
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{salm, barzen, breitenbuecher, leymann, weder, wild}@iaas.uni-stuttgart.de

The NISQ Analyzer: Automating the Selection of
Quantum Computers for Quantum Algorithms

Marie Salm, Johanna Barzen, Uwe Breitenbücher, Frank Leymann,
Benjamin Weder, Karoline Wild

@inproceedings{Salm2020_NISQAnalyzer,
author = {Salm, Marie and Barzen, Johanna and Breitenb{\"u}cher, Uwe and

Leymann, Frank and Weder, Benjamin and Wild, Karoline},
title = {{The NISQ Analyzer: Automating the Selection of Quantum

Computers for Quantum Algorithms}},
booktitle = {Proceedings of the 14th Symposium and Summer School on

Service-Oriented Computing (SummerSOC 2020)},
pages = {66--85},
publisher = {Springer International Publishing},
month = dec,
year = 2020,
doi = {10.1007/978-3-030-64846-6_5}

}

:

Institute of Architecture of Application Systems

© Springer Nature Switzerland AG 2020
This is a post-peer-review, pre-copyedit version of an article published in
Proceedings of the 14th Symposium and Summer School on Service-Oriented
Computing (SummerSOC 2020), part of the CCIS book series. The final
authenticated version is available online at: https://doi.org/10.1007/978-3-
030-64846-6_5

The NISQ Analyzer: Automating the Selection
of Quantum Computers for Quantum Algorithms

Marie Salm[0000�0002�2180�250X], Johanna Barzen[0000�0001�8397�7973],
Uwe Breitenbücher[0000�0002�8816�5541], Frank Leymann[0000�0002�9123�259X],
Benjamin Weder[0000�0002�6761�6243], and Karoline Wild[0000�0001�7803�6386]

Institute of Architecture of Application Systems, University of Stuttgart,
Universitätsstraße 38, Stuttgart, Germany

{salm,barzen,breitenbuecher,leymann,weder,wild}@iaas.uni-stuttgart.de

Abstract. Quantum computing can enable a variety of breakthroughs
in research and industry in the future. Although some quantum algo-
rithms already exist that show a theoretical speedup compared to the
best known classical algorithms, the implementation and execution of
these algorithms come with several challenges. The input data deter-
mines, for example, the required number of qubits and gates of a quan-
tum algorithm. A quantum algorithm implementation also depends on
the used Software Development Kit which restricts the set of usable quan-
tum computers. Because of the limited capabilities of current quantum
computers, choosing an appropriate one to execute a certain implemen-
tation for a given input is a di�cult challenge that requires immense
mathematical knowledge about the implemented quantum algorithm as
well as technical knowledge about the used Software Development Kits.
In this paper, we present a concept for the automated analysis and selec-
tion of implementations of quantum algorithms and appropriate quan-
tum computers that can execute a selected implementation with a certain
input data. The practical feasibility of the concept is demonstrated by
the prototypical implementation of a tool that we call NISQ Analyzer.

Keywords: Quantum Computing · Quantum Algorithms · Hardware
Selection · Implementation Selection · Decision Support · NISQ Analyzer.

1 Introduction

Quantum computing is a promising field that may enable breakthroughs in var-
ious areas such as computer science, physics, and chemistry [25]. The unique
characteristics of quantum mechanics, such as superposition and entanglement,
are the reasons quantum computing is more powerful than classical computing
for specific problems [2,29,32]. In fact, some quantum algorithms already exist
that show a theoretical speedup over their best known classical counterparts.
For example, the Shor algorithm provides an exponential speedup in factoriz-
ing numbers [34]. With a large enough quantum computer, this algorithm could
break cryptosystems such as the commonly used RSA [29].

2 M. Salm et al.

However, there are several challenges regarding the execution of quantum
algorithms. There is a multitude of di↵erent implementations for quantum algo-
rithms that are only applicable to certain input data, e.g., in terms of the num-
ber of qubits required for its encoding. These implementations di↵er from each
other in various aspects, e.g., the required number of qubits and operations [11].
Both numbers often depend on the input data. Thus, the input data influences
whether a particular quantum algorithm implementation is executable on a cer-
tain quantum computer: If the number of required qubits or operations is higher
than the number of qubits or the decoherence time, i.e. the time the states of
qubits are stable, of the quantum computer, the implementation with the given
input cannot be executed successfully. Error rates, fidelity, and qubit connectiv-
ity of current so-called Noisy Intermediate-Scale Quantum (NISQ) computers
also play an important role in the decision [29,17].

Moreover, there is no accepted common quantum programming language [19].
As a result, most quantum computer vendors have their proprietary Software
Development Kit (SDK) for developing and executing implementations on their
quantum computers [16]. However, this tightly couples the implementation of
a quantum algorithm to a certain quantum computer. As a result, choosing an
implementation for a quantum algorithm to be executed for given input data and
selecting an appropriate quantum computer is a multi-dimensional challenge. It
requires immense mathematical knowledge about the implemented algorithm as
well as technical knowledge about the used SDKs. Hence, (i) the selection of
a suitable implementation of a quantum algorithm for a specific input and (ii)
the selection of a quantum computer with, e.g., su�cient qubits and decoherence
time is currently one of the main problems of quantum computing in practice.

In this paper, we present the concept of the NISQ Analyzer for analyzing and
selecting (i) an appropriate implementation and (ii) suitable quantum computers
based on the input data for a chosen quantum algorithm. The approach is based
on defined selection criteria for each implementation described as first-order
logic rules. Rule-based selection mechanisms have been established as proven
principles and concepts [21]. We consider the number of required qubits of the
implementation and the number of qubits of eligible quantum computers, while
vendor-specific SDKs are also heeded. In addition, the number of operations of
an implementation is determined and the corresponding decoherence times of
the di↵erent quantum computers are considered. To determine the number of
qubits and operations of an implementation, hardware-specific transpilers, e.g.,
provided by the vendors, are used. For demonstrating the practical feasibility
of the proposed NISQ Analyzer, a prototypical implementation is presented. It
is designed as a plug-in based system, such that additional criteria, e.g., error
rates, fidelity, or qubit connectivity, can be added.

The paper is structured as follows: Section 2 introduces the fundamentals,
current challenges, and the problem statement. Section 3 shows an overview
of our approach. Section 4 presents the overall system architecture. Section 5
presents the prototypical implementation and our validation. Section 6 discusses
related work. Section 7 concludes the paper and presents future work.

The NISQ Analyzer 3

2 Background, Challenges and Problem Statement

In this section, we introduce the fundamentals and current challenges when us-
ing quantum computers during the Noisy Intermediate-Scale Quantum (NISQ)
era [29]. Afterward, quantum algorithms and the current state of their imple-
mentations are presented. Finally, we formulate the problem statement and the
resulting research question of this paper.

