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Abstract For the automated deployment of applica-

tions, technologies exist which can process topology-

based deployment models that describes the applica-

tion’s structure with its components and their relations.

The topology-based deployment model of an application

can be adapted for the deployment in different envi-

ronments. However, the structural changes can lead to

problems, which had not existed before and prevent

a functional deployment. This includes security issues,

communication restrictions, or incompatibilities. For ex-

ample, a formerly over the internal network established

insecure connection leads to security problems when

using the public network after the adaptation. In order

to solve problems in adapted deployment models, first

the problems have to be detected. Unfortunately, de-

tecting such problems is a highly non-trivial challenge

that requires deep expertise about the involved tech-

nologies and the environment. In this paper, we present

(i) an approach for detecting problems in deployment

models using architecture and design patterns and (ii)

the automation of the detection process by formalizing

the problem a pattern solves in a certain context. We

validate the practical feasibility of our approach by a

prototypical implementation for the automated problem

detection in TOSCA topologies.
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1 Introduction

The increasing number of applications in today’s enter-

prises leads to a great management effort, since different

technologies often have to be combined for their deploy-

ment (Breitenbücher et al., 2013b). Therefore, several

systems for automating the deployment have been de-

veloped. Beside deployment systems such as Ansible1

or Cloud Foundry2, standards such as TOSCA (OASIS,

2013) are published to describe the deployment and

management of applications in a portable manner.

Diverse deployment technologies are based on pro-

cessing topology-based deployment models that describe

the application’s structure with its components and their

relations. These deployment models often have to be

adapted for several reasons: For example, an application

is deployed several times in different environments or

parts of the IT are outsourced. Such a restructuring
can result in complex problems that have not existed

before. This includes security issues, communication re-

strictions, or incompatibilities. Security issues can occur,

for example, when components intended to communi-

cate over the internal network are now distributed and

have to communicate over the public network without

using security mechanisms such as encryption. Thus, the

exchanged data are potentially available for eavesdrop-

pers. Another problem can occur when one component

of two communicating components that were previously

hosted on the same virtual machine is moved to an en-

vironment protected by a firewall and this component

is no longer accessible from outside. Such problems pre-

vent a functional deployment after the adaptation of

the deployment model.

1 https://www.ansible.com/
2 https://www.cloudfoundry.org/

https://www.ansible.com/
https://www.cloudfoundry.org/
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However, detecting such problems is a highly non-

trivial knowledge-intensive challenge that typically also

requires knowledge about the involved environments.

An enormous number of components, their capabilities,

and their interconnections have to be known as many

problemsarise from communication dependencies that

are violated when, for example, an application previ-

ously hosted on one virtual machine gets distributed

into different environments. Furthermore, the available

services in different cloud environments must be known

and how their have to be configured, e.g. firewalls in

order to allow incoming connections. A human operator

would require expertise in all these areas (i) to detect

that a problem arose and moreover (ii) to solve it. The

variety and complexity of possible problems makes an

manual approach unpractical: Existing problems are

overlooked or non-existing problems are detected due to

lake of knowledge. Thus, problem detection in restruc-

tured deployment models cannot be done manually, but

is required in several scenarios today.

The contributions of this paper to tackle these issues

are (i) how problems can be detected in restructured de-

ployment models using architecture and design patterns

and (ii) how the problem detection can be automated

based on formalizing these patterns. Architecture and

design patterns describe proven solutions for recurring

problems in a structured way (Meszaros and Doble, 1997;

Wellhausen and Fiesser, 2012). Patterns for different

domains have been captured, for example, for messaging

systems (Hohpe and Woolf, 2004), cloud computing

(Fehling et al., 2014), and security architectures (Schu-

macher et al., 2006). We apply this knowledge in form

of patterns to restructured topology-based deployment

models for problem detection. However, since a manual

approach is not possible due to the discussion above,

we developed a concept for the automated problem

detection based on formalized problem and context de-

scriptions of patterns. For the automated detection, we

use the logic inference capability of logic programming

languages and chose Prolog as basis for the formaliza-

tion. To validate the feasibility of our approach, we

selected the TOSCA standard as modeling language

and developed a prototype for the automated detection

of problems in restructured TOSCA topologies.

The paper is structured as follows: Section 2 in-

troduces fundamentals and motivates our concepts. In

Section 3 the pattern-based problem detection approach

is presented. In Section 4 the pattern formalization used

for an automated problem detection are introduced and

in Section 5 a case study with selected patterns are

presented. The system architecture and validation are

described in Section 6. Finally Section 7 discusses re-

lated work and Section 8 concludes the paper.

