
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{salm, barzen, leymann, weder, wild}@iaas.uni-stuttgart.de

Automating the Comparison of
Quantum Compilers for Quantum Circuits

Marie Salm, Johanna Barzen, Frank Leymann,
Benjamin Weder, Karoline Wild

@inproceedings{Salm2021_CompilerComparison,

author = {Salm, Marie and Barzen, Johanna and Leymann, Frank and

Weder, Benjamin and Wild, Karoline},

title = {{Automating the Comparison of Quantum Compilers

for Quantum Circuits}},

booktitle = {Proceedings of the 15th Symposium and Summer School on

Service-Oriented Computing (SummerSOC 2021)},

pages = {64--80},

publisher = {Springer International Publishing},

month = sep,

year = 2021,

doi = {10.1007/978-3-030-87568-8_4}

}

:

Institute of Architecture of Application Systems

© Springer Nature Switzerland AG 2021
This is a post-peer-review, pre-copyedit version of an article published in
Proceedings of the 15th Symposium and Summer School on Service-Oriented
Computing (SummerSOC 2021), part of the CCIS book series. The final
authenticated version is available online at: https://doi.org/10.1007/978-3-
030-87568-8_4

Automating the Comparison of
Quantum Compilers for Quantum Circuits

Marie Salm[0000−0002−2180−250X], Johanna Barzen[0000−0001−8397−7973],
Frank Leymann[0000−0002−9123−259X], Benjamin Weder[0000−0002−6761−6243], and

Karoline Wild[0000−0001−7803−6386]

University of Stuttgart, Institute of Architecture of Application Systems,
Universitätsstraße 38, Stuttgart, Germany

{salm,barzen,leymann,weder,wild}@iaas.uni-stuttgart.de

Abstract. For very specific problems, quantum advantage has recently
been demonstrated. However, current NISQ computers are error-prone
and only support small numbers of qubits. This limits the executable
circuit size of an implemented quantum algorithm. Due to this limitation,
it is important that compiled quantum circuits for a specific quantum
computer are as resource-efficient as possible. A variety of different quan-
tum compilers exists supporting different programming languages, gate
sets, and vendors of quantum computers. However, comparing the re-
sults of several quantum compilers requires (i) deep technical knowledge
and (ii) large manual effort for translating a given circuit into different
languages. To tackle these challenges, we present a framework to auto-
mate the translation, compilation, and comparison of a given quantum
circuit with multiple quantum compilers to support the selection of the
most suitable compiled quantum circuit. For demonstrating the practical
feasibility of the framework, we present a prototypical implementation.

Keywords: Quantum Computing · NISQ · Decision Support · Compiler
· NISQ Analyzer.

1 Introduction

Quantum computing is a highly discussed and emerging technology in research
and industry [17]. Quantum advantage has already been demonstrated for specific
problems [3,36]. Furthermore, a variety of quantum algorithms exists promising
further beneficial breakthroughs in different areas such as computer and natural
sciences [17]. Nevertheless, the Noisy Intermediate-Scale Quantum (NISQ) era
is not yet overcome [19]. Existing gate-based quantum computers still only
offer small numbers of qubits and high error rates. This strongly limits the
circuit sizes of implemented quantum algorithms executable on existing quantum
computers [11]: The number of required qubits, i.e. the width, has to be less than
or equal to the number of qubits offered by the quantum computer. In addition,
the number of sequential executable gates, i.e. the depth, can only be executed in
a certain time frame, often in the range of micro seconds, otherwise too many
errors would accumulate and interfere the results.

2 M. Salm et al.

The width and depth of a quantum circuit is significantly influenced by (i) the
qubit topology of the quantum computer, i.e. the connectivity between the qubits,
(ii) the implemented gate set of the quantum computer, and (iii) the mapping
and optimization algorithm of the used quantum compiler [4,25]. The quantum
compiler maps the qubits and gates of the quantum circuit to the qubits and
implemented gates of the real quantum computer [13].

Today, a great variety of quantum compilers exists [14]. They all differ in
their implemented mapping and optimization algorithms. Especially in the NISQ
era, the selection of the most suitable, i.e., the best optimizing quantum compiler
for a given quantum circuit and quantum computer is tremendously important to
make optimal use of the currently limited quantum resources. However, quantum
compilers are accessed via software development kits (SDKs) providing libraries
for implementing and executing quantum circuits on quantum computers or sim-
ulators [13,24]. These SDKs differ in their (i) supported programming languages,
(ii) supported gate sets, and (iii) supported vendors of quantum computers for
execution. Vendor-independent SDKs, such as pytket [30], exist facilitating the
import of quantum circuits in various programming languages and a variety of
gate sets with the respective hardware access. Nevertheless, several quantum
compilers are accessed via vendor-specific SDKs, such as Qiskit [1] from IBM and
Forest SDK [23] from Rigetti, only supporting vendor-specific languages, gate
sets, and hardware access. As a result, it cannot simply be tested which compiler
generates the most suitable compilation of a given quantum circuit and not
every circuit can be compiled and executed on every existing quantum computer,
because (i) the programming languages are not compatible and (ii) the gate sets
differ between the different vendors. Thus, for comparing the results of quantum
compilers deep technical knowledge about the SDKs and large manual effort for
the translation of the quantum circuit into the different supported programming
languages and gate sets is required. Several works, such as [15,16,30], already com-
pare quantum compilers. However, they focus on presenting the overall strength
of their compilation approaches with certain prepared benchmarks.