2.1 Quantum Computers and NISQ Era

Instead of working with classical bits, quantum computers, or more precisely
Quantum Processing Units (QPUs), use so-called qubits [26]. As classical bits
can only be in one of the two states 0 or 1, qubits can be in both states at
the same time [26,32]: A unit vector in a two-dimensional complex vector space
represents the state of a qubit [26]. Operators applied to these vectors are uni-
tary matrices. Qubits interact with their environment, and thus, their states
are only stable for a certain time, called decoherence time [7,26,32]. The re-
quired operations have to be applied in this time frame to get proper results
from computations. Furthermore, di↵erent quantum computing models exist,
e.g., one-way [30], adiabatic [1], and gate-based [26]. In this paper, we only con-
sider the gate-base quantum computing model, as many of the existing quantum
computers, e.g., from IBM1 and Rigetti2, base on this model [16]. Thereby, gates
represent the unitary operations. Combined with qubits and measurements they
form a quantum circuit [26]. Such quantum circuits are gate-based representa-
tions of quantum algorithms. The number of gate collections to be sequentially
executed defines the depth of a quantum circuit. Within such a collection, called
layer, gates are performed in parallel. The number of qubits defines the width
of the circuit. Both properties determine the required number of qubits and the
minimum decoherence time a suitable quantum computer has to provide.

Each quantum computer has a set of physically implemented gates [32]. How-
ever, the sets of implemented gates di↵er from quantum computer to quan-
tum computer. Thus, to create quantum circuits for specific problems, non-
implemented gates must be realized by a subroutine of available gates of the
specific quantum computer [19]. The substitution of non-implemented gates by
subroutines is done by the hardware-specific transpiler of the vendor. Therefore,
the transpiler maps the gates and qubits of the circuit to the gate sets and qubits
of the regarded quantum computers. The resulting transpiled circuit may have a
di↵erent depth and width from the circuit. Especially the resulting depth of the
transpilied circuit can di↵er greatly between di↵erent quantum computers [17].
The mapping process is known to be NP-hard [8,36]. Thus, transpiling the same
circuit several times can lead to slightly di↵erent values of width and depth and
depends on the mapping algorithm of the transpiler.

Today’s quantum computers only have a few qubits and short decoherence
times [41]. Further, high error rates limit the number of operations that can

1https://www.ibm.com
2https://www.rigetti.com

https://www.ibm.com
https://www.rigetti.com

4 M. Salm et al.

be executed before the propagated error makes the computation too erroneous
on these quantum computers. However, it is assumed that quantum computers
will have up to a few hundred qubits and can perform thousands of operations
reliably soon3,4 [29]. But these qubits will be error-prone as the correction of
such errors requires many more qubits [25,29].

Challenge I : There are a variety of quantum computers that are di↵erent
regarding their number of qubits, their decoherence time, and their set of phys-
ically implemented gates. Therefore, there is serious heterogeneity of available
quantum computers, and not every quantum algorithm implementation can
be executed on every quantum computer.

2.2 Quantum Algorithms and Implementations

Many quantum algorithms show a theoretical speedup over their best known
classical counterparts. The number of required qubits and operations for the
execution of quantum algorithms often depends on the input data. For exam-
ple, the Shor algorithm requires 2n qubits for factorizing the integer N with a
binary size of n [11]. Some implementations require additional qubits for exe-
cuting the algorithm. For example, Quantum Phase Estimation (QPE) [27] for
computing the eigenvalues of a unitary matrix, needs in many of the existing
implementations additional qubits to define the precision of the result. There are
also implementations that can only process limited input data. Thus, selecting
an appropriate quantum computer to execute a certain quantum algorithm not
only depends on the mathematics of the algorithm itself, but also on the physical
requirements of its implementations.

In addition, current implementations of quantum algorithms are tightly cou-
pled to their used SDKs. Vendors like IBM and Rigetti o↵er their proprietary
SDKs for their quantum computers, called Qiskit5 and Forest6, respectively.
There are also SDKs that support quantum computers of multiple vendors, e.g.,
ProjectQ [38] or XACC [22]. Nonetheless, most of the SDKs only support quan-
tum computers of a single vendor for executing quantum circuits [16]. Further-
more, implementations are not interchangeable between di↵erent SDKs because
of their di↵erent programming languages and syntax. As a result, most of the
developed implementations are only executable on a certain set of quantum com-
puters provided by a specific vendor.

Challenge II : An implementation of a quantum algorithm implies physical
requirements on a quantum computer. In addition, an implementation usually
depends on the used SDK.

3https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
4https://ionq.com/news/october-01-2020-most-powerful-quantum-computer
5https://qiskit.org
6http://docs.rigetti.com/en/stable/

https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
https://ionq.com/news/october-01-2020-most-powerful-quantum-computer
https://qiskit.org
http://docs.rigetti.com/en/stable/

The NISQ Analyzer 5

2.3 Problem Statement

In this section, we summarize the challenges presented before and formulate
the research question regarding the selection of quantum computers capable
of executing a quantum algorithm for certain input data. For executing a cer-
tain quantum algorithm for given input data, the user has to consider di↵erent
aspects regarding available quantum algorithm implementations and quantum
computers. First, the user has to find manually a suitable implementation of the
quantum algorithm that can process the desired input. With the chosen quantum
algorithm implementation, the user has to select a suitable quantum computer
that can execute the implementation. Thereby, the heterogeneity of quantum
computers, with their di↵erent qubit counts, decoherence times, and available
gate sets, has to be taken into account (Challenge I). Additionally, the math-
ematical, physical, and technical requirements on the quantum computer and
the used SDK of the implementation have to be considered for the quantum
computer selection (Challenge II). Thus, the selection of quantum algorithm
implementations and suitable quantum computers requires an immense manual
e↵ort and su�cient knowledge on the user side. Hence, the resulting research
question can be formulated as follows:

Problem Statement : How can the selection of the quantum algorithm im-
plementation and the suitable quantum computer be automated based on a
certain input data of the chosen quantum algorithm?

3 Analysis and Selection Approach

In this section, we introduce our concept of a NISQ Analyzer, which enables an
automated analysis and selection of quantum algorithm implementations and
quantum computers depending on the chosen quantum algorithm and input
data. Fig. 1 depicts an overview of the approach. First, a quantum algorithm is
selected. Second, implementations of the algorithm are analyzed and selected.
Third, quantum computers are analyzed and selected. Finally, the selected im-
plementation is executed on the suitable quantum computer. In the following,
the individual phases are described in detail.