OpenStack
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Liberty-12)

Ubuntu
(Ubuntu-14.04-

VM)

Apache Web 
Server

(Apache-2.4)

Tomcat
(Tomcat)

Java-App
(WAR)

PHP-WebApp
(PHP-5- Web 
Application)

External
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ComponentName
(ComponentType)

Internal

hostedOn

connectsTo

username: admin
password:  *****

sensitiveData: true
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(connectsTo)

RelationName
(RelationType)

Fig. 1 Exemplary Topology-based Deployment Model

2 Motivation and Fundamentals

There are several deployment technologies that can pro-

cess topology-based deployment models. This kind of

models are declarative deployment models (Endres et al.,

2017). A declarative deployment model describes the

structure of an application that shall be deployed. This

typically comprises the application’s components, their

relations, and specific configuration properties. This de-

ployment model can be abstracted as topology model.
Therefore, we first introduce basics about topology-

based deployment models and then present a motivating

scenario to better understand the effects of restructuring

such topology-based deployment models.

2.1 Topology-Based Deployment Model

As explained above, a declarative deployment model

can be abstracted as topology model. A topology-based

deployment model is a directed graph and describes

the components of an application with their relations.
Each component and relation is of a certain type and

can have specific configuration properties, such as login

information. This is the canonical metamodel on the

basis of which we explain our concepts.

Figure 1 depicts a topology-based deployment model.

The PHP-WebApp establishes a HTTPConnection to the

Java-App. As additional information, the characteristic

of the exchange data, namely that it is sensitive data,

is added as a property. The PHP-WebApp requires an
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Apache Web Server while the Java-App is hosted on a

Tomcat. They in turn are hosted on a single virtual ma-

chine Ubuntu, which is hosted on an OpenStack platform.

In this example two relation types are distinguished: a

hostedOn indicating that the target component serves

as host and a connectsTo to represent a connection.

The OASIS standard TOSCA (OASIS, 2013) used

for validating our concepts can be used to describe

such topology-based deployment models. It provides

a vendor- and technology-independent metamodel for

declarative deployment models. It was therefore selected

for the validation3. In addition to the modeling language,

basis types are defined for components and relations,

among other things, in order to assure a precise seman-

tics for them (OASIS, 2016). This facilities a common

understanding of components and relations and their

processing as indented by the modeler.

2.2 Redistribution of application components

The deployment of an application, as shown in Figure 1

can change for various reasons, for example, if the ap-

plication has to be deployed multiple times in different

environments. This leads to a redistribution of the ap-

plication’s components. A redistribution can reflect a

migration pattern as presented by Jamshidi et al. (2014).

In a previous work, we presented an approach for the re-

distribution of application’s components based on target

labels (Saatkamp et al., 2017). For this, components can

be annotated with target labels. These labels indicate

the target environment of a component, for example,

that a component shall be hosted on-premise or by a

public cloud provider such as Amazon AWS.

In the example depicted in Figure 1, target labels

are attached to the two application-specific components:

PHP-WebApp and Java-App. The label internal at-

tached to the Java-App indicates that it shall be hosted

at the on-premise infrastructure of an enterprise, while

the label external specifies that the PHP-WebApp shall

be hosted by an external cloud provider, for example

Amazon Web Services (AWS). Thus, this labeling de-

scribes a redistribution of the components in the deploy-

ment model. With the approach presented by Saatkamp

et al. (2017) the deployment model is split according

to the assigned target labels and appropriate hosting

components are selected such as an EC2 component for

AWS. However, problems can occur caused by the redis-

tribution. The next section describes possibly occurring

problems when restructuring the deployment model.

3 A comparison of different cloud modeling languages can be
found in Bergmayr et al. (2018)

2.3 Motivating Scenario

In Figure 1 an exemplary topology-based deployment

model of an application with two communicating com-

ponents hosted on one single virtual machine is shown.

However, the distribution of the components can vary:

For example, an application shall be deployed for sev-

eral customers. Some of the customers may use external

cloud providers, others rely on their own infrastruc-

ture. Another reason can be that an enterprise extends

their IT infrastructure with offers from a public cloud

provider or outsources parts of the IT and the deploy-

ments must be adjusted accordingly. These reasons can

cause a restructuring of the application’s components

in the topology-based deployment model.

This kind of model adaptation can be carried out

using the splitting approach described in the previous

section (Saatkamp et al., 2017). However, the intercon-

nections between components hosted in different envi-

ronments can cause problems. In our example on the

previous page, the distribution affects the communica-

tion between the PHP-WebApp and the Java-App. In

the original topology-based deployment model the com-

munication took place in the internal network. After

the restructuring they use the public network. Thus,

security issues, such as the encryption of data, autho-

rization, or authentication can come up caused by the

restructuring of the deployment, that were not relevant

for a communication in the internal network. Further-

more, restrictions of the environments, for example, a

disabled inbound communication by a firewall, can lead

new problems. Therefore, the main contributions of our

work are (i) to enable the problem detection in restruc-

tured topology-based deployment models and (ii) to

automated this detection process to support human op-

erators in detecting and solving deployment problems.

