
© ACM 2020
This is the author's version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version is available at ACM:
https://dl.acm.org/doi/10.1145/3412451.3428498

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

@inproceedings{Salm2020_CriterionExecutingCircuit,
author = {Salm, Marie and Barzen, Johanna and Leymann, Frank

and Weder, Benjamin},
title = {{About a Criterion of Successfully Executing a

Circuit in the NISQ Era: What $wd \ll
1/\epsilon_\text{eff}$ Really Means}},

booktitle = {Proceedings of the 1st ACM SIGSOFT International
Workshop on Architectures and Paradigms for
Engineering Quantum Software (APEQS)},

publisher = {ACM},
year = 2020,
month = nov,
pages = {10--13},
doi = {10.1145/3412451.3428498}

}

Marie Salm, Johanna Barzen, Frank Leymann, and Benjamin Weder. 2020. About a
Criterion of Successfully Executing a Circuit in the NISQ Era: What wd ≪ 1/"eff Really
Means. In Proceedings of the 1st ACM SIGSOFT International Workshop on
Architectures and Paradigms for Engineering Quantum Software (APEQS 2020).
Association for Computing Machinery, New York, NY, USA, 10–13.
DOI: https://doi.org/10.1145/3412451.3428498

Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{salm, barzen, leymann, weder}@iaas.uni-stuttgart.de

About a Criterion of Successfully Executing a Circuit
in the NISQ era: What wd ≪ 1/"eff Really Means

Marie Salm, Johanna Barzen,
Frank Leymann, Benjamin Weder

Institute of Architecture of Application Systems

https://dl.acm.org/doi/10.1145/3412451.3428498

About a Criterion of Successfully Executing a Circuit in the
NISQ Era: WhatF3 ⌧ 1/ne� Really Means
Marie Salm

salm@iaas.uni-stuttgart.de
Institute of Architecture of Application Systems,

University of Stuttgart, Germany

Johanna Barzen
barzen@iaas.uni-stuttgart.de

Institute of Architecture of Application Systems,
University of Stuttgart, Germany

Frank Leymann
leymann@iaas.uni-stuttgart.de

Institute of Architecture of Application Systems,
University of Stuttgart, Germany

Benjamin Weder
weder@iaas.uni-stuttgart.de

Institute of Architecture of Application Systems,
University of Stuttgart, Germany

ABSTRACT
To evaluate classical software, a huge variety of software metrics
exists. Similar metrics of quantum algorithms especially in context
of near-term quantum computers are only rudimentary investigated.
Hereby, metrics are particularly important to be able to estimate
what is already possible with current quantum computers. Thus,
in this paper, we discuss existing quantum performance metrics
and focus on a metric that determines whether a quantum circuit is
successfully executable on a given gate-based quantum computer.
Thereby, we give an overview of various factors that can a�ect an
execution and present our plan to concretize and apply the metric.

CCS CONCEPTS
• Computer systems organization→ Quantum computing; •
General and reference →Metrics; Surveys and overviews.

KEYWORDS
QuantumComputing, QuantumCircuits, Metrics, NISQ, Error Rates

ACM Reference Format:
Marie Salm, Johanna Barzen, Frank Leymann, and Benjamin Weder. 2020.
About a Criterion of Successfully Executing a Circuit in the NISQ Era: What
F3 ⌧ 1/ne� Really Means. In Proceedings of the 1st ACM SIGSOFT Interna-
tional Workshop on Architectures and Paradigms for Engineering Quantum
Software (APEQS ’20), November 13, 2020, Virtual, USA. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3412451.3428498

1 INTRODUCTION
To quantify and �nally compare the capabilities of software to be
executed on classical computers, software metrics have been es-
tablished and are tremendously important [15]. Today’s quantum
computers are limited by high error rates and only small numbers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
APEQS ’20, November 13, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8100-0/20/11. . . $15.00
https://doi.org/10.1145/3412451.3428498

of qubits [21]. Such Noisy Intermediate-Scale Quantum (NISQ) com-
puters consequently o�er only short stable execution times which
considerably limit the number of sequential executable gates, i.e.
the depth, of concrete quantum circuits (Note that we are dealing
with the gate-based model of quantum computing in this paper).