3.1 Algorithm Selection

In the (1) Algorithm Selection phase, the user selects one of the provided quan-
tum algorithms for solving a particular problem, e.g., the Shor algorithm for
factorization as shown in Fig. 1. Thus, a repository with a set of descriptors
of di↵erent quantum algorithms is provided, as proposed by [18]. The selected
quantum algorithm and the input data serves as input for the analysis and se-
lection phase. In the example, the user wants to factorize 9, thus, N = 9.

6 M. Salm et al.

Algorithm Selection Analysis & Selection Execution

Shor

Implementation
Selector

Algorithm Repository

Shor
Input: N
Output: F

N = 9

Shor-G-
Forest

Input: N
Output: F
SDK: Qiskit

Quantum Computer
Selector

Implementation Repository Quantum Computer Repository

Shor-15-Qiskit
Input: N : Int
Output: F : Int[]
SDK: Qiskit

Selection Rules:
0 ≤ N ≤ 15 ∧ …

15 ≥ Width(Shor-15-Qiskit)
∧ 64 ≥ Depth(Shor-15-Qiskit)
∧ SDK = Qiskit ?

N <= 15?0 ≤ 9 ≤ 15 ?

N = 9,
QPU = IBMQ_16,
Vendor = IBM

Executor

Shor-15-
Qiskit

Input: N
Output: F
SDK: Qiskit

IBMQ

Rigetti

…

Shor-15-
Qiskit

Input: N
Output: F
SDK: Qiskit

IBMQ

Shor-
15-

Qiskit

Output:
F = [3]

1 4

IBMQ_16
Qubits: 15
SDK: Qiskit
Vendor: IBM
maxDepth = 32

Quantum ComputerAlgorithm Implementation2 3

NISQ Analyzer

Fig. 1. Approach for automated selection of implementations and quantum computers.

3.2 Algorithm Implementation Analysis and Selection

In the (2) Algorithm Implementation Analysis and Selection phase, available
implementations of the selected quantum algorithm are browsed to identify ap-
plicable implementations that can process the input. Therefore, a repository
containing descriptors of di↵erent implementations is provided. The descriptors
include metadata, such as input and output parameters, and the required SDK.
For the identification, selection rules described by first-order logic are attached
to the implementations. A rule describes the restrictions for the input data of
the respective implementation. The selection rules of the considered implemen-
tations are evaluated based on the input data. As exemplary shown in Fig. 1,
the selection rule for the implementation Shor-15-Qiskit is defined as follows:

y 2 I8n 2 N9l0, l1 2 N : (InputRange(l0, l1, y) ^GreaterEquals(n, l0)

^ SmallerEquals(n, l1)) , Processable(n, y)
(1)

Thereby, y = Shor-15-Qiskit is in the set of implementations I and n is the
input data, e.g. n = N = 9. InputRange(l0, l1, y) describes the range of pro-
cessable input data of y, e.g., l0 = 0 and l1 = 15 for lower and upper bound.
GreaterEquals(n, l0) defines ”n � l0” and SmallerEquals(n, l1) defines ”n  l1”,
such that n has to be between 0 and 15. This is all true if and only if Pro-
cessable(n, y) is true and, thus, Shor-15-Qiskit can process n = N = 9. The
selection rule is implementation-specific and has to be defined by the developer.
All implementations that can process n are considered in the next phase.

The NISQ Analyzer 7

3.3 Quantum Computer Analysis and Selection

In the (3) Quantum Computer Analysis and Selection phase, appropriate quan-
tum computers are identified for the considered implementations. Therefore, the
width and depth of the implementations are analyzed and compared with the
number of qubits and the estimated maximum depths provided by the avail-
able quantum computers. Thus, a corresponding repository with the properties
of given quantum computers is provided, as presented in Fig. 1. The estimated
maximum depth of a specific quantum computer is determined by dividing the
average decoherence time of the supported qubits through the maximum gate
time [33]. The width and depth of the implementation with the input data on
the considered quantum computer are determined by using the hardware-specific
transpiler. The supported transpilers are wrapped as a service. Additionally, the
SDKs used by the implementations and the SDKs supporting the quantum com-
puters are considered. The general rule for selecting a suitable quantum computer
for a particular implementation is defined as follows:

8x 2 Q8y 2 R ✓ I9s 2 S9q0, q1, d0, d1 2 N :

(Qubits(q0, x) ^Qubits(q1, y) ^GreaterEquals(q0, q1)

^Depth(d0, x) ^Depth(d1, y) ^GreaterEquals(d0, d1)

^ Sdk(s, x) ^ Sdk(s, y)) , Executable(y, x)

(2)

Thereby, x is a quantum computer of the set of available quantum computers Q,
e.g., IBMQ 16. y is an implementation of the set of remaining implementations
R ✓ I. Qubits(q0, x) defines the provided number of qubits q0 of x. Qubits(q1, y)
defines the required number of qubits, or the width, q1 of y. GreaterEquals(q0, q1)
defines that ”q0 � q1” to ensure that the quantum computer x does not have
less qubits than required by y. Depth(d0, x) defines the maximum depth d0 ex-
ecutable by x. Depth(d1, y) defines the depth d1 of the transpiled circuit of y.
GreaterEquals(d0, d1) defines that ”d0 � d1”, such that the maximum executable
depth of the quantum computer x is not smaller than required by the implemen-
tation y. Furthermore, the SDK s 2 S, e.g. Qiskit, used by the implementation,
defined by Sdk(y, s), must also support the selected quantum computer, de-
fined by Sdk(x, s), to ensure their compatibility. This all is true, if and only if
Executable(y, x) is true. In the example in Fig. 1, IBMQ 16 can execute Shor-
15-Qiskit. If more than one executable implementation remains, the user decides
which one to execute. Furthermore, the user also decides, in case, more than one
quantum computer can execute the chosen implementation.

3.4 Execution

In the (4) Execution phase, the selected implementation is executed by the se-
lected quantum computer, as seen in Fig. 1. The Executor supports the di↵erent
SDKs and can be extended by further plug-ins. Thereby, the required SDK, e.g.
Qiskit, is used to deliver the quantum circuit to the specific vendor via the cloud.
Eventually, the result is returned and displayed to the user.

8 M. Salm et al.

IBMQ

Selection Rules
Algorithms,

Implementations,
QPUs, SDKs

NISQ Analyzer

Qiskit Service

REST API

Results

REST API

User Interface Rigetti

1

2

Rule Handler Selector
Transpiler

Executor
Worker1

Workern
...

Forest Service

REST API

Transpiler

Executor

Connector

Fig. 2. System architecture for automated analysis and selection.