3 Pattern-based Approach to Detect Problems

in Restructured Deployment Models

The restructuring of topology-based deployment models

can causes new problems, which have to be detected by

the operator to facilitate a valid and functional deploy-

ment of the application. In this section, we present an

approach on how existing architecture knowledge can

be applied to restructured topology-based deployment

models to detect newly emerged problems caused by the

restructuring. Before we detail our approach, first some

details about architecture and design patterns capturing

existing architecture knowledge are explained as they

provide the basis for our problem detection approach.
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Fig. 2 Overview for the pattern-based problem detection approach in restructured topology-based deployment models

3.1 Architecture and Design Patterns

The concept of gathering architectural knowledge and

best practices for recurring problems as structured pat-

terns has been introduced by Alexander et al. (1977).

They presented patterns for real architecture, i.e., towns,

buildings, or one room of a building. Even though a

pattern focuses on one specific problem, patterns are

not independent from each other: a pattern can be, for

example, a refinement (Falkenthal et al., 2015) or an

alternative of another one (Buschmann et al., 1996).

Thus, patterns can form a pattern language, which can

be used to combine patterns to solve complex problems.

This pattern approach is also adopted by several IT

domains. Based on the knowledge of software architects

and known solutions, best practices were collected by

different communities in the form of patterns.

Architecture and design patterns are presented in

several areas, for example, for general software archi-

tectures (Buschmann et al., 1996), messaging systems

(Hohpe and Woolf, 2004), security architectures (Schu-

macher et al., 2006), and cloud computing (Fehling

et al., 2014). These architecture and design patterns

describe proven solutions for recurring problems indepen-

dent of a specific technology or programming language.

They provide generic solutions that can be applied to a

variety of use cases in a different way.

In Figure 2 on the right an excerpt of the description

of the Secure Channel pattern is shown (Schumacher

et al., 2006). The pattern addresses the problem that

sensitive sent over a public network, e.g. the Internet,

can be eavesdropped. To ensure that such data remain

confidential, an encrypted secure channel should be cre-

ated. The pattern description is generic and applicable

to several scenarios. Data confidentiality in transit, for

example, can be enabled by different TLS or VPN pro-

tocols. The suitable technology for a specific scenario

can vary, but the underlying concept is the same. Thus,

by providing technology independent solutions such pat-

tern can support human operators to solve problems in

different scenarios.

The description of the domain knowledge is based

on a pattern format that provides the structure for the

pattern description. Even if these pattern formats vary

slightly from pattern language to pattern language, the

essential parts of a pattern format are similar: Each of

the mentioned software pattern languages use a pattern

format that describes inter ilia the problem, the context,
and the solution. These parts are also contained in the

guidelines for writing patterns provided by Meszaros

and Doble (1997) and Wellhausen and Fiesser (2012).

3.2 Apply Architectural Knowledge to Restructured

Topology-based Deployment Models

Existing architecture and design knowledge are provided

as patterns in several domains. Patterns of one domain

capture different viewpoints, i.e., the purpose and stake-

holders are different. Even within one pattern language

viewpoints often vary. This makes it difficult to identify

relevant patterns for a specific purpose. For example,

the security pattern language includes patterns such

as the Secure Channel pattern for designing secure

Internet applications as well as patterns at the strate-
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gic level for selecting and integrating security services

within an organization (Schumacher et al., 2006). The

same applies to other pattern languages as well. The

cloud computing patterns cover the characteristics of

application workloads as well as integration concepts

for distributed applications (Fehling et al., 2014). The

different viewpoints covered by pattern languages open

up a wide range of possible applications of patterns.

Because there are so many languages and even more

patterns a single operator (i) cannot be aware of all

relevant patterns in his domain and therefore (ii) cannot

be aware of all possible problems that may occur in his

restructured deployment models.

The term architecture and design pattern makes

it clear that the intention of these patterns is to sup-

port the creation of new software systems. However,

the problem that sensitive data being sent over an in-

secure channel over a public network or the required

inbound communication being restricted by a firewall

addressed by the Application Component Proxy pattern

can occur not only when creating a new system but

also when restructuring a deployment model. Therefore,

we apply architecture and design patterns to a new

domain: restructured deployment models. This eases

(i) the recognition of required adaptation caused by a

redistribution as well as (ii) the solution of problems

discovered in this way. In the next section, our con-

cept for applying architecture and design patterns to

restructured topology-based deployment models to de-

tect problems and as a consequence to get solutions for

these problems is presented.

3.3 Overview of the Pattern-based Problem Detection

Approach

In this section, the pattern-based approach for detecting

problems in restructured topology-based deployment

models is described in detail. Based on this approach,

our concept for automating the problem detection is

presented in the following sections. Figure 2 shows our

pattern-based problem detection approach. Caused by

a restructuring, problems can occur in the deployment

model that did not exist before (step 1). Knowledge

about such recurring problems and best practice for

these problems are captured in patterns in different

pattern languages. This encompasses, for example, the

security patterns or the cloud computing patterns. This

knowledge in form of patterns can be applied to a restruc-

tured deployment model (step 2) to detect problems

caused by the restructuring (step 3). Even though these

architecture and design patterns are intended to be used

during the creation of new software systems they also

support solving problems in restructured deployment

models as discussed in Section 3.2.