In this paper, we present a framework to compare the compilation results of
different quantum compilers for a particular quantum circuit and quantum com-
puter. Therefore, the framework enables to (i) translate the quantum circuit into
the required programming languages of the SDKs of the given quantum compilers,
(ii) execute the compilation with the selected compilers, and (iii) analyze the com-
pilation results. Thus, the user can select the most suitable compilation. With the
translation, we enable the decoupling of the SDK used for implementing a certain
quantum circuit and the vendor used for execution. As basis for our framework,
we analyze existing SDKs and their compilers, their supported programming
languages, specification features, and quantum computers. For comparing the
compiled circuits, metrics, such as width and depth, are chosen. To demonstrate
the practical feasibility of the framework, a prototypical implementation is pre-
sented supporting the t|ket⟩ compiler [30], the Qiskit Transpiler [1], and the Quilc
compiler [23]. The framework is plug-in based, such that the support of further
metrics, programming languages, compilers, and SDKs can be added.

Automating the Comparison of Quantum Compilers for Quantum Circuits 3

The remainder of the paper is structured as follows: In Sect. 2 the fundamentals
and the problem statement are introduced. In Sect. 3 existing SDKs and their
compilers are analyzed and compared. Furthermore, the suitability of compilations
is discussed. Sect. 4 describes the concept of the framework. Sect. 5 presents the
system architecture and prototype. Sect. 6 validates the framework with a case
study. Sect. 7 discusses the concept of the framework. Sect. 8 presents related
work and Sect. 9 concludes the work and gives an outlook.

2 Fundamentals and Problem Statement

In this section, we introduce the fundamentals about quantum compilation and
present current challenges using quantum compilers. Finally, we present the
problem statement and the research questions of this work.

2.1 Quantum Circuits and Quantum Compilers

For gate-based quantum computing, quantum circuits represent implemented
quantum algorithms [18]. A quantum circuit is described by qubits and quantum
gates manipulating the states of the qubits as well as the order in which the
gates are performed. For the execution on a certain quantum computer, also
called quantum processing unit (QPU), a quantum compiler has to map the
defined quantum circuit to the properties of the quantum computer [13]. In
general, gate-based quantum computers differ in their implemented gate set,
the number of qubits, the qubit topology, and errors that can occur during the
execution of a quantum circuit [4,22,25]. In a first step, the quantum compiler
replaces non-implemented gates of a defined quantum circuit by a sequence of
implemented gates [11,13]. Moreover, due to the non-complete topology graph
of the selected quantum computer, further gates and qubits are required for
the usage of multi-qubit gates [5,33]: The state of non-directly connected qubits
has to be transferred over connected qubits. During the compilation (i) the
qubits limiting the maximum width and (ii) the error rates of the gates and the
decoherence time of the qubits limiting the depth of a quantum circuit have to be
considered [30,33]. Therefore, quantum compilers perform several optimizations,
such as parallelizing gates and replacing gates with high error rates [30]. The
mapping procedure is NP-complete [29]. Also, it can lead to a significant increase
of the depth of a circuit challenging a successful execution on today’s NISQ
computers with high error rates and small qubit numbers [5,11,19].

Today, a large number of quantum compilers exist and is still growing [14].
Each compiler performs another mapping and optimization algorithm. Hence,
the resulting compiled quantum circuits of a given input circuit for a certain
quantum computer differ in their properties. This makes it difficult to predict
which compiler suits best for a certain quantum circuit and quantum computer.
However, as we are still in the NISQ era, it is important to optimize a quantum
circuit by reducing its depth and width [25], to minimize the impact of increasing
errors and use the quantum resources efficiently.

4 M. Salm et al.

Besides the width and depth, further circuit properties, i.e. metrics, exist and
are commonly used to compare compiled circuits describing the inner structure
of a circuit, e.g., the number of two-qubit gates with their high error rates or
the total number of gates [30]. Another proposed metric roughly estimates if
an execution of a circuit with a certain width and depth could be successful
dependent on the effective error rate of the given quantum computer [4,11,19,25].
Nevertheless, for sharpening and applying this metric the effective error rate of
the quantum computer has to be determined which is challenging as the exact
composition of the effective error rate is not yet known [21,25,33]. Thus, the
two metrics width and depth build a solid expandable set for describing the
decisive size of a circuit enabling a concise overview to compare between multiple
compilations of different quantum compilers [25,30].