4 System Architecture

In this section, we introduce the overall system architecture, as shown in Fig. 2.
It comprises a User Interface (UI), the NISQ Analyzer, and Services wrapping
the transpilation and execution logic of, e.g., vendor-specific SDKs. The NISQ
Analyzer provides a HTTP REST API used by the UI. The Rule Handler compo-
nent, which is part of the NISQ Analyzer, generates, adds, updates, and accesses
the selection rules defined in Sec. 3. The Selector component identifies suitable
implementations and quantum computers dependent on the selected quantum
algorithm and input data by invoking the Rule Handler and the Services. The de-
scriptors containing the metadata about algorithms, implementations, quantum
computers, and SDKs are stored in a respective repository. A Service invokes the
hardware-specific Transpiler and Executor of a specific SDK. For example, the
Qiskit Service transpiles and executes Qiskit implementations on quantum com-
puters provided via the cloud on IBMQ7. Each Service provides its own HTTP
REST API. A Results repository stores analysis and execution results.

To start the analysis and selection, the user selects the desired quantum
algorithm and provides the input data using the UI. The Selector invokes the
Rule Handler to evaluate which implementations of the quantum algorithm can
process the input. Therefore, the selection rules defined by the developers are
stored in a repository. For determining the width and depth of an implementation
on a certain quantum computer, the Selector calls the Transpiler of the required
Service using the Connector (see (1) in Fig. 2). The resulting values are returned
to the Selector and passed to the Rule Handler for evaluating the quantum
computer selection rule defined in Sec. 3. The invocation of the transpiler and the
evaluation of the general selection rule is performed for each supported quantum
computer. With the analysis results presented by the UI, the user selects an
implementation and a recommended quantum computer for execution. Next,
the NISQ Analyzer invokes the Executor of the specific Service to deliver the
implementation to the specific vendor, e.g. IBMQ (see (2) in Fig. 2). Finally, the

7https://quantum-computing.ibm.com

https://quantum-computing.ibm.com

The NISQ Analyzer 9

Service returns the result to the user. Since multiple transpiler and execution
frameworks exist, further Services providing a HTTP REST API and the defined
interface can be implemented and invoked by the NISQ Analyzer. On the side of
the NISQ Analyzer, the Uniform Resource Locators (URLs) of further Services
have to be passed as configuration parameters.

5 Prototype and Validation

In this section, we present our prototypical implementation of the NISQ Ana-
lyzer, the UI, and, as a proof of concept, the Qiskit Service. For the validation
of our approach, three use cases are presented. Afterward, we discuss the limi-
tations of our prototype.

5.1 Prototype

The prototypical UI of the NISQ Analyzer, as shown in Fig. 2, is implemented in
TypeScript. The NISQ Analyzer8 is implemented in Java using the Spring Boot
framework. The descriptors of available quantum computers, SDKs, quantum
algorithms, and implementations, as well as the analysis and execution results,
are stored in a relational database.

Rule Handling & Selection with Prolog For the implementation of the
first-order logic rules presented in Sec. 3, we use the logic programming language
Prolog. For handling Prolog programs, the NISQ Analyzer uses the library and
interpreter of SWI-Prolog9. The program logic in Prolog is expressed by facts
and rules. For computations, facts and rules are queried and evaluate to true
or false. A fact is, e.g., ”providesQubits(ibmq 16, 15).”. It defines that the
number of qubits provided by ibmq 16 is 15. Querying facts always evaluates
to true. For the implementation selection, the required rules are defined by the
developers and queried with the input data of the user. For the selection of
suitable quantum computers, the general rule is defined as follows:

executable(CircuitWidth, CircuitDepth, Implementation, Qpu) :-
providesQubits(Qpu, ProvidedQubits),
ProvidedQubits >= CircuitWidth,
t1Time(Qpu, T1Time),
maxGateTime(Qpu, GateTime),
CircuitDepth =< T1Time/GateTime,
requiredSdk(Implementation, Sdk),
usedSdk(Qpu, Sdk).

8https://github.com/UST-QuAntiL/nisq-analyzer
9https://www.swi-prolog.org

https://github.com/UST-QuAntiL/nisq-analyzer
https://www.swi-prolog.org

10 M. Salm et al.

The general rule is applied on the facts that are automatically generated
based on the metadata of implementations and quantum computers. The fact
providesQubits defines the number of qubits supported by the considered quan-
tum computer. The number of qubits is compared to the width of the considered
implementation by ProvidedQubits >= CircuitWidth. The facts t1Time and
maxGateTime define the decoherence time and the maximum gate time of the
quantum computer to compare the estimated maximum depth with the depth
of the implementation: CircuitDepth =< T1Time/GateTime. requiredSdk de-
fines the SDK of the implementation. This has to match with usedSdk which
specifies the SDK supporting the specific quantum computer. The general rule
evaluates to true, if the properties of the implementation match the properties
of the considered quantum computer.

Transpilation & Execution Service The Qiskit Service10 is implemented in
the programming language Python. For transpiling and executing an implemen-
tation on a specific quantum computer, the Python module of the Qiskit SDK11

is used. Qiskit supports the quantum computers of IBMQ. For transpilation, the
NISQ Analyzer examines if the implementation and the quantum computer is
supported by Qiskit. This reduces the number of invocations of the Qiskit Service
and improves the performance of the overall system. Then, the NISQ Analyzer
sends a HTTP request to the Qiskit Service. The request contains the source
code location of the implementation, the name of the quantum computer, and
the input data of the user. The Qiskit Service retrieves the source code, passes
the input data, and transpiles the resulting quantum circuit of the implementa-
tion. Thereby, the transpilation process is done locally. The corresponding HTTP
response of the Qiskit Service contains the width and depth of the transpiled
quantum circuit. The transpiler supports several optimization levels12. For our
prototype, the light optimization level is used. Higher optimization levels require
more classical compute resources and, therefore, more computing time. However,
they may further reduce the depth and width of a quantum circuit.

For executing an implementation on a quantum computer, e.g. at IBMQ,
jobs are put in queues. Thus, the response of IBMQ containing the execution
result is delivered asynchronously. Therefore, execution requests of the NISQ
Analyzer are received by the Qiskit Service via HTTP and then placed in a
queue using Redis Queue13. With several Workers listening on the queue, mul-
tiple implementations can be executed in parallel, see Fig. 2. The corresponding
HTTP response contains the content location of the long-running task, where the
execution result is later provided by a relational database of the Qiskit Service.