The example in Figure 2 on the left depicts a topology-

based deployment model representing an application

consisting of two components, a PHP-WebApp and

a Java-App hosted on a single machine. The shown

topology-based deployment model corresponds to the

deployment model in Figure 1. The application shall

be now deployed for a customer in a different environ-

mental setup as it was used before. According to the

customer requirements, the operator annotates the com-

ponents with target labels. The application in this exam-

ple shall be distributed across two environments: internal

and external. Thus, by using the splitting method of

Saatkamp et al. (2017) the deployment model is restruc-

tured according to the assigned target labels (step 1).

After the restructuring the PHP-WebApp component is

hosted by a suitable Infrastructure-as-a-Service (IaaS)

and the Java-App on a private cloud platform. Due to

the changes, the communication between the two differ-

ent locations now takes place over a public network. This

means that the communication network is not controlled

by a single environment and the sensitive data can be

eavesdropped if security mechanisms such as encryp-

tion technologies are not used. Thus, the restructuring

added a problem to the deployment model in the form

that sensitive data are exchanged using an unprotected

communication channel. Fortunately, there is already a

pattern that solves this problem (step 2): the Secure
Channel pattern (Schumacher et al., 2006). It indi-

cates that a encrypted secure channel should be created

to solve this problem. Thus, by using known patterns for

detecting problems in topology-based deployment mod-

els, the operator can use the generic knowledge from the

pattern to solve the specific problem (step 3). Applying

the existing knowledge to restructured topology-based

deployment models eases the adaptation to enable a

valid deployment. However, for this the knowledge must

be accessible and usable.

Even if architecture and design pattern may help us

understanding, detecting, and solving problems, a hu-

man operator can hardly be aware of all the patterns and

pattern languages available and how they are interre-

lated with each other. Thus, although patterns describe

the problems that should be solved, it is impossible to

execute this approach manually as no operator can be

aware of all patterns that describe possibly occurring

problems. Therefore, the main challenge to be tackled is

to automatically detect the problems that might occur

in a restructured topology-based deployment model. An

approach to formalize architecture and design patterns

for automating the problem detection is presented in

the following sections.
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4 Automated Problem Detection by Problem-

and Context-Formalized Patterns

The second contribution of this paper is the automa-

tion of the problem detection approach in restructured

topology-based deployment models. For this, we present

a concept based on Problem- and Context-Formalized
Patterns. We provide an overview of our approach (Sec-

tion 4.1) and introduce fundamentals about logic pro-

gramming (Section 4.2). Finally, we present the topology-

based deployment model metamodel required for the

formalization and the transformation itself (Section 4.3).

4.1 Overview of the Pattern Formalization Approach

The manual detection of problems in restructured topol-

ogy-based deployment models is not feasible due to the

variety of possibly occurring problems. Therefore, the

idea is to automatically recognize these problems based

on formalized patterns in deployment models. To achieve

automation, (1) the problem and context descriptions of

patterns and (2) the topology-based deployment mod-

els are expressed as logical formulas. Consequently, it

can automatically be detected whether the deployment

model complies to the logic formula of a pattern. If this

is the case, a problem is detected. This can be realized

by logic programming. We use this in this paper to

automatically detect problems in restructured deploy-

ment models. In a logic program, domain knowledge can

be expressed as facts and rules and it can be checked

whether a fact base satisfies the conditions of a rule.

Figure 3 describes the overall approach based on

the example of the introduced Secure Channel pat-

tern and the restructured topology-based deployment

model depicted in Figure 2. In a first step, the problem

and context description of each pattern are formalized

as rule with conditions that have to be satisfied for

the rule to be fulfilled. In this example, the rule inse-
curePublicCommunication formalizes the problem and

context of the Secure Channel pattern. This pattern

addresses the problem that sensitive data are exchanged

over a public network using an unprotected channel. A

detailed description of the Secure Channel pattern

rule is shown in Section 5. All formalized patterns are

stored in a repository to be used for detecting problems

in topology-based deployment models. For this, in a

second step, the elements of a deployment model to be

investigated are transformed into facts. The resulting

facts comprises all elements, i.e., components, relations

and properties. In Figure 3 an excerpt of the fact base of

the graphically represented deployment model is shown.

Based on this fact base, all available pattern rules can

be queries to detect problems in the deployment model.

Prolog is a widely used logic programming language

and in previous works used for detection pattern so-

lutions in UML diagrams (Bergenti and Poggi, 2002;

Lim and Lu, 2006). We provide an overview on logic

programming and Prolog in Section 4.2 and use it for

expressing rules and facts in this work. In addition,

we present the topology-based deployment model meta-

model and the corresponding facts in Section 4.3.
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Fig. 4 Metamodel of Topology-based Deployment Models (Extended Metamodel Presented by Saatkamp et al. (2017))

4.2 Logic Programming for Problem Detection

Logic programming languages are part of the declarative

programming languages that can be used to express

what should be achieved rather than how it is achieved.

