for the occurrences of different patterns
of the quantum computing pattern language and identify a
lack of abstraction mechanisms. The patterns presented in this
paper aim to bridge this gap in the quantum machine learning
domain. Aside from the quantum computing patterns, there
are other works presenting patterns in the quantum computing
domain that do not follow the pattern format introduced by
Alexander et al. [9]: Baczyk et al. [65] document different
patterns that aim to facilitate architectural design decisions
when building quantum applications. Khan et al. [66] identify
various architecture design patterns for quantum applications
via a systematic literature survey. Huang and Martonosi [67]
utilize quantum programming patterns to find bugs in quantum
circuits. Gilliam et al. [68] and Perdrix [69] present patterns
for building quantum circuits. However, none of these papers
focus on patterns in the quantum machine learning domain.

Guo et al [70] present a set of patterns for defining ansätze in
variational quantum algorithms. These ansätze can also be used
in quantum machine learning, e.g., to implement the hidden
layers of quantum neural networks.

Lakshmanan et al. [71] document various machine learning
design patterns. They focus on different aspects that should
be regarded when utilizing machine learning in practice, e.g.,
reproducibility or responsible artificial intelligence. Although
the machine learning design patterns do not consider quantum

machine learning, various patterns, such as MODEL VERSION-
ING can also be applied to quantum machine learning.

Falkenthal et al. [72] introduce the concept of solution
languages to facilitate the application of patterns for real-
world use cases. Solution languages comprise so-called concrete
solutions, i.e., implementations of a pattern for a specific use
case, e.g., a quantum circuit or a Python program. These
concrete solutions are associated with the corresponding pattern,
enabling developers to reuse existing implementations for their
applications. Thereby, the manual effort of implementing the
abstract solution described by the pattern can be reduced.

VI. CONCLUSION & FUTURE WORK

Machine learning has revolutionized research and industry by
providing new means for solving various problems. However, a
significant part of this progress was achieved by increasing the
computational resources, leading to high costs and energy con-
sumption. A promising technology providing additional compu-
tational power is quantum computing. In this paper, we capture
existing concepts from the literature for utilizing quantum
devices to tackle crucial machine learning problems efficiently.
We document these concepts in an easily digestible manner as
patterns that enable understanding the problem and solving it
using proven solution strategies. The introduced patterns are
publicly available via Pattern Atlas [73], an open-source tool
for authoring, managing, and visualizing patterns [74].

Since quantum machine learning is a rapidly evolving and
highly active area, we will continue investigating the progress
achieved by researchers and companies. Hence, in future work,
we plan to identify new solution strategies in the quantum
machine learning domain and document them as novel patterns.
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