2.2 Quantum Software Development Kits

A quantum compiler is often accessed via an SDK. An SDK provides tools and
libraries for developing a quantum circuit, to compile it, and, finally, execute it
on a quantum computer [10]. Most of the current vendors of quantum computers,
such as IBM and Rigetti, provide proprietary SDKs, e.g. Qiskit [1] and Forest
SDK [23], for accessing their quantum compilers and quantum computers [24].
However, a few SDKs exist supporting several vendors, such as pytket [30]
and ProjectQ [32]. Each SDK offers a different set of supported programming
languages, customizable quantum computer specifications, and gate sets [34].
Thus, a circuit is not necessarily interchangeable between different SDKs. This
denies the flexibility of testing several compilers and executing on a wide range of
quantum computers. An overview about the features of existing SDKs and their
compilers is given in Sect. 3. Thereby, many properties of the SDKs are taken
into account as they determine, e.g., import and export programming languages.

2.3 Problem Statement

It is hard to estimate in advance which quantum compiler returns the most
suitable compilation, in terms of smallest width and depth, for a given quantum
circuit and quantum computer. However, simply testing every compiler with a
certain quantum circuit and quantum computer is challenging. First, the circuit
has to be written in a programming language and gate set supported by the SDK
providing the specific quantum compiler, otherwise it has to be rewritten. In
addition, for a compilation on the desired quantum computer, its vendor has to
be supported by the SDK. Hence, the first research question (RQ) is as follows:

RQ 1: How can potentially relevant quantum compilers be identified for the
compilation of a certain quantum circuit on a certain quantum computer?

While a detailed analysis of programming languages and vendors supported
by existing quantum compilers and their SDKs builds a good basis, comparing

Automating the Comparison of Quantum Compilers for Quantum Circuits 5

existing quantum compilers to find the most suitable compiled circuit for a
specific quantum computer demands a lot of manual effort and deep technical
knowledge from the user. Therefore, the second RQ is as follows:

RQ 2: How can the comparison of compiled circuits of different quantum
compilers for a given quantum circuit and quantum computer be automated?

For addressing the formulated RQs, we analyzed quantum compilers and SDKs
and realized a compilation comparison framework, presented in the following.

3 Analysis of Quantum Compilers

In this section, we present an analysis of SDKs and their quantum compilers, as
seen in Table 1. Furthermore, we discuss the suitability of compiled circuits.

Table 1. Compiler-specific Criterion on SDKs.

SDKs
(Compilers)

Import
Languages

Export
Languages

Backend
Vendors

Custom
QPUs

Custom
Compilation
Gate Set

P
ro
p
r.

S
D
K
s Cirq

OpenQASM,
Cirq-JSON,
Quirk-JSON

OpenQASM,
Quil,

Cirq-JSON

Google,
AQT, Pasqal

yes yes

Forest
(Quilc)

PyQuil*, Quil Quil Rigetti yes no

Qiskit
(Transpiler)

OpenQASM,
Qiskit*

OpenQASM IBM yes yes

In
d
ep

en
d
en

t
S
D
K
s pytket

(t|ket⟩)

OpenQASM,
Qiskit*, PyZX*,
PyQuil*, Cirq*,

Quipper

OpenQASM,
Qiskit*, PyZX*,
PyQuil*, Cirq*,
Qulacs*, Q#,
ProjectQ*

AQT,
Amazon
Braket,

Honeywell,
Rigetti, IBM,
Microsoft
QDK

yes yes

staq OpenQASM
OpenQASM,

ProjectQ*, Quil,
Q#, Cirq*

no no no

ProjectQ ProjectQ* ProjectQ*
IBM, AQT,
Amazon

Braket, IonQ
no yes

6 M. Salm et al.

3.1 Compiler-specific Analysis of SDKs

To address RQ 1, different SDKs and their quantum compilers are analyzed (see
Table 1). This analysis focuses on the integration and configuration properties for
certain compilers. Thus, the support of different programming languages, vendors,
custom quantum computers, and custom compilation gate sets is considered.
Note that vendors of simulators are excluded. The selected set is only an excerpt
of open-source accessible SDKs and serves for exemplary purposes showing their
distinct properties. Detailed analyses of SDKs have been shown, e.g., by [7,10,34].

Most of the analyzed SDKs support the import and export of multiple
programming languages. In general, the supported languages can be split in
high-level programming languages, such as Python, and assembly languages, such
as Quil [31] and OpenQASM [6,34]. However, most SDKs offer their own Python
libraries (marked with *), such that implemented circuits are not interchangeable.
Most SDKs, except Forest SDK [23] and ProjectQ [32], support OpenQASM.

From the vendor-specific SDKs, only Cirq [20] supports multiple vendors,
as shown in Table 1. Pytket [30] supports a great variety of vendors. Staq [2]
supports many export languages but considers only mocked quantum computers.