With these limitations, corresponding metrics are also extremely
important to be able to estimate what is already possible on a given
quantum computer. However, it is not possible to simply transfer the
metrics of classical software to quantum algorithms or circuits, as
quantum computers are fundamentally di�erent in their design [22].
In addition, noise and resulting errors on today’s quantum comput-
ers are hard to characterize in terms of their impact on quantum
circuits. However, di�erent quantum metrics to determine errors
and the �delity of individual gates already exist [12, 19, 31]. There
are also quantum metrics that determine the overall performance
of a given quantum computer, like Total Quantum Factor (TQF) [25]
and Quantum Volume (+&) [2].

Our work focuses on another well-known quantum metric that
estimates if a given arbitrary quantum circuit is successfully exe-
cutable on a given quantum computer:F3 ⌧ 1

ne�
[2, 7, 13, 18, 21].

Whereby the sizeF3 of a circuit is limited depending on the e�ec-
tive error rate ne� of the quantum computer. Thereby, two questions
arise: How is the e�ective error rate composed? Furthermore, the cir-
cuit size should be "much less" than the multiplicative inverse of the
e�ective error rate according to the formula, which is not a precise
threshold: How to sharpen the equation from ⌧ to <? Therefore, we
give an overview of the various factors contributing to the e�ective
error rate, propose a re�nement of the quantum metric, and present
our vision on how to measure the concrete values.

2 CLASSICAL SOFTWARE METRICS
A whole plethora of metrics has been developed to measure the
"suitability" of classical software [15]. "Suitability" covers aspects
such as maintainability, modularization etc. A straightforward soft-
ware metric that measures the complexity of a software application
on the basis of its size is Lines Of Code (LOC) [15]. Another set of
software metrics are the Halstead Complexity Metrics (HCM) [9]
that describe the logical size of a software application [32]. First,
the number of operators and operands is determined in the code
and then parameters such as di�culty, programming e�ort, pro-
gramming time, and software vocabulary are calculated. Another

https://doi.org/10.1145/3412451.3428498
https://doi.org/10.1145/3412451.3428498

APEQS ’20, November 13, 2020, Virtual, USA Marie Salm, Johanna Barzen, Frank Leymann, and Benjamin Weder

well-known complexity measure is the McCabe Cyclomatic Com-
plexity Metric (CCM) [16]. It examines the control �ow graph of
a software application and determines the number of linear in-
dependent paths through this graph [32]. Also metrics exist that
especially focus on object-oriented software, such as Coupling Be-
tween Object classes (CBO) [5], Number Of Methods (NOM) [10],
and Lack of Cohesion of Methods (LCOM) [5, 15]. As testing of
software is an important concept to detect errors, software metrics
are developed to measure the test coverage of the implemented
code [4, 11]. Thereby, e.g., the coverage of code blocks, control
�ow, and the data �ow can be considered for measurement [11].
The Maintainability Index (MI) is a software metric that estimates,
amongst others, the maintainability of a software application [30].
Hereby, several software metrics are combined in MI, such as the
already mentioned HCM, CCM, LOC, and the number of comments
in the code. Comments are provided for a better understanding of
the code, but must also be maintained for correctness and actuality.
However, multiple variations of MI exist [30].

3 QUANTUMMETRICS
In contrast to classical metrics, the number of metrics that measure
the "suitability" of quantum circuits is small (Sec. 4). The current
focus is on metrics that measure "the power" of quantum computers
themselves. In the following, we discuss two existing quantum
metrics that both measure the performance of a given quantum
computer depending on the size of successfully executable quantum
circuits. Thereby, we address their considered factors and discuss
their shortcomings.

3.1 Total Quantum Factor
A quantum metric to measure and compare the performance of
quantum computers is the Total Quantum Factor (TQF) presented
by Sete et al. [25]:

)&� :=
)1
C6

· =@ (1)

)1 is de�ned as the average coherence time of the implemented
qubits, C6 is the maximum gate time of the implemented gate set,
and =@ is the available number of qubits [25], whereas =@ restricts
the circuit width,)1/C6 estimates the maximum depth. Thus, TQF
indicates the maximum circuit size the quantum computer can
execute before the outcome could not be clearly assigned to the
correct result. However, a single gate in the set with a long execution
time worsens the total TQF of the quantum computer, even if it
is rarely applied and the others only require short gate times. In
addition, beneath decoherence, no other factors, such as gate and
measurement errors, are considered that further in�uence the result.