10https://github.com/UST-QuAntiL/qiskit-service
11https://github.com/Qiskit
12https://qiskit.org/documentation/stubs/qiskit.compiler.transpile.html
13https://python-rq.org

https://github.com/UST-QuAntiL/qiskit-service
https://github.com/Qiskit
https://qiskit.org/documentation/stubs/qiskit.compiler.transpile.html
https://python-rq.org

The NISQ Analyzer 11

5.2 Case Studies for Validation

For validating our approach, three quantum algorithms and exemplary imple-
mentations are considered as use cases. The implementation selection rules eval-
uated by the NISQ Analyzer, the results of the transpiler, and the resulting
recommendations of the NISQ Analyzer are presented in the following. The first
considered quantum algorithm is Simon’s algorithm for the distinction of two
function classes [35]. The second algorithm is the Grover algorithm for searching
an item in an unsorted list [9,31]. The third is the Shor algorithm for factorizing
an integer with exponential speedup [34]. For each algorithm, implementations
using the Qiskit SDK are provided in our GitHub repository14. Thereby, the con-
sidered general implementations use functions provided by Qiskit15 for automat-
ically generating quantum circuits dependent on the input data. For validation,
the quantum computers ibmq 16 melbourne [12], supporting 15 qubits and a cal-
culated maximum depth of 32 levels, and the ibmq 5 yorktown [13], supporting
5 qubits and a calculated maximum depth of 96 levels, of IBMQ are considered.
In addition, the IBMQ quantum computer simulator ibmq qasm simulator, sim-
ulating 32 qubits, is considered. The simulator is not restricted in its maximum
depth. The properties of the quantum computers are accessible by the Qiskit
SDK16. We group the simulator and the quantum computers as backends.

Simon’s Algorithm A function f : {0, 1}n ! {0, 1}n exists with f(x1) = f(x2)
if x1 = x2 � s, whereby s 2 {0, 1}n [24,35]. If s = 0n, the function f is a one-to-
one mapping from source to target set, otherwise it is a one-to-two mapping [24].
The secret string s has to be found with a minimum number of function calls
by a quantum computer. Such black box functions are often called oracles [32].
A sample general implementation for Simon’s Algorithm is simon-general-qiskit.
The input data is s which defines the oracle for the resulting quantum circuit. As
required by the specific oracle-generating function17 used, the length of s has to
be a power of two. Thus, the implementation selection rule is defined as follows:

processable(S, simon-general-qiskit) :-
S =~ ’^[01]+$’,
atom_length(S, X), X is X /\ (-X).

simon-general-qiskit is the name of the respective implementation. First,
the rule body specifies a regular expression for the non-empty secret string S such
that it only contains the characters 0 or 1. The second line counts the length of
S and evaluates if it is a power of two. Therefore, the bit-wise AND operation
with the two’s complement of the length of S is used. Valid input data for S are
shown in Table 1. To determine if processable evaluates to true for a certain
input, e.g. ’0110’, the NISQ Analyzer evaluates such Prolog rules as follows:

14https://github.com/UST-QuAntiL/nisq-analyzer-content
15https://qiskit.org/documentation/apidoc/qiskit.aqua.algorithms.html
16https://quantum-computing.ibm.com/docs/manage/account/ibmq
17https://qiskit.org/documentation/stubs/qiskit.aqua.components.

oracles.TruthTableOracle.html

https://github.com/UST-QuAntiL/nisq-analyzer-content
https://qiskit.org/documentation/apidoc/qiskit.aqua.algorithms.html
https://quantum-computing.ibm.com/docs/manage/account/ibmq
https://qiskit.org/documentation/stubs/qiskit.aqua.components.oracles.TruthTableOracle.html
https://qiskit.org/documentation/stubs/qiskit.aqua.components.oracles.TruthTableOracle.html

12 M. Salm et al.

?- processable(’0110’, simon-general-qiskit).

Depending on the backend, Table 1 shows the width and depth of the tran-
spiled simon-general-qiskit implementation. The resulting values show a cor-
relation to the length of s. Quantum computers marked with * in Table 1 do not
support the required number of qubits or maximum depth for execution. Thus,
they are excluded by the general selection rule defined in 5.1 and are not recom-
mended by the NISQ Analyzer. For the input ’1111111100000000’, the required
number of qubits is higher than the provided number of ibmq 5 yorktown. The
transpiler denies the transpilation and provides no result.

Input Width Depth Backend

01
2 4 ibmq qasm simulator
2 4 ibmq 5 yorktown
2 4 ibmq 16 melbourne

0110
3 8 ibmq qasm simulator
3 26 ibmq 5 yorktown
3 39 ibmq 16 melbourne*

1000
3 6 ibmq qasm simulator
3 15 ibmq 5 yorktown
3 23 ibmq 16 melbourne

1111
3 12 ibmq qasm simulator
3 48 ibmq 5 yorktown
3 74 ibmq 16 melbourne*

10110010
5 52 ibmq qasm simulator
5 81 ibmq 5 yorktown
5 132 ibmq 16 melbourne*

11111111
00000000

7 196 ibmq qasm simulator
� � ibmq 5 yorktown*
7 471 ibmq 16 melbourne*

Table 1. Analysis results of the Qiskit transpiler for simon-general-qiskit.

Grover Algorithm The Grover algorithm searches an item in an unsorted
list of M items with a quadratic speedup compared to classical search algo-
rithms [9,14]. The input for the algorithm is a Boolean function that defines the
searched item [32]. For the computation, briefly, superposition of allM items and
amplitude amplification is used to measure the searched item on a quantum com-
puter. The Grover algorithm can also be used to solve the Boolean satisfiability
problem (SAT). The input for the sample implementation grover-general-sat-
qiskit are Boolean formulas, as shown in Table 2. Therefore the selection rule
used by the NISQ Analyzer can be defined as follows:

The NISQ Analyzer 13

processable(Formula, grover-general-sat-qiskit) :-
Formula =~ ’^[0-9A-Za-z|&()~^]+$’.

The regular expression matches all alphanumerical characters, round brack-
ets, and logical operators in the required format. ”|” defines a logical OR. ”&”
specifies a logical AND. ”~” is a NOT and ”^” a XOR. Additionally, Formula
has to be non-empty. Width and depth of the transpiled grover-general-sat-
qiskit implementation for valid formulas are presented in Table 2. It shows
that more complex Boolean formulas require more resources. For each input,
ibmq 16 melbourne is excluded (marked with *). It has enough qubits, but the
required depth is already too high and, therefore, the NISQ Analyzer does not
recommend the quantum computer.

Input Width Depth Backend

(A _B) ^ (A _ ¬B)
^(¬A _B)

7 29 ibmq qasm simulator
7 150 ibmq 16 melbourne*

(A _B _ ¬C) ^ (¬A _B _ C)
^(¬A _ ¬B _ ¬C)

8 103 ibmq qasm simulator
15 296 ibmq 16 melbourne*

(¬A _ ¬B _ ¬C)
^(¬A _B _ C) ^ (A _ ¬B _ C)
^(A _B _ ¬C) ^ (A _ ¬B _ ¬C)

12 173 ibmq qasm simulator

15 526 ibmq 16 melbourne*

Table 2. Analysis results of the Qiskit transpiler for grover-general-sat-qiskit.