Many of the considered SDKs support the specification of custom quantum
computers, their qubit topologies, gate sets, and error rates for experimental
compilation in their proprietary format. But less quantum compilers natively
support customizing the target gate set, such that the previously specified gates
cannot be retrieved in the compiled quantum circuit.

Thus, for comparing the outcomes of a wide range of existing quantum com-
pilers, the given quantum circuit has to be translated into several programming
languages. In addition, tackling RQ 1, the SDK of a considered quantum compiler
must natively support the given quantum computer for comparison. Otherwise,
the SDK needs to offer the possibility to specify custom quantum computers.
However, a complete specification is often associated with a lot of manual effort.
The analysis is the basis of the framework introduced in the following Sect. 4.

3.2 Suitability of Compiled Quantum Circuits

After compiling a quantum circuit with a compiler, its compilation result is
assumed to be suitable if it is successfully executable such that the correct result
is clearly identifiable and not too much interfered by errors [11,25]. Therefore, the
number of qubits, decoherence times, and error rates of the quantum computer
determine the maximum width and depth of an executable and, thus, suitable
quantum circuit. However, a general prioritization of width or depth cannot
be determined. Quantum computers can have a great number of stable qubits
but only support the execution of circuits with small depths, or vice versa [11].
Moreover, if, e.g., two compiled circuits are suitable, i.e. have a smaller or
equal width and depth than the number of qubits and the maximum executable
depth of the quantum computer, it cannot simply be determined which circuit
is to be preferred. Thus, selecting the most suitable compilation depends on
multidimensional aspects and, currently, cannot be solved by automation.

Automating the Comparison of Quantum Compilers for Quantum Circuits 7

automated semi-automated automated

Compiler

Gate & Syntax Translation

t|ket⟩

Compilation

Width Depth ...
t|ket⟩ 8 23 ...
Qiskit 9 21 ...
... ...

Analysis & Selection Execution

PyQuil
Circuit

QASM
Circuit

Input: PyQuil

IBMQ_16

Executor

Qiskit
Circuit

Selected QPU

QASM
Circuit

QASM
Circuit

QASM
Circuit

IBMQ

.

Transpiler

Input: Qiskit

...

Input: QASM

1 2 3 4

Fig. 1. Automated compilation and comparison of circuits with multiple compilers.

4 Framework for Compilation Comparison

To address RQ 2, we present a framework to compare the compiled circuits of
different quantum compilers for a certain quantum circuit and quantum computer.
The overall approach is shown in Fig. 1. The phases 1,2, and 4 are completely
automated while phase 3 is semi-automated. First, the given circuit is translated
into the programming languages and gate sets supported by the SDKs of the
selected compilers. The translated circuits and the information about the selected
quantum computer serve as input for the compilation in the second step. After
compilation, the widths and depths of the resulting circuits are analyzed and
suitable results are recommended to the user. The user, then, manually selects the
most suitable compilation. Finally, the selected circuit is executed. The details
about each phase are provided in the following.

4.1 Gate and Syntax Translation

The basis for translation is the quantum circuit and selected quantum computer.
Based on Sect. 3, the SDKs of suitable quantum compilers (i) have to support
the selected quantum computer and (ii) determine the required programming
languages. Thus, in the (1) Gate and Syntax Translation phase, the circuit
for compilation, its programming language, e.g. Python for PyQuil, and the
desired quantum computer, e.g. IBMQ 16, serve as input for the automated
translation, compilation, and comparison, as seen in Fig. 1. For each SDK, the
supported vendors are specified. Thus, based on the selected quantum computer
the matching quantum compiler can be determined. Then, it is identified which
languages are supported by the selected SDKs. For an SDK not supporting the
language of the given circuit, the syntax of the circuit is mapped to the syntax of
the supported language. For example, the circuit is mapped to the Python library
Qiskit, as the SDK Qiskit and its Transpiler does not support PyQuil. Thereby,
an intermediate format reduces the number of possible translation combinations.
For the gate translation, a mapping table is defined for each language. Gates

8 M. Salm et al.

that are not supported by the SDK, e.g. hardware-specific or custom gates, are
either replaced by a subroutine of supported gates or unitary matrices defining
the specific gates as custom gates. A simple example is the SWAP gate, that, if
not supported, can be replaced by three CNOT gates [18]. For defining a matrix,
the target SDK has to support custom gates. In general, an arbitrary gate can
be approximated by using a universal set of quantum gates [18].

4.2 Compilation

In the (2) Compilation phase, the circuit in the respective input language as well
as the information about the quantum computer, i.e. its name, are taken as input
for each compiler. Then, the selected quantum compilers compile in parallel. The
returned compilations are in the programming language required for the later
execution on the selected quantum computer, e.g. for IBM machines OpenQASM
is required [6]. As SDKs and their compilers are selected dependent on their
vendor support, they natively support their required languages and gates.