3.2 Quantum Volume
Another quantum metric that is currently used by many quantum
computer vendors as a measure of performance is Quantum Volume
(+&) [2, 18]:

+& = max=0 =min[=0, 1
=0ne� (=0)

]2 (2)

=0 is de�ned as the circuit width, whereas = is the number of
qubits of the quantum computer and forms the upper limit [18].
ne� (=0) is the e�ective error rate. It is the average error rate per
two-qubit gate determined by executing many circuits of the same
depth of 1 on a given quantum computer. Thereby, it also considers
several hardware characteristics, e.g. qubit connectivity, parallelism
of operations, and implemented gate set. The maximum depth 3 of a
faultless circuit can be estimated by 3 = 1/=0ne� (=0). Eq. 2 squares
the minimum of the two values =0 and 3 with choosing =0 such that
+& is maximized [18]. In comparison to TQF, +& also determines
the maximum circuit size a quantum computer is capable of, but it
includes further factors, summarized as e�ective error rate [2].

Applied to real quantum computers, a simpli�ed formula for +&
is used:+& = 2min(3,=) [7, 20], with depth 3 and width =. Cross et al.
generate squared random circuit models, such that 3 = =, and
check via a success metric called heavy output probability if more
than 2/3 of the executions are successful [7]. Then, 3 and = of the
maximum permitted circuit model are inserted as exponents and
+& is determined. Thereby, a di�erent +& value results compared
to Eq. 2. For example, if 3 = = = 6 is the size of a permitted circuit
model +& = 62 = 36 results, where the ideal case without errors is
assumed. With the simpli�ed formula the value is +& = 26 = 64.
Hence, either only one of the formulas should be used in practice, or
quantum computer vendors should explicitly declare which formula
was used to measure +& . However, Blume-Kohout and Young state
that most of the current circuits of quantum algorithms are not
of squared shapes [3]. Therefore, it is important to also consider
non-squared circuits to determine more precisely the capabilities
of a quantum computer, as one may have a small number of qubits
but supports good coherence times and error rates whereas another
is the exact opposite.

4 SIMPLE METRIC - COMPLEX FACTORS
The quantum metrics presented in Sec. 3 quantify the performance
of quantum computers by a single number. However, to get an
estimation if an arbitrary given quantum circuit is successfully
executable on a given quantum computer or not, we are focusing
on an additional quantum metric in this section.

The metric is described by a small formula which can be derived
from the work on Quantum Volume [2, 7, 18] and is discussed
in [13, 21] as a "rule of thumb":

F3 ⌧ 1
ne�

(3)

Thereby,F describes the width and 3 the depth of the circuit. ne�
is the e�ective error rate of the quantum computer, as explained
in Sec. 3 [13, 18]. Eq. 3 limits the size of a circuit depending on
the e�ective error rate of the quantum computer. If F3 ⇡ 1/ne�,
Moll et al. argue that the execution is highly probable to fail [18].
Therefore, the closerF3 gets to the value of 1/ne�, the less accurate
the result will be due to noise and resulting errors [13].

The simplicity of Eq. 3 has its pitfalls, e.g.: How is the e�ective
error rate composed? Bishop et al. and Moll et al. argue that the
e�ective error rate depends on various factors, e.g. connectivity,
number of qubits, available gate set, parallelism, gate error rates,
mapping algorithm, and quantum system complexity [2, 18]. In the

About a Criterion of Successfully Executing a Circuit in the NISQ Era: ... APEQS ’20, November 13, 2020, Virtual, USA

following, we give an overview of the individual factors and their
e�ects to show that they are highly interdependent and, currently,
di�cult to characterize individually. This hardens predicting and
modelling error behaviour [22, 29].