Prolog as a widely used logic programming language is

used to express the Problem- and Context-Formalized
Patterns and the topology-based deployment models.

It is based on horn clauses of the first-order logic and

enables the representation of available knowledge as

facts and rules (Clocksin and Mellish, 2003).

Facts describe specific circumstances, i.e., objects

and their relationships. Based on facts, we can use

queries either to prove that a fact is true or to infer

new knowledge based on existing facts. Rules simplifies

complex queries. Rules are extended facts with condi-

tions that have to be satisfied for the rule to be fulfilled.

The conditions of a rule can be linked with an AND

or OR operator. The AND operator is expressed as “,”

and the OR operator as “;”. As an example: The rule

son(X,Y):-father(Y,X),male(Y). is fulfilled for the

query “Is John the son of Ben?” if there exist the facts

father(ben,john) and male(ben). Rules can also be

used to infer new knowledge based on existing facts.

For example, the query “Do objects exist for which
son(X,Y) is fulfilled?” provides the answer: X = john
and Y = ben. Thus, facts and rules form a logic program

and can be analyzed by an interpreter for a given query.

The rule insecurePublicCommunication(C1,C2)
in Figure 3 is defined for the Secure Channel pattern.

Results matching this rule are components that do not

establish a secure channel in public communication. The

query is interpreted on facts representing the deploy-

ment model to be investigated. For example, the fact

component(java-webapp) denotes that java-webbapp
is a component of the deployment model. The fact

relation(php-webapp,java-app,httpconnection)
denotes that it exists a relation httpconnection be-

tween the components php-webapp (source) and java-
app (target). The facts as well as the rules are generated

based on the metamodel presented in the next section.

4.3 Topology-based Deployment Model Metamodel

And Corresponding Facts

The formalization of patterns to rules and the transfor-

mation of topologies to facts are based on a topology-

based deployment model metamodel. Therefore, the

formalization of patterns is specific to topology-based

deployment models. This can be seen as the essential

deployment model to which most deployment technolo-

gies can be mapped and thus forms a practical base for

the formalization concept. In Figure 4 the underlying

metamodel for the formalization and transformation is

depicted. It is an extended version of the metamodel

presented in our previous work (Saatkamp et al., 2017).

A topology-based deployment model contains elements

that are either components or relations. Each relation

and component has a unique id. Relations additionally
have a source and a target, which indicate the com-

ponents that serve as start and endpoint of a relation,

respectively. Relations and components are of a specific

type. For this, component types and relation types are
defined with a unique id. Types determine the semantic

of the topology elements. Additional information about

a topology element can be specified by properties. A
property is related to one topology element and has a

key representing the name of the property and a value.
Based on this metamodel corresponding facts can

be expressed as follows: A component in a deployment

model is specified as component(component-id). For
relations between component, the source and target

component are important: relation(source,target,
relation-id). The topology element types must also be

considered: relationOfType(relation-id, type-id)
and componentOfType(component-id,type-id). Last,
the properties added to topology elements are expressed

as property(element-id,key,value).
Facts in this form can be queried based on the formal-

ized patterns to detect problems in a deployment model.

In the following the problem and context statements

of two patterns are formalized and the applicability to

detect a problem in a given deployment model is shown.
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Fig. 5 Deployment Model with Problems

5 Case Study

In this section two Problem- and Context-formalized
Patterns for topology-based deployment models are pre-

sented. By applying the presented approach, Prolog

rules for each pattern are created based on their prob-

lem and context description. We applied the approach to

the presented Secure Channel pattern as part of the

security pattern language by Schumacher et al. (2006)

and the Application Component Proxy pattern

from the cloud computing pattern language by Fehling

et al. (2014).

Figure 5 presents a minimal working deployment

model we use as running example: There exists an inse-

cure communication between the PHP-WebApp and the

Java-App (which should be a Secure Channel) and the

direct communication is restricted (Application Compo-

nent Proxy). Based on this, in the following the patterns

and their formalizations are described in detail.

5.1 Secure Channel

The Secure Channel pattern is part of the security

pattern language by Schumacher et al. (2006). The

problem and context are described as follows:

Problem:

How do we ensure that data being passed across

public or semi-public space is secure in transit?

Context:

The system delivers functionality and information

to clients across the public Internet through one or

more web servers. [...] The application must exchange

data with the client. A percentage of this data will

be sensitive in nature.

Solution:

Create secure channels for sensitive data that obscure

the data in transit. Exchange information between

client and server to allow them to set up encrypted

communication between themselves. [...]

All essential statements of the problem and context

description of the pattern must be formalized based on

the metamodel introduced in Figure 4. These facts are

the conditions for the pattern rule. For each statement

described in natural language in the pattern description,

corresponding conditions that have to be fulfilled for

this rule must be extracted. In the following, the pattern

description is decomposed and for each statement the

corresponding condition is defined.