4.3 Analysis and Selection

In the (3) Analysis and Selection phase, the compiled quantum circuits are
analyzed to determine their widths and depths. Therefore, the NISQ Analyzer is
used to compare the depth of the compiled quantum circuits with the estimated
maximum executable depth of the quantum computer [24]. The NISQ Analyzer is
a tool that selects suitable quantum circuit implementations based on the chosen
quantum algorithm and input values and determines if they are executable on
available quantum computers. The maximum executable depth of a quantum
computer is estimated by dividing the average decoherence time of all available
qubits through the maximum gate time [26]. In general, if the width of a quantum
circuit is greater than the number of qubits of the quantum computer, existing
quantum compilers automatically reject the circuit. If width and depth of a
compilation is less than or equal to the maximum depth and the number of
qubits of the quantum computer, it is executable and recommended to the user
as suitable compiled circuit. All other compilations are filtered out automatically
beforehand in the analysis. If multiple compiled circuits are suitable, the user,
then, can manually select the most suitable compiled quantum circuit based on
their comparable widths and depths, as discussed in Sect. 3.2.

4.4 Execution

In the (4) Execution phase, the most suitable compilation selected by the user is
executed on the quantum computer, as shown in Fig. 1. As the SDKs containing
the quantum compilers also provide access to the considered quantum computer,
the respective SDK is used for the automated execution. Therefore, the user does
not have to manually deploy the required SDK and compiled circuit for execution.
Instead, the Executor supports all SDKs used for compilation and automates the
execution of compilations. Finally, the execution result is presented to the user.

Automating the Comparison of Quantum Compilers for Quantum Circuits 9

IBMQ

pytket Service

REST API

t|ket⟩
Executor

Worker1

Workern
...

Forest Service

Rigetti

Selection
Rules

Algorithms,
Impl., QPUs,

SDKs

NISQ Analyzer

Results

REST API

NISQ Analyzer UI

Connector

Selector
Compiler Selector

QPU Selector

Impl. SelectorRule Handler

Translator

REST API

Circuit Wrapper

Translator UI

Gate
Mappings

Quilc

Executor

REST API

Qiskit Service
Transpiler

Executor
REST API

Conversion Handler
PyQuil Converter

...

Fig. 2. Architecture for translating, compiling, and comparing quantum circuits.

5 System Architecture and Prototype

In this section, the overall system architecture is presented, as seen in Fig. 2.
Furthermore, the prototypical implementation of the framework is described.

5.1 System Architecture

In Fig. 2 the overall architecture of the comparison framework is shown. It
consists of an extension of the NISQ Analyzer [24] as well as new components
for the translation and a set of compilation and execution services. Thereby,
new components are dark, extended components are middle and already existing
components are light grey. The Translator on the left side of Fig. 2 provides
an HTTP REST API used by the Translator User Interface (UI) offering the
modeling and translation of quantum circuits in multiple programming languages.
The Circuit Wrapper component inside the Translator controls the import,
conversion, and export of a given quantum circuit in the defined programming
language. For the conversion between the import and the export languages an
intermediate format is used. Therefore, the Conversion Handler component
invokes the language-specific converter plug-in for converting from the language
of the given circuit into the intermediate format and vice versa. For example,
the PyQuil Converter supports the import and export of circuits written with
PyQuil and in Quil. For converting the language and gate set supported by an
SDK to the other, the defined gate mappings are stored in a repository.

For the compilation, analysis, and execution, the NISQ Analyzer, in the
middle of Fig. 2, is extended. The HTTP REST API and the NISQ Analyzer UI
are extended triggering the comparison and selection process. The new Compiler
Selector component in the NISQ Analyzer backend identifies available SDKs
and, thus, compilers supporting the vendor of the selected quantum computer
and required languages. It also verifies the executability of compilations on the
quantum computer. The Connector enables the interaction with the Translator

10 M. Salm et al.

and the Compilation and Execution (Com&Ex) Services. The analysis and execu-
tion results, including the transpiled circuits, are stored as provenance data in a
repository enabling the learning of compilations and executions in the future [13].

On the right side of Fig. 2, three exemplary Com&Ex Services are shown. Each
supported SDK is wrapped by an interface enabling the compilation and execution
with the accessible quantum compiler on a supported quantum computer.

To start the compilation with available quantum compilers, the user inserts the
quantum circuit using the NISQ Analyzer UI, selects its programming language
and chooses the desired quantum computer. The Compiler Selector identifies the
Com&Ex Services supporting the vendor of the quantum computer. Then, the
Compiler Selector invokes the Connector to call the Translator if a Com&Ex
Service requires another language than the circuit is written in. The circuit,
information about its own language and the required language are passed to
the Translator. The Circuit Wrapper invokes the Conversion Handler for the
translation into the syntax and gate set of the required language and returns
the resulting circuit to the NISQ Analyzer. The Compiler Selector passes the
circuits to the respective Com&Ex Services for compilation. After compilation,
each Com&Ex Service analyzes the width and depth of its compiled circuit and
returns the information to the NISQ Analyzer [24]. Then, the Compiler Selector
compares the depth of the compilations with the estimated maximum executable
depth of the quantum computer proofing executability. Thereby, non-suitable
circuits are filtered out and all suitable circuits, their widths and depths are
returned to the user. Then, the user can select the most suitable compilation for
execution. Therefore, the compiled circuit is passed to its respective Com&Ex
Service, where it is sent to the cloud service of the vendor. Finally, the execution
result is shown. The NISQ Analyzer can be extended by plug-ins to support further
metrics besides comparing width and depth. The Connector can be extended to
support further Com&Ex Services implementing the defined interfaces. Additional
languages can be supported by implementing respective converters.