Gate Errors. Implementations of quantum gates are erroneous and,
therefore, can lead to incorrect qubit states when applied [29]. With
each additional operation the deviation from the correct result
increases. In particular, two-qubit gates, such as CNOT, have a
much higher probability to be erroneous during their execution than
single-qubit gates [29]. To evaluate the error rate of a gate, di�erent
metrics, such as average gate �delity [19] and diamond distance [12]
exist. But results of experiments show that these metrics do not
represent the behavior when gates are applied several times, like
in a circuit of a quantum algorithm [31].

Measurement Errors. Errors caused by measurements are not di-
rectly mentioned by [2, 18] but have a certain impact on the overall
error and on the precision of the circuit result [28]. In comparison
to quantum gates, a measurement operation introduces signi�cant
delays in which the qubit further decoheres [13]. Therefore, mea-
surements have the highest operational error rate [28].

Connectivity. Qubits of a quantum computer are often not com-
pletely connected as the realization of a graph with a two-digit
number of qubits is already hard to realize [29]. Additionally, high
connectivity may lead to unintended interactions between nearby
qubits, also known as crosstalk [17, 22]. The lack of connectivity
implies that additional SWAP gates are needed to execute a two-
qubit operation on two not directly connected qubits. This may also
cause an increase of the required number of qubits for the circuit as
additional qubits may be required for the state exchange, as shown
by [13]. Additional gates mean additional errors and an increase of
the depth of the circuit that must be taken into account [13].

Gate Set. If the gate set used in the circuit is not physically sup-
ported by the quantum computer the missing gates have to be
replaced by a subroutine of supported gates [14]. This can result
in a signi�cant increase in the number of gates and depth of the
circuit which in turn leads to additional gate error rates [13].

�bits. As the state of a qubit decoheres after a certain amount of
time due to unintended interaction with the environment, opera-
tions have to be applied before the state is too erroneous [13, 22].
Therefore, to get a meaningful outcome the depth or respectively
the execution time of the circuit should be within the coherence
time. With the combination of decoherence and crosstalk, the qubit
state can further be disrupted [22]. Beneath, e.g., depolarization, am-
plitude, and phase damping, there is the probability that qubits ac-
cidentally leave the de�ned computational state space, also known
as leakage, as they can contain further states depending on their
realization [1, 8]. A qubit loss is possible when a qubit disappears [8].

Complexity of the System. Moll et al. argue that ne� is in�uenced
by the "system complexity" including, e.g., the number of hardware
components, which increases with the number of qubits [18]. How-
ever, the term is kept very abstract and should probably describe the
di�erent constellations of noise and resulting error rates that can
occur on quantum computers. For example, with more qubits on the
hardware, general crosstalk may increase. Thereby, crosstalk can

Figure 1: Introduction of a concrete threshold forF3 ⌧ 1
ne�

.

occur when qubits are idle or operations are applied [24]. It can even
occur during state preparation, caused by the imperfect controls
and measurement processes. However, a concrete characterization
of the composition of crosstalk does not yet exist [3, 24].

Parallelism. By parallelizing the execution of mutually independent
operations on di�erent qubits as far as possible, the depth of the cir-
cuit and, thus, the execution time can be considerably reduced [13].
As a consequence, errors caused by decoherence will be reduced.

Mapping Algorithm. How the circuit is mapped to the physical
realization of the quantum computer depends on the mapping al-
gorithm of the used compiler and has a strong in�uence on the
e�ective error rate ne� [2]. Thereby, the compiler determines how
the logical qubits of the circuit are initially mapped to the phys-
ical qubits on the quantum computer [13]. It is of advantage to
place logical qubits that often share a two-qubit gate nearby on the
connectivity graph such that the number of SWAP gates is mini-
mal [29]. This process is known to be NP-hard [6, 26]. However, the
connections between qubits and the qubits itself have a changing
error rate which must be considered for �nding the shortest path
in the weighted connectivity graph [13, 29].

After the subsequent gate mapping procedure, the circuit size
has reached its peak [13]. Therefore, many of the already exist-
ing compilers use optimization algorithms to reduce the resulting
depth [27]. Thereby, the gates are parallelized as far as possible,
redundancy in gate sequences are removed, and gates with high
error rates are avoided. Future compilers may additionally consider
general errors like crosstalk to further improve the precision of the
result of a quantum circuit [17].