The context description states that sensitive data are

exchanged. In a deployment model, this can be expressed

as property. Thus, following fact serves as condition for

the pattern rule: property(R,sensitivedata,true).
Data can just be exchanged if a connection is estab-

lished. Thus, a relation of type connectsTo must be con-

tained in a topology. For this, two facts are used. One

for the relation itself: relation(C1,C2,R) and one de-

noting the type: relationOfType(R,connectsTo). An

additional condition is that the two components for

which this relation shall be established communicate

over a public network, i.e., they are located in differ-

ent locations: differentLocations(C1,C2). This fact
in turn is a rule encapsulating a complex query (not

shown for brevity). The last condition is that two com-

ponents communicate over an insecure channel. This is

the case if security mechanisms are missing. By the fact

not(property(R,security,true)) it is expressed that

this property cannot be found in the facts describing

the deployment model. The problem described by the

Secure Channel pattern can thus expressed with the

following Prolog rule:

1insecurePublicCommunication(C1, C2) :-
2property(R, sensitivedata, true),
3relationOfType(R, connectsTo),
4relation(C1, C2, R),
5differentLocations(C1, C2),
6not(property(R, security, true)).

This rule can be used and applied to the deployment

model in Figure 5 and based on that the problem is

automatically detected. This problem can then be solved

by the solution described by the pattern.
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5.2 Application Component Proxy

To show the application in other pattern language do-

mains, we use the cloud integration pattern Application
Component Proxy included in the cloud computing pat-

tern language by Fehling et al. (2014). An extract of

the problem and context description is as follows:

Problem:

How can an application component be accessed if

direct access to its hosting environment is restricted?

Context:

Application components of a distributed application

are deployed in different cloud environments that

form a hybrid cloud. These environments often have

different privacy, security, and trust properties. [...]

However, application components hosted in unre-

stricted environments, for example, a public cloud,

may have to access application components hosted

in a restricted environment, for example a private

cloud or corporate data center, but direct access may

be unavailable. [...]

Solution:

The interface of a restricted application component is

duplicated to form a proxy component. Synchronous

and asynchronous communications with the proxy

component is initiated and maintained from the re-

stricted environment [...]

From the above given description of this pattern, similar-

ities to the insecurePublicCommunication rule that

formalizes the problem and context of the Secure
Channel pattern can be seen: a component wants to ac-

cess another component in a different environment. Thus,

parts of the insecurePublicCommunication rule can

be reused: relationOfType(R,connectsTo), relation
(C1,C2,R), and differentLocations(C1,C2). Further-
more, an essential statement is that the environment

of the accessed component is restricted, i.e., that no in-

bound communication from the outside is allowed. The

resulting rule for the formalized Application Compo-
nent Proxy is the following:

1directAccessToRestrictedEnvironment(C1, C2) :-
2relationOfType(R, connectsTo),
3relation(C1, C2, R),
4differentLocations(C1, C2),
5property(H, inboundcommunication, false),
6hosting_stack(S),
7member(C2, S),
8member(H, S).

The last four conditions are required to check whether

a component in the hosting stack of the accessed com-

ponent set the property inboundcommunication to false.

The hosting stack is stored as a list and copied into S

(line 6). The accessed components as well as the com-

ponent with the property must be in the same stack S.
This problem is also contained in the deployment model

in Figure 5 and can automatically detected using this

formalized pattern.

6 Validation based on TOSCA

The automated problem detection approach for restruc-

tured topology-based deployment models based on

Problem- and Context-Formalized patterns is validated

using TOSCA. We want to show how our approach can

be used to detect problems in TOSCA topologies. The

Topology and Orchestration Specification for Cloud Ap-

plications (TOSCA) is an OASIS standard to describe

the deployment and management of applications in a

portable manner (OASIS, 2013). It is a vendor-neutral,

technology-independent topology-based metamodel that

can be mapped to several existing technologies. In the

following, we present in Section 6.1 the mapping of our

metamodel to TOSCA. This is fundamental in order

to apply the formalized patterns to TOSCA. In Sec-

tion 6.2 the overall architecture of a problem detection

framework for TOSCA is presented. Our prototypically

implementation is shortly described in Section 6.3.

6.1 Mapping to TOSCA

For the mapping of TOSCA elements to the elements

in the topology-based deployment model metamodel all

not relevant aspects of TOSCA are skipped. For more

details see the TOSCA specification (OASIS, 2013).4

In TOSCA, topology templates are used to specify

the structure of an application. The application‘s compo-

nents are modeled as node templates and their relations

as relationship templates. This corresponds to the topol-

ogy and its topology elements: components and relations.