5.2 Prototype

The Translator UI and the NISQ Analyzer UI are implemented in TypeScript. The
Translator and the Com&Ex Services are written in Python with the framework
Flask. The NISQ Analyzer is written in Java with the framework Spring Boot. A
detailed discussion of the implementation of the NISQ Analyzer and the Com&Ex
Services can be found in [24]. The entire prototype is available open-source1,2,3.

The intermediate format of the Translator is based on QuantumCircuit4 from
Qiskit. As shown in Sect. 3, Qiskit enables defining custom gates. It also supports
a great set of standard gates natively. Thus, the import and export of OpenQASM
and the import of Python for Qiskit is natively supported, as the SDK Qiskit

1https://github.com/UST-QuAntiL
2https://github.com/UST-QuAntiL/nisq-analyzer-content
3https://youtu.be/I5l8vaA-zO8
4https://qiskit.org/documentation/stubs/qiskit.circuit.QuantumCircuit.html

https://github.com/UST-QuAntiL
https://github.com/UST-QuAntiL/nisq-analyzer-content/tree/paper/compiler-selection/compiler-selection
https://youtu.be/I5l8vaA-zO8
https://qiskit.org/documentation/stubs/qiskit.circuit.QuantumCircuit.html

Automating the Comparison of Quantum Compilers for Quantum Circuits 11

provides respective functions. Exporting a circuit to Python for Qiskit requires
additional functions for extracting the QuantumCircuit instructions into the
required Python-based syntax. Additionally, as proof-of-concept, Quil and Python
for PyQuil are supported by the Translator. For example, when importing a circuit
written with PyQuil to QuantumCircuit, first, the implemented PyQuil Converter
uses the Forest SDK returning a PyQuil-specific Program5. Then, the PyQuil
Converter iterates over the Program constructing an equivalent QuantumCircuit.
Exporting from a circuit defined as QuantumCircuit to a circuit written with
PyQuil works vice versa. By iterating over the instructions, defined qubit registers
and classical bits of a circuit are transferred. For transferring a gate, possible
gate parameters and the qubits on which the gate is applied are extracted. The
gate mapping itself is stored in a dictionary. Thereby, (i) an equivalent gate, (ii) a
subroutine of gates, or (iii) a matrix is defined supported by the target language.

For proof-of-concept, currently three SDKs and their quantum compilers are
supported for compilation and execution: Forest SDK with its Quilc compiler [23],
pytket with its t|ket⟩ compiler [30], and Qiskit with its Transpiler [1].

6 Case Study

In this section, the prototype of the framework from Sect. 5 is validated. Thus, two
use cases are presented. In the first use case, a Quil circuit implementing the Shor
algorithm [27] is used for the compilation on the ibmq 16 melbourne [9] offering 15
qubits and an estimated maximum gate depth of 32 levels. In the second use case,
a Qiskit circuit implementing the Grover algorithm [8] is compiled on a mocked
Rigetti quantum computer supporting a fully connected 9-qubit-topology with a
maximum depth of 120 levels. Since we cannot access real quantum computers of
Rigetti, the usage of the Quilc compiler is shown with a mocked Rigetti quantum
computer. Each circuit is provided in our GitHub repository2.

6.1 Compilation on IBM Hardware

The Shor algorithm factorizes an odd integer and computes its prime factors
exponentially faster than a classical counterpart [27]. The considered circuit
shor-15-quil in Quil factorizes 15. As ibmq 16 melbourne is the target, the Qiskit
Service and the pytket Service are automatically selected for compilation, as
Forest SDK [23] does not support IBM. Both Com&Ex Services do not natively
support Quil. Thus, for the pytket Service, the Quil circuit is translated into
PyQuil which is one of the supported languages of pytket presented in Sect. 3.
For the Qiskit Service, it is translated into Python for Qiskit. Then, the quantum
computer and the translated circuits are passed to the respective Com&Ex
Services. The resulting depth and width of the compilations can be seen in
Table 2. Both are executable on the ibmq 16 melbourne according to the NISQ
Analyzer and are recommended to the user. Based on the widths and depths of
the compilations, the user can select which should be executed.

5https://pyquil-docs.rigetti.com/en/latest/apidocs/program.html

https://pyquil-docs.rigetti.com/en/latest/apidocs/program.html

12 M. Salm et al.

Table 2. Compilation results for shor-15-quil.