5 SHARPENING THE SIMPLE METRIC
A very simple metric for the "suitability" of a quantum circuit itself
is given by Eq. 3: The size of the circuit should be much less than the
multiplicative inverse of the e�ective error rate. But "much less" is
not precise, i.e. not helpful at all. It is hard to exactly determinewhen
the limit for a successful execution on a given quantum computer
is reached. Therefore, in this section we investigate the question:
How to sharpen Eq. 3 from ⌧ to <?

Eq. 3 implies, that there exists an interval]1/ne� �_, 1/ne� [with
some, yet unknown, _; if the circuit size F3 lies in this interval
the noise and resulting errors are too high such that the result
would be too imprecise, as shown with the shaded part in Fig. 1.
Therefore, multiplying 1/ne� with a factor : results in a threshold
that determines the onset of the above interval (Fig. 1): : · 1/ne� =
1/ne� � _. With this in mind, the following re�ned and sharpened
equation should hold:

APEQS ’20, November 13, 2020, Virtual, USA Marie Salm, Johanna Barzen, Frank Leymann, and Benjamin Weder

F3 < :
1
ne�

(4)

To determine concrete values for :, _, and ne�, available quantum
computers have to be benchmarked. Thereby, a wide spectrum of
circuit classes, e.g. random circuits, periodic circuits, and current
quantum algorithm circuits, as presented in [3], should be consid-
ered. Required quantum computing properties, like connectivity
graph, gate set, and coherence times of qubits, should be extracted
from collected provenance data [13]. Additionally, the depth and
width of already compiled circuits in Eq. 4 should be inserted, be-
cause during compilation the resulting depth and width can vary
greatly. Cross et al. consider sizes of non-compiled circuits, as they
want a general measure to compare quantum computers, while the
sharpened metric focuses on a more accurate feasibility estimate
for an arbitrary circuit [7].

The resulting values and metadata can then in turn be saved as
provenance data and further be reused [14]. The feasibility metric
itself can be used to re�ne the automated selection of quantum
circuits and suitable quantum computers [23].

6 CONCLUSION & FUTUREWORK
In this paper, we gave an overview of metrics for classical software
and presented performance metrics TQF and Quantum Volume
for quantum computers. Furthermore, we especially focused our
work on the metric F3 ⌧ 1

ne�
and discussed in more detail how

the quantum system, noise, and errors a�ect ne� and how this
equation can be re�ned for precise estimation, i.e. a sharp upper
limit. Finally, we presented our vision for the determination of
the metric variables via benchmarking and provenance. As a next
step, we want to realize our vision by benchmarking given quantum
computers and evaluating the validity of the re�ned quantummetric
in Eq. 4 as discussed in Sec. 5.

ACKNOWLEDGMENTS
This work was partially funded by the BMWi project PlanQK
(01MK20005N) and the DFG’s Excellence Initiative project SimTech
(EXC 2075 - 390740016).

REFERENCES
[1] Dorit Aharonov andMichael Ben-Or. 2008. Fault-Tolerant Quantum Computation

with Constant Error Rate. SIAM J. Comput. 38, 4 (2008), 1207–1282. https:
//doi.org/10.1137/S0097539799359385

[2] L. Bishop, S. Bravyi, A. Cross, J. Gambetta, J. Smolin, and March. 2017. Quantum
Volume.

[3] Robin Blume-Kohout and Kevin C. Young. 2019. A volumetric framework for
quantum computer benchmarks. arXiv:quant-ph/1904.05546

[4] Xia Cai and Michael R. Lyu. 2005. The E�ect of Code Coverage on Fault Detection
under Di�erent Testing Pro�les. In Proceedings of the 1st International Workshop
on Advances in Model-Based Testing (A-MOST ’05). Association for Computing
Machinery, 1–7. https://doi.org/10.1145/1083274.1083288

[5] Shyam R. Chidamber and Chris F. Kemerer. 1994. A metrics suite for object
oriented design. IEEE Transactions on Software Engineering 20, 6 (1994), 476–493.
https://doi.org/10.1109/32.295895

[6] Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will
Simmons, et al. 2019. On the qubit routing problem. arXiv:quant-ph/1902.08091

[7] Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M.
Gambetta. 2019. Validating quantum computers using randomized model circuits.
Phys. Rev. A 100 (2019), 032328. Issue 3. https://doi.org/10.1103/PhysRevA.100.
032328

[8] Austin G. Fowler. 2013. Coping with qubit leakage in topological codes. Phys.
Rev. A 88 (2013), 042308. Issue 4. https://doi.org/10.1103/PhysRevA.88.042308

[9] Maurice H. Halstead. 1977. Elements of software science.
[10] Brian Henderson-Sellers. 1995. Object-Oriented Metrics: Measures of Complexity.

