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ABSTRACT
To evaluate classical software, a huge variety of software metrics
exists. Similar metrics of quantum algorithms especially in context
of near-term quantum computers are only rudimentary investigated.
Hereby, metrics are particularly important to be able to estimate
what is already possible with current quantum computers. Thus,
in this paper, we discuss existing quantum performance metrics
and focus on a metric that determines whether a quantum circuit is
successfully executable on a given gate-based quantum computer.
Thereby, we give an overview of various factors that can a�ect an
execution and present our plan to concretize and apply the metric.
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1 INTRODUCTION
To quantify and �nally compare the capabilities of software to be
executed on classical computers, software metrics have been es-
tablished and are tremendously important [15]. Today’s quantum
computers are limited by high error rates and only small numbers
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of qubits [21]. Such Noisy Intermediate-Scale Quantum (NISQ) com-
puters consequently o�er only short stable execution times which
considerably limit the number of sequential executable gates, i.e.
the depth, of concrete quantum circuits (Note that we are dealing
with the gate-based model of quantum computing in this paper).

With these limitations, corresponding metrics are also extremely
important to be able to estimate what is already possible on a given
quantum computer. However, it is not possible to simply transfer the
metrics of classical software to quantum algorithms or circuits, as
quantum computers are fundamentally di�erent in their design [22].
In addition, noise and resulting errors on today’s quantum comput-
ers are hard to characterize in terms of their impact on quantum
circuits. However, di�erent quantum metrics to determine errors
and the �delity of individual gates already exist [12, 19, 31]. There
are also quantum metrics that determine the overall performance
of a given quantum computer, like Total Quantum Factor (TQF) [25]
and Quantum Volume (+& ) [2].

Our work focuses on another well-known quantum metric that
estimates if a given arbitrary quantum circuit is successfully exe-
cutable on a given quantum computer:F3 ⌧ 1

ne�
[2, 7, 13, 18, 21].

Whereby the sizeF3 of a circuit is limited depending on the e�ec-
tive error rate ne� of the quantum computer. Thereby, two questions
arise: How is the e�ective error rate composed? Furthermore, the cir-
cuit size should be "much less" than the multiplicative inverse of the
e�ective error rate according to the formula, which is not a precise
threshold: How to sharpen the equation from ⌧ to <? Therefore, we
give an overview of the various factors contributing to the e�ective
error rate, propose a re�nement of the quantum metric, and present
our vision on how to measure the concrete values.

2 CLASSICAL SOFTWARE METRICS
A whole plethora of metrics has been developed to measure the
"suitability" of classical software [15]. "Suitability" covers aspects
such as maintainability, modularization etc. A straightforward soft-
ware metric that measures the complexity of a software application
on the basis of its size is Lines Of Code (LOC) [15]. Another set of
software metrics are the Halstead Complexity Metrics (HCM) [9]
that describe the logical size of a software application [32]. First,
the number of operators and operands is determined in the code
and then parameters such as di�culty, programming e�ort, pro-
gramming time, and software vocabulary are calculated. Another
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well-known complexity measure is the McCabe Cyclomatic Com-
plexity Metric (CCM) [16]. It examines the control �ow graph of
a software application and determines the number of linear in-
dependent paths through this graph [32]. Also metrics exist that
especially focus on object-oriented software, such as Coupling Be-
tween Object classes (CBO) [5], Number Of Methods (NOM) [10],
and Lack of Cohesion of Methods (LCOM) [5, 15]. As testing of
software is an important concept to detect errors, software metrics
are developed to measure the test coverage of the implemented
code [4, 11]. Thereby, e.g., the coverage of code blocks, control
�ow, and the data �ow can be considered for measurement [11].
The Maintainability Index (MI) is a software metric that estimates,
amongst others, the maintainability of a software application [30].
Hereby, several software metrics are combined in MI, such as the
already mentioned HCM, CCM, LOC, and the number of comments
in the code. Comments are provided for a better understanding of
the code, but must also be maintained for correctness and actuality.
However, multiple variations of MI exist [30].