Compiler Width Depth Backend Executable

Qiskit Transpiler 4 10 ibmq 16 melbourne yes
t|ket⟩ 5 8 ibmq 16 melbourne yes

6.2 Compilation on Rigetti Hardware

The Grover algorithm, in general, searches items in unsorted lists and has a
quadratic speed up compared to a classical algorithm [8]. The algorithm is also
applied to more specific problems, such as the Boolean satisfiability problem
(SAT). The implemented circuit grover-SAT-qiskit in Qiskit solves the SAT
problem (A∨B)∧ (A∨¬B)∧ (¬A∨B). The target is a mocked Rigetti quantum
computer. Thus, the Forest Service and the pytket Service are automatically
selected. The quantum computer and the circuit are directly passed to the pytket
Service. For the Forest Service, the circuit is translated into Quil. The mocked
Rigetti and the translated circuit are, then, passed to the Forest Service. As we
set the maximum depth of the mocked Rigetti to 120, the compilation of the Quilc
compiler is not executable according to the NISQ Analyzer, see Table 3. Thus,
only the compilation of the t|ket⟩ compiler is recommended to the user. Finally,
the user can trigger the automated execution of the recommended compilation.

Table 3. Compilation results for grover-SAT-qiskit.

Compiler Width Depth Backend Executable

Quilc 8 164 mocked Rigetti no
t|ket⟩ 8 117 mocked Rigetti yes

7 Discussion and Limitations

The presented framework enables the decoupling of quantum circuits and their
SDKs and the comparison of compilation results of quantum compilers for
arbitrary circuits. Thereby, the automated (i) translation, (ii) compilation, and
(iii) analysis of a given quantum circuit and quantum computer is provided to
support the selection of the most suitable compilation. As discussed in Sect. 3,
automatically prioritizing a compiled circuit if, e.g., one executable compilation
has the smallest depth but another has the smallest width, is a multidimensional
challenge and is currently not yet supported. However, all non-suitable compilation
results in terms of width and depth are filtered out and, thus, only suitable
compilation results are returned to the user for the final selection.

Automating the Comparison of Quantum Compilers for Quantum Circuits 13

At present, we only consider quantum compilers if the selected quantum
computer is natively supported. However, as shown in Sect. 3, some quantum
compilers support the specification of custom quantum computers. The framework
could be further extended to retrieve quantum computer specifications from a
certain vendor and to translate them into the format to custom define this
quantum computer for the compiler. By iterating over the individual instructions
for translating a defined circuit into another programming language, non-optimal
replacements can occur which can also affect the resource efficiency of the compiled
circuit. Furthermore, no automated equivalence verification of translated circuits
is currently supported. Nevertheless, the translated circuits presented in Sect. 6
were verified by comparing their execution results with those of the initial
quantum circuits. Currently, only the programming languages OpenQASM and
Quil and the Python libraries Qiskit and PyQuil are supported. However, as
our framework bases on a plug-in based system, additional plug-ins can be
implemented supporting further languages, SDKs, metrics, and compilers.

We currently use Com&Ex Services to support all SDKs and their compilers
utilized for the compilation of quantum circuits and the automated execution of
their compilations. For the automated deployment and execution also existing
deployment automation technologies can be used [35].

8 Related Work

Comparing quantum compilers is covered in several works. Sivarajah et al. [30]
present their software development platform to access the quantum compiler
t|ket⟩ supporting multiple programming languages and vendors, as shown in
Sect. 3. They compare their compiler with the Quilc compiler and the Qiskit
Transpiler. Therefore, several test circuits are used as benchmarks and executions
on quantum computers were performed. Also, in the work of [2,15,16] the perfor-
mance of the presented compilation and optimization algorithms were compared
with the Qiskit Transpiler and the Quilc compiler, by several test circuits and
certain quantum algorithm implementations. Thus, their focus is on showing the
overall performance of their compilers using defined benchmarks. The focus of
our framework is on supporting the selection of the most suitable compilation
situation-based for an arbitrary quantum circuit on a certain quantum computer.

In the work of Mills et al. [14] the t|ket⟩ compiler and the Qiskit Transpiler
are compared. Thereby, they are investigating their different compilation and
optimization algorithms in consideration of the physical properties of imple-
mented qubits on quantum computers. Nevertheless, their focus is on aspects
considered during the compilation process on quantum computers. Thus, they
do not support the generic approach of comparing and selecting compilations of
quantum compilers for arbitrary quantum circuits.

Arline6 introduces a framework for the automated benchmarking of quantum
compilers7. For the implementation of quantum circuits, the framework offers

6https://www.arline.io
7https://github.com/ArlineQ

https://www.arline.io
https://github.com/ArlineQ

14 M. Salm et al.

its own programming language but also supports the import and export of
OpenQASM circuits. Thereby, gate sets from quantum computers of IBM, Rigetti,
and Google are supported. Currently, compilers of Qiskit and Cirq are considered
and can be combined for compiling quantum circuits. The benchmarking analysis
of the quantum compilers and its compilations bases on metrics, e.g. the depth
of the compiled circuit, the gate count, and the compiler runtime. However,
analyzing the executability on a certain quantum computer afterward is not
considered. Instead of accessing real quantum computers, properties are hard-
coded. Thus, no execution is supported. Furthermore, no support of several
programming languages and its translations is given.