The semantic of the node and relationship templates is

defined by their types. TOSCA has an extensive type

system enclosing all TOSCA elements. Consequently,

node types and relationship types can be defined and

used in topology templates as node templates and rela-

tionship templates. Types for relations and components

are also part of the our metamodel used to specify the

semantic of topology elements. In the TOSCA Simple

Profile Specification additionally normative types are

defined (OASIS, 2016). These types encompass general

types that have to be available and interpretable in each

TOSCA-conform deployment engine. They include the

4 The mapping to TOSCA is based on the XML specification
of TOSCA, but the concepts can also be applied to the TOSCA
Simple Profile (OASIS, 2016)
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Fig. 6 System Architecture of the Topology Problem Detector used for TOSCA Topologies

relationship types hostedOn and connectsTo as well as

node types such as WebApplication or WebServer. These
predefined types ease the interpretation of node and rela-

tionship templates. This semantical knowledge can also

be used for the transformation of TOSCA topologies.

In TOSCA properties that are defined for a specific

type can be assigned to the respective node template or

relationship template with a specific value. This corre-

sponds to the properties assigned to topology elements.

In our metamodel properties are restricted to key-value

pairs which is the most commonly-occurring form of

properties. These are the most important elements of

TOSCA to apply the presented approach to TOSCA

topologies. In the following the prototype and the pro-

cessing steps are explained in detail.

6.2 System Architecture of a Pattern-based Problem

Detection Framework for TOSCA

In the previous section, the mapping between TOSCA

elements and our introduced metamodel is described. In

this section, the architecture of a framework for problem

detection in TOSCA topologies is presented.

Figure 6 shows the system architecture: On the left

the TOSCA Topology Modeler and on the right the

Topology Problem Detector are depicted. The architec-

ture of the Topology Modeler is depicted in a simplified

manner to focus on the important components for our

approach. A more detailed view is given by Kopp et al.

(2013). The Modeler is used to graphically model a

topology template as directed graph with node tem-

plates, relationship templates, and attached properties.

All TOSCA elements such as the node types or topology

templates are management by the TOSCA Elements
Management component and stored in the TOSCA Ele-

ments Repository. The Splitting & Matching component

are used to split a topology template according to the

assigned target labels (Saatkamp et al., 2017).

For detecting problems in a split TOSCA topology

the Topology Problem Detector is used. It consists of two

components: the Topology Facts Generator for TOSCA

topologies and the Problem Detector. Patterns that have
been formalized as rules by their problem and context

description are stored in the Pattern Rules Repository.
The authoring process for formalizing patterns is a man-

ual process. However, this has to be done just once

for each pattern and can be reused to check arbitrary

topologies. The Topology Facts Generator transforms

the TOSCA topology into a set of corresponding facts

that are stored in the Topology Facts Repository.
For the problem recognition the Problem Detector

component starts the Prolog Interpreter and loads the

specific topology from the Topology Facts Repository

and all available patterns from the Pattern Rules Repos-

itory. All rules are queried by the Interpreter. Thus,

all contained problems and the patterns solving these

problem are detected in the TOSCA topology. In the ex-

ample in Figure 6, the InsecurePublicCommunication
problem between the PHP-WebApp and the Java-App

is detected that can be solved by the Secure Channel
pattern. A detailed view on the underlying topology

and the formalized pattern are given in Figure 3. In the

following section our prototypical implementation for

the concept validation is briefly described.

6.3 Prototypical Implementation

For the concept validation, we prototypically imple-

mented the pattern-based problem detection framework
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based on the existing TOSCA modeling tool Winery5

and the newly developed Topology ProDec6 for the

problem detection in TOSCA topologies. The Topol-

ogy ProDec uses the Prolog Interpreter SWI Prolog7.

Each pattern is stored as Markdown file containing a

textual description of the pattern and the Prolog rule.

During runtime all available patterns are loaded and

the Prolog rules are stored in a Prolog file.

For the test setup we have stored four patterns includ-

ing the described patterns in Section 5 in the Pattern
Rules Repository. We have used three TOSCA topolo-

gies, each with a different number of components: 10,

20 and 30 components. Each of them had n-1 rela-

tions. For each topologies two variants existed: one con-

taining the problems insecurePublicCommunication
and directAccessToRestrictedEnvironment and one

without detectable problems. The topologies result in

45 facts (10 components), 87 facts (20 components),

and 132 facts (30 components). We have evaluated the

time required to read the rules from the markdown files,

to transform the topology to facts, and to query all

problem rules against the facts. The mean value for the

process (loading Prolog rules, transforming the topology,

querying the rules) for 10 repetitions result in the follow-

ing: The problem detection for 10 components took 1.0

sec, for 20 components 1.8 sec, and for 30 components

2.6 sec. The result for the topologies without problems

was similar: 1.1 sec, 2.0 sec, and 2.5 sec. Even if the per-

formance could be better, it is not of great importance

because the problem detection is done during design

time and not during runtime. However, preloading of the

patterns and topologies could improve the performance

but this is considered in future work.