Shor Algorithm The input for the Shor algorithm is an odd integer N = pq,
where p and q are the searched prime factors [14]. Part of the algorithm is the
computation of the period of a function by a quantum computer [31]. Therefore,
superposition and the Quantum Fourier Transform (QFT), a quantum variation
of the classical Discrete Fourier Transform (DFT), is used to measure the period.
By further post-processing with the Euclidean algorithm on classical computers,
the searched prime factors can be obtained [32]. The first considered implemen-
tation of the Shor algorithm is shor-general-qiskit [3]. It can process all odd
integers greater than 2. Therefore, the rule for the implementation selection of
the NISQ Analyzer is defined as follows:

processable(N, shor-general-qiskit) :- N > 2, 1 is mod(N, 2).

Transpiling the shor-general-qiskit implementation with several demonstra-
tive valid input data results in extremely high depths, as presented in Table 3. As
none of the considered quantum computers can compute such quantum circuits,
only the ibmq qasm simulator is recommended by the NISQ Analyzer.

14 M. Salm et al.

Input Width Depth Backend

3 10 2401 ibmq qasm simulator
9 18 15829 ibmq qasm simulator
15 18 14314 ibmq qasm simulator
21 22 27515 ibmq qasm simulator
33 26 48503 ibmq qasm simulator
35 26 49139 ibmq qasm simulator
39 26 48379 ibmq qasm simulator

Table 3. Analysis results of the Qiskit transpiler for shor-general-qiskit.

In comparison, an exemplary fix implementation of the Shor algorithm is
shor-fix-15-qiskit18. It only factorizes N = 15, as it implements a concrete quan-
tum circuit. Thus, the implementation itself does not assume any input data.
The attached rule for the implementation selection is defined as follows:

processable(N, shor-fix-15-qiskit) :- N is 15.

Transpiling shor-fix-15-qiskit for all considered backends results in small val-
ues of width and depth, as shown in Table 4. In contrast to the general imple-
mentation, each of the backends can execute shor-fix-15-qiskit according to the
NISQ Analyzer with the limitation that only the input N = 15 can be processed.

Input Width Depth Backend

15 3 5 ibmq 5 yorktown
15 4 11 ibmq 16 melbourne
15 5 5 ibmq qasm simulator

Table 4. Analysis results of the Qiskit transpiler for shor-fix-15-qiskit.

5.3 Discussion and Limitations

Currently, the prototype of our approach only supports implementations for
Qiskit and quantum computers of IBMQ. Thus, only implementations using
Qiskit can be transpiled and considered for the quantum computer selection.
However, our plug-in based system supports extensibility for further SDKs. For
transpiling and executing given implementations by the Qiskit Service, the re-
sulting quantum circuits are returned from the source code. Furthermore, the
response time of the NISQ Analyzer depends on the response time of the transpi-
lation process. Especially general implementations, such as shor-general-qiskit,

18https://quantum-circuit.com/app_details/HYLMtcuK6b7uaphC7

https://quantum-circuit.com/app_details/HYLMtcuK6b7uaphC7

The NISQ Analyzer 15

are computationally intensive as the circuit is constructed after passing the re-
quired input data. As each implementation that can process a given input is
transpiled for each backend, this could result in performance issues - especially
with an increasing set of di↵erent quantum computers. Therefore, one approach
is to define lower bounds for width and depth. For example, the lower bounds
for the shor-fix-15-qiskit implementation could be determined by counting the
number of qubits, which is 5, and the number of gate layers, which is 7, of the
original circuit. But, as shown in Table 4, both values can be smaller depend-
ing on the target backend. This results from the hardware-specific optimization
functionalities of the transpiler. Thus, pre-filtering the set of quantum computers
by defined lower bounds of width and depth could result in excluding suitable
quantum computers. Dividing the average decoherence time of all qubits by the
maximum gate time to determine the maximum depth of a quantum computer
can only be considered as a rough estimate [33]. Currently, no further functional
or non-functional requirements, such as costs, execution time, and quality of
qubits, are considered. Thus, the user has to select the desired solution if more
than one suitable implementation or backend is recommended. If no implemen-
tation or backend suits the input data, no recommendation is given.

As the definition of Prolog rules for the implementation selection have to be
provided by the developer, knowledge in logic programming and the implementa-
tion itself is required. Nevertheless, the defined rules enable the automated selec-
tion of suitable implementations for other users. Furthermore, Prolog does only
support Horn clauses, which are formulas in conjunctive normal form (CNF).
Horn clauses contain at most one positive literal. For example, a formula of type
(A ^ B , C), as concretely defined in Sec. 3, is equivalent to the Horn clause
(¬A _ ¬B _ C) ^ (A _ ¬C) ^ (B _ ¬C). Negating A or B leads to a formula
with more than one positive literal which is not a Horn clause. To prevent this
limitation, the closed-world assumption and the negation as failure inference rule
are assumed. Since the system generates or provides all required data, we can
expect that the closed-world assumption holds true.

6 Related Work

For the comparison of di↵erent quantum computers, several metrics were devel-
oped, such as quantum volume [5] or total quantum factor (TQF) [33]. Addition-
ally, several benchmarks for the quantification of the capabilities of quantum
computers were proposed [2,4]. However, these metrics only give a rough com-
parison of the capabilities of the regarded quantum computers. They do not
consider the aspects of specific quantum algorithms. Hence, selecting the quan-
tum computer with the highest score independent of the quantum algorithm and
the input data does not always lead to a suitable decision.

Suchara et al. [40] introduce the QuRE Toolbox, a framework to estimate
required resources, such as qubits or gates, to execute a quantum algorithm
on quantum computers of di↵erent physical technologies. Thereby, the quantum
algorithm description is used as input for resource estimation. Additionally, they

16 M. Salm et al.

consider error-correction. Thus, they approximate the number of additional gates
and qubits required to compare the e�ciency of di↵erent error-correction codes in
diverse setups. However, their focus is on building a suitable quantum computer,
not on selecting an existing one. Therefore, they do not consider the current set
of di↵erent quantum computers, their supporting SDKs, and their limitations.

Sivarajah et al. [37] present the quantum software development platform
t|keti. It supports implementations of several quantum programming languages
and their execution on quantum computers of di↵erent vendors. For cross-compi-
lation an intermediate representation is used. Their internal compiler optimizes
given implementations in several phases and maps them to the architecture of the
desired quantum computer. Before execution, it is validated if an implementation
is executable on the selected quantum computer. Thereby, the used gate set,
the required number of qubits and the required connection between the qubits
is compared with the properties of the quantum computer. However, they do
not estimate the maximum depth of the supported quantum computers and,
therefore, do not compare it to the depth of an implementation. Additionally,
they do not support the recommendation of suitable quantum computers as their
scope is the cross-compilation and optimization of implementations.