3 QUANTUMMETRICS
In contrast to classical metrics, the number of metrics that measure
the "suitability" of quantum circuits is small (Sec. 4). The current
focus is on metrics that measure "the power" of quantum computers
themselves. In the following, we discuss two existing quantum
metrics that both measure the performance of a given quantum
computer depending on the size of successfully executable quantum
circuits. Thereby, we address their considered factors and discuss
their shortcomings.

3.1 Total Quantum Factor
A quantum metric to measure and compare the performance of
quantum computers is the Total Quantum Factor (TQF) presented
by Sete et al. [25]:

)&� :=
)1
C6

· =@ (1)

)1 is de�ned as the average coherence time of the implemented
qubits, C6 is the maximum gate time of the implemented gate set,
and =@ is the available number of qubits [25], whereas =@ restricts
the circuit width, )1/C6 estimates the maximum depth. Thus, TQF
indicates the maximum circuit size the quantum computer can
execute before the outcome could not be clearly assigned to the
correct result. However, a single gate in the set with a long execution
time worsens the total TQF of the quantum computer, even if it
is rarely applied and the others only require short gate times. In
addition, beneath decoherence, no other factors, such as gate and
measurement errors, are considered that further in�uence the result.

3.2 Quantum Volume
Another quantum metric that is currently used by many quantum
computer vendors as a measure of performance is Quantum Volume
(+& ) [2, 18]:

+& = max=0 =min[=0, 1
=0ne� (=0)

]2 (2)

=0 is de�ned as the circuit width, whereas = is the number of
qubits of the quantum computer and forms the upper limit [18].
ne� (=0) is the e�ective error rate. It is the average error rate per
two-qubit gate determined by executing many circuits of the same
depth of 1 on a given quantum computer. Thereby, it also considers
several hardware characteristics, e.g. qubit connectivity, parallelism
of operations, and implemented gate set. The maximum depth 3 of a
faultless circuit can be estimated by 3 = 1/=0ne� (=0). Eq. 2 squares
the minimum of the two values =0 and 3 with choosing =0 such that
+& is maximized [18]. In comparison to TQF, +& also determines
the maximum circuit size a quantum computer is capable of, but it
includes further factors, summarized as e�ective error rate [2].

Applied to real quantum computers, a simpli�ed formula for +&
is used:+& = 2min(3,=) [7, 20], with depth 3 and width =. Cross et al.
generate squared random circuit models, such that 3 = =, and
check via a success metric called heavy output probability if more
than 2/3 of the executions are successful [7]. Then, 3 and = of the
maximum permitted circuit model are inserted as exponents and
+& is determined. Thereby, a di�erent +& value results compared
to Eq. 2. For example, if 3 = = = 6 is the size of a permitted circuit
model +& = 62 = 36 results, where the ideal case without errors is
assumed. With the simpli�ed formula the value is +& = 26 = 64.
Hence, either only one of the formulas should be used in practice, or
quantum computer vendors should explicitly declare which formula
was used to measure +& . However, Blume-Kohout and Young state
that most of the current circuits of quantum algorithms are not
of squared shapes [3]. Therefore, it is important to also consider
non-squared circuits to determine more precisely the capabilities
of a quantum computer, as one may have a small number of qubits
but supports good coherence times and error rates whereas another
is the exact opposite.

4 SIMPLE METRIC - COMPLEX FACTORS
The quantum metrics presented in Sec. 3 quantify the performance
of quantum computers by a single number. However, to get an
estimation if an arbitrary given quantum circuit is successfully
executable on a given quantum computer or not, we are focusing
on an additional quantum metric in this section.