Prentice-Hall, Inc.
[11] Joseph R. Horgan, Saul London, and Michael R. Lyu. 1994. Achieving software

quality with testing coverage measures. Computer 27, 9 (1994), 60–69. https:
//doi.org/10.1109/2.312032

[12] A Yu Kitaev. 1997. Quantum computations: algorithms and error correction.
Russian Mathematical Surveys 52, 6 (1997), 1191–1249. https://doi.org/10.1070/
rm1997v052n06abeh002155

[13] Frank Leymann and Johanna Barzen. 2020. The bitter truth about gate-based
quantum algorithms in the NISQ era. Quantum Science and Technology 5, 4 (2020),
044007. https://doi.org/10.1088/2058-9565/abae7d

[14] Frank Leymann, Johanna Barzen, Michael Falkenthal, Daniel Vietz, Benjamin
Weder, et al. 2020. Quantum in the Cloud: Application Potentials and Re-
search Opportunities. In Proceedings of the 10th International Conference on
Cloud Computing and Service Science (CLOSER 2020). SciTePress, 9–24. https:
//doi.org/10.5220/0009819800090024

[15] Rüdiger Lincke, Jonas Lundberg, and Welf Löwe. 2008. Comparing Software
Metrics Tools. In Proceedings of the 2008 International Symposium on Software
Testing and Analysis (ISSTA ’08). Association for Computing Machinery, 131–142.
https://doi.org/10.1145/1390630.1390648

[16] Thomas J. McCabe. 1976. A Complexity Measure. IEEE Transactions on Software
Engineering SE-2, 4 (1976), 308–320. https://doi.org/10.1109/TSE.1976.233837

[17] Daniel Mills, Seyon Sivarajah, Travis L. Scholten, and Ross Duncan. 2020.
Application-Motivated, Holistic Benchmarking of a Full Quantum Computing
Stack. arXiv:quant-ph/2006.01273

[18] Nikolaj Moll, Panagiotis Barkoutsos, Lev S Bishop, Jerry M Chow, Andrew Cross,
et al. 2018. Quantum optimization using variational algorithms on near-term
quantum devices. Quantum Science and Technology 3, 3 (2018), 030503. https:
//doi.org/10.1088/2058-9565/aab822

[19] Michael A Nielsen. 2002. A simple formula for the average gate �delity of
a quantum dynamical operation. Physics Letters A 303, 4 (2002), 249 – 252.
https://doi.org/10.1016/S0375-9601(02)01272-0

[20] Juan M. Pino, Jennifer M. Dreiling, Caroline Figgatt, John P. Gaebler, Steven A.
Moses, et al. 2020. Demonstration of the QCCD trapped-ion quantum computer
architecture. arXiv:quant-ph/2003.01293

[21] John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum
2 (2018), 79. https://doi.org/10.22331/q-2018-08-06-79

[22] Salonik Resch and Ulya R. Karpuzcu. 2019. Benchmarking Quantum Computers
and the Impact of Quantum Noise. arXiv:quant-ph/1912.00546

[23] Marie Salm, Johanna Barzen, Uwe Breitenbücher, Frank Leymann, Benjamin
Weder, et al. 2020. The NISQ Analyzer: Automating the Selection of Quantum
Computers for Quantum Algorithms. Communications in Computer and Informa-
tion Science (CCIS) (2020). to appear.