Furthermore, JavadiAbhari et al. [15] estimate and analyze required resources
of implementations in their compilation framework Sca↵CC. Thereby, they track
width and depth, the number of gates, and the interaction between qubits. How-
ever, their work focuses on hardware agnostic compilation and optimization and,
therefore, does not recommend suitable quantum computers.

Also in other domains approaches for decision support exist. In cloud com-
puting, di↵erent approaches for automating the service and provider selection
are presented. Zhang et al. [43] propose an approach to map user requirements
automatically to di↵erent cloud services and their suited configuration using
a declarative language. Han et al. [10] introduce a cloud service recommender
system based on quality of service requirements. Strauch et al. [39] provide a
decision support system for the migration of applications to the cloud. For Ser-
vice Oriented Architecture (SOA), decision models are introduced to support the
design of application architectures [44,45]. Manikrao et al. [20] propose a service
selection framework for web services. It semantically matches functional and non-
functional requirements of the service providers and the user and recommends
based on previous user feedback. Brahimi et al. [6] present a proposal for recom-
mending Database Management Systems (DBMSs) based on the requirements of
the user. However, none of these systems include quantum technologies and their
special characteristics, such as the limited resources of quantum computers or
the varying requirements of quantum algorithms dependent on the input data.

7 Conclusion and Future Work

In this paper, we presented the concept of a NISQ Analyzer. It analyzes and
selects (i) an appropriate algorithm implementation and (ii) a suitable quantum
computer for executing a given quantum algorithm and input data by means

The NISQ Analyzer 17

of defined selection rules. Thereby, the width and depth of the implementations
are dynamically determined using hardware-specific transpilers and are com-
pared with the properties of available quantum computers. Implementations of
quantum algorithms are tightly coupled to the used SDKs. Thus, the compatibil-
ity between the SDK used by the implementation and the SDK supporting the
quantum computer has to be considered. The selected implementation is then
sent to the corresponding quantum computer for execution.

The implemented NISQ Analyzer will be part of a platform for sharing and
executing quantum software as proposed in [18,19]. It is currently realized by the
project PlanQK19. As part of PlanQK, we plan to use established deployment au-
tomation technologies to automate the deployment of quantum algorithms [42].
In the future, we want to analyze the source code of implementations to consider
further properties, such as error rates, fidelity, and qubit connectivity. We also
plan to implement further services to support additional vendors of quantum
computers and hardware-specific transpilers. In addition, we plan to determine
and develop further metrics for a more precise analysis and selection of im-
plementations and quantum computers. Thereby, we plan to integrate further
functional and non-functional requirements. We also want to support variational
quantum algorithms [23,28]. This approach uses quantum computers and clas-
sical computers alternately for optimization problems in a hybrid manner: This
allows to limit the time spend on a quantum computer, i.e. it avoids problems
resulting from decoherence and the lack of gate fidelity. Thus, it overcomes the
current limitations of NISQ computers to a certain extent.

Acknowledgements

This work was partially funded by the BMWi project PlanQK (01MK20005N)
and the DFG’s Excellence Initiative project SimTech (EXC 2075 - 390740016).

References

1. Aharonov, D., Van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adia-
batic quantum computation is equivalent to standard quantum computation. SIAM
review 50(4), 755–787 (2008)

2. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., et al.:
Quantum supremacy using a programmable superconducting processor. Nature
574(7779), 505–510 (2019)

3. Beauregard, S.: Circuit for Shor’s algorithm using 2n+3 qubits. Quantum Infor-
mation and Computation 3(2), 175–185 (2003)

4. Benedetti, M., Garcia-Pintos, D., Perdomo, O., Leyton-Ortega, V., Nam, Y.,
Perdomo-Ortiz, A.: A generative modeling approach for benchmarking and training
shallow quantum circuits. npj Quantum Information 5(1), 45 (2019)

5. Bishop, L.S., Bravyi, S., Cross, A., Gambetta, J.M., Smolin, J.: Quantum volume.
Technical Report (2017)

19https://planqk.de/en/

https://planqk.de/en/

18 M. Salm et al.

6. Brahimi, L., Bellatreche, L., Ouhammou, Y.: A recommender system for dbms
selection based on a test data repository. In: Pokorný, J., Ivanović, M., Thalheim,
B., Šaloun, P. (eds.) Advances in Databases and Information Systems. pp. 166–180.
Springer International Publishing, Cham (2016)

7. Chuang, I.L., Yamamoto, Y.: Creation of a persistent quantum bit using error
correction. Phys. Rev. A 55, 114–127 (1997)

8. Cowtan, A., Dilkes, S., Duncan, R., Krajenbrink, A., Simmons, W., Sivarajah, S.:
On the qubit routing problem (2019)

9. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing.
pp. 212–219 (1996)

10. Han, S.M., Hassan, M.M., Yoon, C.W., Huh, E.N.: E�cient Service Recommenda-
tion System for Cloud Computing Market. In: Proceedings of the 2nd international
conference on interaction sciences: information technology, culture and human. pp.
839–845 (2009)

11. Häner, T., Roetteler, M., Svore, K.M.: Factoring using 2n+2 qubits with to↵oli
based modular multiplication. Quantum Information and Computation 18(7-8),
673–684 (2017)

12. IBMQ team: 15-qubit backend: IBM Q 16 Melbourne backend specification V2.3.1
(2020), https://quantum-computing.ibm.com

13. IBMQ team: 5-qubit backend: IBM Q 5 Yorktown backend specification V2.1.0
(2020), https://quantum-computing.ibm.com

14. J., A., Adedoyin, A., Ambrosiano, J., Anisimov, P., Bärtschi, A., Casper, W.,
Chennupati, G., Co↵rin, C., Djidjev, H., Gunter, D., Karra, S., Lemons, N., Lin,
S., Malyzhenkov, A., Mascarenas, D., Mniszewski, S., Nadiga, B., O’Malley, D.,
Oyen, D., Pakin, S., Prasad, L., Roberts, R., Romero, P., Santhi, N., Sinitsyn, N.,
Swart, P.J., Wendelberger, J.G., Yoon, B., Zamora, R., Zhu, W., Eidenbenz, S.,
Coles, P.J., Vu↵ray, M., Lokhov, A.Y.: Quantum algorithm implementations for
beginners (2018)