The metric is described by a small formula which can be derived
from the work on Quantum Volume [2, 7, 18] and is discussed
in [13, 21] as a "rule of thumb":

F3 ⌧ 1
ne�

(3)

Thereby,F describes the width and 3 the depth of the circuit. ne�
is the e�ective error rate of the quantum computer, as explained
in Sec. 3 [13, 18]. Eq. 3 limits the size of a circuit depending on
the e�ective error rate of the quantum computer. If F3 ⇡ 1/ne�,
Moll et al. argue that the execution is highly probable to fail [18].
Therefore, the closerF3 gets to the value of 1/ne�, the less accurate
the result will be due to noise and resulting errors [13].

The simplicity of Eq. 3 has its pitfalls, e.g.: How is the e�ective
error rate composed? Bishop et al. and Moll et al. argue that the
e�ective error rate depends on various factors, e.g. connectivity,
number of qubits, available gate set, parallelism, gate error rates,
mapping algorithm, and quantum system complexity [2, 18]. In the
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following, we give an overview of the individual factors and their
e�ects to show that they are highly interdependent and, currently,
di�cult to characterize individually. This hardens predicting and
modelling error behaviour [22, 29].

Gate Errors. Implementations of quantum gates are erroneous and,
therefore, can lead to incorrect qubit states when applied [29]. With
each additional operation the deviation from the correct result
increases. In particular, two-qubit gates, such as CNOT, have a
much higher probability to be erroneous during their execution than
single-qubit gates [29]. To evaluate the error rate of a gate, di�erent
metrics, such as average gate �delity [19] and diamond distance [12]
exist. But results of experiments show that these metrics do not
represent the behavior when gates are applied several times, like
in a circuit of a quantum algorithm [31].

Measurement Errors. Errors caused by measurements are not di-
rectly mentioned by [2, 18] but have a certain impact on the overall
error and on the precision of the circuit result [28]. In comparison
to quantum gates, a measurement operation introduces signi�cant
delays in which the qubit further decoheres [13]. Therefore, mea-
surements have the highest operational error rate [28].

Connectivity. Qubits of a quantum computer are often not com-
pletely connected as the realization of a graph with a two-digit
number of qubits is already hard to realize [29]. Additionally, high
connectivity may lead to unintended interactions between nearby
qubits, also known as crosstalk [17, 22]. The lack of connectivity
implies that additional SWAP gates are needed to execute a two-
qubit operation on two not directly connected qubits. This may also
cause an increase of the required number of qubits for the circuit as
additional qubits may be required for the state exchange, as shown
by [13]. Additional gates mean additional errors and an increase of
the depth of the circuit that must be taken into account [13].

Gate Set. If the gate set used in the circuit is not physically sup-
ported by the quantum computer the missing gates have to be
replaced by a subroutine of supported gates [14]. This can result
in a signi�cant increase in the number of gates and depth of the
circuit which in turn leads to additional gate error rates [13].

�bits. As the state of a qubit decoheres after a certain amount of
time due to unintended interaction with the environment, opera-
tions have to be applied before the state is too erroneous [13, 22].
Therefore, to get a meaningful outcome the depth or respectively
the execution time of the circuit should be within the coherence
time. With the combination of decoherence and crosstalk, the qubit
state can further be disrupted [22]. Beneath, e.g., depolarization, am-
plitude, and phase damping, there is the probability that qubits ac-
cidentally leave the de�ned computational state space, also known
as leakage, as they can contain further states depending on their
realization [1, 8]. A qubit loss is possible when a qubit disappears [8].

Complexity of the System. Moll et al. argue that ne� is in�uenced
by the "system complexity" including, e.g., the number of hardware
components, which increases with the number of qubits [18]. How-
ever, the term is kept very abstract and should probably describe the
di�erent constellations of noise and resulting error rates that can
occur on quantum computers. For example, with more qubits on the
hardware, general crosstalk may increase. Thereby, crosstalk can

Figure 1: Introduction of a concrete threshold forF3 ⌧ 1
ne�

.

occur when qubits are idle or operations are applied [24]. It can even
occur during state preparation, caused by the imperfect controls
and measurement processes. However, a concrete characterization
of the composition of crosstalk does not yet exist [3, 24].