Our approach facilitates the automated problem de-

tection in deployment models and thus also to iden-

tify patterns to solve these problems. For applying

the concept the patterns must be formalized as Pro-

log rules. Even though creating these rules is hard and

time-consuming, it has to be done only once and an

operator no longer needs to know all patterns and po-

tential problems. The usage of our formalized patterns is

restricted to the problem detection in topology-based de-

ployment models because of the underlying metamodel.

However, this metamodel defines elements relevant for

all deployment systems such as the components and

their configurations. Of course, this approach can also

be extended to specific characteristics of individual de-

ployment systems, but the general idea remains the

same.

5 https://eclipse.github.io/winery
6 https://github.com/saatkamp/topology-prodec
7 http://www.swi-prolog.org/

7 Related Work

Several works address the recognition of patterns in

UML diagrams (Di Martino and Esposito, 2016; Fontana

and Zanoni, 2011; Kampffmeyer and Zschaler, 2007;

Lim and Lu, 2006; Bergenti and Poggi, 2002). However,

all of them focus on the recognition of solution struc-

tures based on the design patterns described by Gamma

et al. (1994). We focus on the problem detection in

restructured topology-based deployment models and we

consider different pattern languages as several domains

such as security and cloud computing are relevant for

functional deployment models.

For detecting pattern structures, different methods

have been used. Kampffmeyer and Zschaler (2007) pre-

sented an ontology-based approach with OWL, Di Mar-

tino and Esposito (2016) generated Prolog rules based

on ODOL+OWL-representations of patterns, Lim and

Lu (2006) and Bergenti and Poggi (2002) represented

the solution structure and behavior as Prolog rules, and

Fontana and Zanoni (2011) represented patterns as de-

sign pattern diagrams. Taibi and Ngo (2003) introduced

the BPSL language that is based on the first-order logic

to describe patterns. However, they also focus on the

solution aspect of patterns only. Cortellessa et al. (2014)

present an approach for detecting performance antipat-

terns in UML diagrams based on performance indices

to improve the system performance. Antipatterns cap-

ture bad practices compared to patterns that describes

best practices. Similar to the works detecting pattern

structures, they detect antipattern structures.

Kim and Khawand (2007) formalize the problem do-

main of the design patterns for object-oriented software.

They solely consider structural elements of the pattern

as UML diagrams. By only comparing structural ele-

ments, the absence of elements cannot be checked. This

is why we used logical programming in this work.

The concepts presented by Breitenbücher et al. (2013a,

2014a,b) and Breitenbücher (2016) are also based on

structural elements of management patterns in order to

apply them to enterprise topology graphs that represent

the current state of an application through its compo-

nents and relations. To identify if a certain management

pattern is applicable, a target topology fragment is de-

fined. If this fragment is detected in a topology, the

management pattern is applicable. However, with these

topology fragments only existing structural elements in

a topology can be detected. Similar approaches to detect

structures in topologies to facilitate predefined trans-

formation steps are presented by Arnold et al. (2007)

and Eilam et al. (2006). Guth and Leymann (2018) use

graph fragments to detect subgraphs in architectural

graphs that can be rewrote or refined. However, their

https://eclipse.github.io/winery
https://github.com/saatkamp/topology-prodec
http://www.swi-prolog.org/
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approaches are also based on graph matching and the ab-

sence of elements cannot be detected. This is important

for detecting problems.

Zdun and Avgeriou (2005) define pattern primi-

tives that represents the smallest logical entities used

to model architecture patterns. These reusable entities

can be used to model different patterns. This concept is

applied to annotate software components to detect pos-

sible patterns that can be applied to these components

(Haitzer and Zdun, 2015).

As Prolog enables the detection of the absence of

elements, we decided to use Prolog rules for the formal-

ization of the problem and context domain of patterns.

In addition, in this work we focus on a specific domain of

patterns application, topology-based deployment mod-

els, rather than on a specific pattern domain.

8 Conclusion

In this paper, we applied architecture and design pat-

terns to restructured topology-based deployment models

to detect problems that prevent a valid deployment. For

this, we presented (i) how problems can be detected in

restructured deployment models based on architecture

and design patterns and (ii) how the problem detection

can be automated by formalizing the problem and con-

text stated by a pattern. Even though these patterns are

intended to be used for creating new software systems,

we demonstrated the applicability of these patterns for

problem detection in restructured deployment models.

Because detecting problems is a highly non-trivial chal-

lenge, we further introduced a formalization approach

for the problem and context description of patterns to

automated the problem detection. For validating our

concepts, we prototypically implemented the problem de-

tection framework for TOSCA topologies. An extended

validation is presented by Saatkamp et al. (2018).

This approach is not limited to the presented pat-

terns. It could also be applied, for example, to detect

problems in distributed data sources (Strauch et al.,

2013) and can be extended to non-restructured topology-

based deployment models for their validation. This will

be investigated in future works. We plan to extend

this approach not only for the automated detection of

problems but also for solving the detected problems.

Furthermore, we want to improve the authoring process

of the patterns by a semantic model and want to extend

the tool support to ease the creation of new rules.
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