[24] Mohan Sarovar, Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen,
et al. 2019. Detecting crosstalk errors in quantum information processors. https:
//doi.org/10.22331/q-2020-09-11-321 arXiv:quant-ph/1908.09855

[25] Eyob A. Sete, William J. Zeng, and Chad T. Rigetti. 2016. A functional architec-
ture for scalable quantum computing. In 2016 IEEE International Conference on
Rebooting Computing (ICRC). 1–6. https://doi.org/10.1109/ICRC.2016.7738703

[26] Marcos Yukio Siraichi, Vinicius Fernandes dos Santos, Sylvain Collange, and
Fernando Magno Quintão Pereira. 2018. Qubit Allocation. In CGO 2018 - In-
ternational Symposium on Code Generation and Optimization. 1–12. https:
//doi.org/10.1145/3168822

[27] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington,
et al. 2020. t|ket�: A retargetable compiler for NISQ devices. Quantum Science
and Technology (2020). https://doi.org/10.1088/2058-9565/ab8e92

[28] Swamit S. Tannu and Moinuddin K. Qureshi. 2019. Mitigating Measurement
Errors in QuantumComputers by Exploiting State-Dependent Bias. In Proceedings
of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO ’52). Association for Computing Machinery, 279–290. https://doi.org/10.
1145/3352460.3358265

[29] Swamit S. Tannu and Moinuddin K. Qureshi. 2019. Not All Qubits Are Created
Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers.
In Proceedings of the Twenty-Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS ’19). Association
for Computing Machinery, 987–999. https://doi.org/10.1145/3297858.3304007

[30] Kurt Dean Welker. 2001. Software Maintainability Index Revisited. CrossTalk -
The Journal of Defense Software Engineering (2001).

[31] Dennis Willsch, Madita Nocon, Fengping Jin, Hans De Raedt, and Kristel
Michielsen. 2017. Gate-error analysis in simulations of quantum comput-
ers with transmon qubits. Phys. Rev. A 96 (2017), 062302. Issue 6. https:
//doi.org/10.1103/PhysRevA.96.062302

[32] S. Yu and S. Zhou. 2010. A survey on metric of software complexity. In 2010
2nd IEEE International Conference on Information Management and Engineering.
352–356.

https://doi.org/10.1137/S0097539799359385
https://doi.org/10.1137/S0097539799359385
http://arxiv.org/abs/quant-ph/1904.05546
https://doi.org/10.1145/1083274.1083288
https://doi.org/10.1109/32.295895
http://arxiv.org/abs/quant-ph/1902.08091
https://doi.org/10.1103/PhysRevA.100.032328
https://doi.org/10.1103/PhysRevA.100.032328
https://doi.org/10.1103/PhysRevA.88.042308
https://doi.org/10.1109/2.312032
https://doi.org/10.1109/2.312032
https://doi.org/10.1070/rm1997v052n06abeh002155
https://doi.org/10.1070/rm1997v052n06abeh002155
https://doi.org/10.1088/2058-9565/abae7d
https://doi.org/10.5220/0009819800090024
https://doi.org/10.5220/0009819800090024
https://doi.org/10.1145/1390630.1390648
https://doi.org/10.1109/TSE.1976.233837
http://arxiv.org/abs/quant-ph/2006.01273
https://doi.org/10.1088/2058-9565/aab822
https://doi.org/10.1088/2058-9565/aab822
https://doi.org/10.1016/S0375-9601(02)01272-0
http://arxiv.org/abs/quant-ph/2003.01293
https://doi.org/10.22331/q-2018-08-06-79
http://arxiv.org/abs/quant-ph/1912.00546
https://doi.org/10.22331/q-2020-09-11-321
https://doi.org/10.22331/q-2020-09-11-321
http://arxiv.org/abs/quant-ph/1908.09855
https://doi.org/10.1109/ICRC.2016.7738703
https://doi.org/10.1145/3168822
https://doi.org/10.1145/3168822
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1145/3352460.3358265
https://doi.org/10.1145/3352460.3358265
https://doi.org/10.1145/3297858.3304007
https://doi.org/10.1103/PhysRevA.96.062302
https://doi.org/10.1103/PhysRevA.96.062302

	Abstract
	1 Introduction
	2 Classical Software Metrics
	3 Quantum Metrics
	3.1 Total Quantum Factor
	3.2 Quantum Volume

	4 Simple Metric - Complex Factors
	5 Sharpening the simple Metric
	6 Conclusion & Future Work
	Acknowledgments
	References