Parallelism. By parallelizing the execution of mutually independent
operations on di�erent qubits as far as possible, the depth of the cir-
cuit and, thus, the execution time can be considerably reduced [13].
As a consequence, errors caused by decoherence will be reduced.

Mapping Algorithm. How the circuit is mapped to the physical
realization of the quantum computer depends on the mapping al-
gorithm of the used compiler and has a strong in�uence on the
e�ective error rate ne� [2]. Thereby, the compiler determines how
the logical qubits of the circuit are initially mapped to the phys-
ical qubits on the quantum computer [13]. It is of advantage to
place logical qubits that often share a two-qubit gate nearby on the
connectivity graph such that the number of SWAP gates is mini-
mal [29]. This process is known to be NP-hard [6, 26]. However, the
connections between qubits and the qubits itself have a changing
error rate which must be considered for �nding the shortest path
in the weighted connectivity graph [13, 29].

After the subsequent gate mapping procedure, the circuit size
has reached its peak [13]. Therefore, many of the already exist-
ing compilers use optimization algorithms to reduce the resulting
depth [27]. Thereby, the gates are parallelized as far as possible,
redundancy in gate sequences are removed, and gates with high
error rates are avoided. Future compilers may additionally consider
general errors like crosstalk to further improve the precision of the
result of a quantum circuit [17].

5 SHARPENING THE SIMPLE METRIC
A very simple metric for the "suitability" of a quantum circuit itself
is given by Eq. 3: The size of the circuit should be much less than the
multiplicative inverse of the e�ective error rate. But "much less" is
not precise, i.e. not helpful at all. It is hard to exactly determinewhen
the limit for a successful execution on a given quantum computer
is reached. Therefore, in this section we investigate the question:
How to sharpen Eq. 3 from ⌧ to <?

Eq. 3 implies, that there exists an interval ]1/ne� �_, 1/ne� [ with
some, yet unknown, _; if the circuit size F3 lies in this interval
the noise and resulting errors are too high such that the result
would be too imprecise, as shown with the shaded part in Fig. 1.
Therefore, multiplying 1/ne� with a factor : results in a threshold
that determines the onset of the above interval (Fig. 1): : · 1/ne� =
1/ne� � _. With this in mind, the following re�ned and sharpened
equation should hold:
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F3 < :
1
ne�

(4)

To determine concrete values for :, _, and ne�, available quantum
computers have to be benchmarked. Thereby, a wide spectrum of
circuit classes, e.g. random circuits, periodic circuits, and current
quantum algorithm circuits, as presented in [3], should be consid-
ered. Required quantum computing properties, like connectivity
graph, gate set, and coherence times of qubits, should be extracted
from collected provenance data [13]. Additionally, the depth and
width of already compiled circuits in Eq. 4 should be inserted, be-
cause during compilation the resulting depth and width can vary
greatly. Cross et al. consider sizes of non-compiled circuits, as they
want a general measure to compare quantum computers, while the
sharpened metric focuses on a more accurate feasibility estimate
for an arbitrary circuit [7].

The resulting values and metadata can then in turn be saved as
provenance data and further be reused [14]. The feasibility metric
itself can be used to re�ne the automated selection of quantum
circuits and suitable quantum computers [23].

6 CONCLUSION & FUTUREWORK
In this paper, we gave an overview of metrics for classical software
and presented performance metrics TQF and Quantum Volume
for quantum computers. Furthermore, we especially focused our
work on the metric F3 ⌧ 1

ne�
and discussed in more detail how

the quantum system, noise, and errors a�ect ne� and how this
equation can be re�ned for precise estimation, i.e. a sharp upper
limit. Finally, we presented our vision for the determination of
the metric variables via benchmarking and provenance. As a next
step, we want to realize our vision by benchmarking given quantum
computers and evaluating the validity of the re�ned quantummetric
in Eq. 4 as discussed in Sec. 5.
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