15. JavadiAbhari, A., Patil, S., Kudrow, D., Heckey, J., Lvov, A., Chong, F.T.,
Martonosi, M.: Sca↵cc: A framework for compilation and analysis of quantum
computing programs. In: Proceedings of the 11th ACM Conference on Comput-
ing Frontiers. CF ’14, Association for Computing Machinery, New York, NY, USA
(2014)

16. LaRose, R.: Overview and Comparison of Gate Level Quantum Software Platforms.
Quantum 3, 130 (2019)

17. Leymann, F., Barzen, J.: The bitter truth about gate-based quantum algorithms
in the NISQ era. Quantum Science and Technology pp. 1–28 (Sep 2020)

18. Leymann, F., Barzen, J., Falkenthal, M.: Towards a Platform for Sharing Quantum
Software. In: Proceedings of the 13th Advanced Summer School on Service Oriented
Computing. pp. 70–74. IBM Technical Report, IBM Research Division (2019)

19. Leymann, F., Barzen, J., Falkenthal, M., Vietz, D., Weder, B., Wild, K.: Quantum
in the Cloud: Application Potentials and Research Opportunities. In: Proceedings
of the 10th International Conference on Cloud Computing and Services Science.
SciTePress (2020)

20. Manikrao, U.S., Prabhakar, T.V.: Dynamic selection of web services with recom-
mendation system. In: International Conference on Next Generation Web Services
Practices (NWeSP’05). pp. 5 pp.– (2005)

21. Masood, S., Soo, A.: A rule based expert system for rapid prototyping system selec-
tion. Robotics and Computer-Integrated Manufacturing 18(3-4), 267–274 (2002)

https://quantum-computing.ibm.com
https://quantum-computing.ibm.com

The NISQ Analyzer 19

22. McCaskey, A.J., Lyakh, D., Dumitrescu, E., Powers, S., Humble, T.S.: XACC: a
system-level software infrastructure for heterogeneous quantum-classical comput-
ing. Quantum Science and Technology pp. 1–17 (2020)

23. Moll, N., Barkoutsos, P., Bishop, L.S., Chow, J.M., Cross, A., Egger, D.J., Fil-
ipp, S., Fuhrer, A., Gambetta, J.M., Ganzhorn, M., Kandala, A., Mezzacapo, A.,
Müller, P., Riess, W., Salis, G., Smolin, J., Tavernelli, I., Temme, K.: Quantum op-
timization using variational algorithms on near-term quantum devices. Quantum
Science and Technology 3(3), 030503 (Jun 2018)

24. Nannicini, G.: An introduction to quantum computing, without the physics (2017)
25. National Academies of Sciences, Engineering, and Medicine: Quantum Computing:

Progress and Prospects. The National Academies Press, Washington, DC (2019)
26. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.

Cambridge University Press, USA, 10th edn. (2011)
27. O’Brien, T.E., Tarasinski, B., Terhal, B.M.: Quantum phase estimation of multiple

eigenvalues for small-scale (noisy) experiments. New Journal of Physics 21(2), 1–43
(2019)

28. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.H., Zhou, X.Q., Love, P.J.,
Aspuru-Guzik, A., O’Brien, J.L.: A variational eigenvalue solver on a photonic
quantum processor. Nature Communications 5(1) (Jul 2014)

29. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79
(2018)

30. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett.
86, 5188–5191 (2001)

31. Rie↵el, E., Polak, W.: An introduction to quantum computing for non-physicists.
ACM Comput. Surv. 32(3), 300–335 (Sep 2000)

32. Rie↵el, E., Polak, W.: Quantum Computing: A Gentle Introduction. The MIT
Press, 1st edn. (2011)

33. Sete, E.A., Zeng, W.J., Rigetti, C.T.: A Functional Architecture for Scalable Quan-
tum Computing. In: IEEE International Conference on Rebooting Computing.
pp. 1–6 (2016)

34. Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Journal on Computing 26(5),
1484–1509 (1997)

35. Simon, D.R.: On the power of quantum computation. In: Proceedings of the 35th
Annual Symposium on Foundations of Computer Science. p. 116–123. SFCS ’94,
IEEE Computer Society, USA (1994)

36. Siraichi, M.Y., Santos, V.F.d., Collange, S., Quintão Pereira, F.M.: Qubit Alloca-
tion. In: CGO 2018 - International Symposium on Code Generation and Optimiza-
tion. pp. 1–12 (2018)

37. Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington, A., Duncan, R.:
t|keti: A retargetable compiler for nisq devices. Quantum Science and Technology
(2020)

38. Steiger, D.S., Häner, T., Troyer, M.: ProjectQ: an open source software framework
for quantum computing. Quantum 2, 49 (2018)

39. Strauch, S., Andrikopoulos, V., Bachmann, T., Karastoyanova, D., Passow, S.,
Vukojevic-Haupt, K.: Decision Support for the Migration of the Application
Database Layer to the Cloud. In: 2013 IEEE 5th International Conference on
Cloud Computing Technology and Science. vol. 1, pp. 639–646. IEEE (2013)

40. Suchara, M., Kubiatowicz, J., Faruque, A., Chong, F.T., Lai, C.Y., Paz, G.: QuRE:
The Quantum Resource Estimator Toolbox. In: IEEE 31st International Confer-
ence on Computer Design (ICCD). pp. 419–426. IEEE (2013)

20 M. Salm et al.

41. Tannu, S.S., Qureshi, M.K.: Not all qubits are created equal: A case for variability-
aware policies for nisq-era quantum computers. In: Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. p. 987–999. ASPLOS ’19, Association for Comput-
ing Machinery, New York, NY, USA (2019)

42. Wild, K., Breitenbücher, U., Harzenetter, L., Leymann, F., Vietz, D., Zimmer-
mann, M.: TOSCA4QC: Two Modeling Styles for TOSCA to Automate the De-
ployment and Orchestration of Quantum Applications. In: 2020 IEEE 24th In-
ternational Enterprise Distributed Object Computing Conference (EDOC). IEEE
Computer Society (2020)

43. Zhang, M., Ranjan, R., Nepal, S., Menzel, M., Haller, A.: A Declarative Rec-
ommender System for Cloud Infrastructure Services Selection . In: International
Conference on Grid Economics and Business Models. pp. 102–113. Springer (2012)

44. Zimmermann, O., Grundler, J., Tai, S., Leymann, F.: Architectural Decisions and
Patterns for Transactional Workflows in SOA. In: Service-Oriented Computing –
ICSOC 2007. pp. 81–93. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

45. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing
architectural decision models with dependency relations, integrity constraints, and
production rules. Journal of Systems and Software 82(8), 1249–1267 (2009)

	The NISQ Analyzer: Automating the Selection of Quantum Computers for Quantum Algorithms