9 Conclusion and Future Work

In this paper, we presented a framework to compare the compilations of different
quantum compilers for a certain quantum circuit and quantum computer. An-
swering RQ 2, the framework automatically (i) translates the quantum circuit
into the programming languages required by the SDKs of the available compilers,
(ii) compiles with selected quantum compilers, and (iii) analyzes the compila-
tions. Thereby, the dependency between quantum circuits and their SDKs are
solved, such that the execution on an arbitrary quantum computer is enabled.
For the comparison of the compilations, the widths and depths of the resulting
circuits are determined and their executability on the chosen quantum computer
is examined. The most suitable quantum circuit can, then, directly be executed
on the respective quantum computer. As basis of our framework, several SDKs
and their compilers are analyzed towards compilation answering RQ 1.

The framework extends the NISQ Analyzer [24] which is part of the platform
PlanQK8 focusing on sharing and executing quantum software [12,13]. In the
future, we plan to implement further Com&Ex Services wrapping additional
SDKs to increase the variety of available quantum compilers. Additionally, we
plan to support an automated equivalence verification framework to verify the
Translator component systematically and ensure the equivalence of its trans-
lations [28]. Furthermore, we plan to investigate in an intermediate format to
support the specification of arbitrary quantum computers for SDKs supporting
custom quantum computers. We also plan to offer further metrics, e.g. the count
of multi-qubit gates and the estimation of a successful executability [25], to
improve the comparison of compiled quantum circuits.

Acknowledgements

We would like to thank Thomas Wangler for the implementation of the Translator.
This work was partially funded by the BMWi project PlanQK (01MK20005N)

and the DFG’s Excellence Initiative project SimTech (EXC 2075 - 390740016).

8https://planqk.de/en/

https://planqk.de/en/

Automating the Comparison of Quantum Compilers for Quantum Circuits 15

References

1. Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., Ben-Haim, Y.,
et al.: Qiskit: An Open-source Framework for Quantum Computing (2019).
https://doi.org/10.5281/zenodo.2562111

2. Amy, M., Gheorghiu, V.: staq—a full-stack quantum processing toolkit. Quan-
tum Science and Technology 5(3), 034016 (2020). https://doi.org/10.1088/2058-
9565/ab9359

3. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., et al.: Quantum
supremacy using a programmable superconducting processor. Nature 574(7779),
505–510 (2019). https://doi.org/10.1038/s41586-019-1666-5

4. Bishop, L., Bravyi, S., Cross, A., Gambetta, J., Smolin, J., March: Quantum volume
(2017)

5. Cowtan, A., Dilkes, S., Duncan, R., Krajenbrink, A., Simmons, W., et al.: On
the Qubit Routing Problem. In: 14th Conference on the Theory of Quantum
Computation, Communication and Cryptography (TQC 2019). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 135, pp. 5:1–5:32. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik (2019). https://doi.org/10.4230/LIPIcs.TQC.2019.5

6. Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum assembly
language (2017)

7. Fingerhuth, M., Babej, T., Wittek, P.: Open source software in quantum computing.
PLOS ONE 13(12), 1–28 (2018). https://doi.org/10.1371/journal.pone.0208561

8. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing.
pp. 212–219 (1996)

9. IBMQ team: 15-qubit backend: IBM Q 16 Melbourne backend specification V2.3.6
(2021), https://quantum-computing.ibm.com

10. LaRose, R.: Overview and Comparison of Gate Level Quantum Software Platforms.
Quantum 3, 130 (2019). https://doi.org/10.22331/q-2019-03-25-130

11. Leymann, F., Barzen, J.: The bitter truth about gate-based quantum algo-
rithms in the NISQ era. Quantum Science and Technology 5(4), 1–28 (2020).
https://doi.org/10.1088/2058-9565/abae7d

12. Leymann, F., Barzen, J., Falkenthal, M.: Towards a Platform for Sharing Quantum
Software. In: Proceedings of the 13th Advanced Summer School on Service Oriented
Computing (2019). pp. 70–74. IBM Technical Report (RC25685), IBM Research
Division (2019)

13. Leymann, F., Barzen, J., Falkenthal, M., Vietz, D., Weder, B., et al.: Quantum
in the Cloud: Application Potentials and Research Opportunities. In: Proceedings
of the 10th International Conference on Cloud Computing and Services Science
(CLOSER 2020). pp. 9–24. SciTePress (2020)

14. Mills, D., Sivarajah, S., Scholten, T.L., Duncan, R.: Application-motivated,
holistic benchmarking of a full quantum computing stack (2021).
https://doi.org/10.22331/q-2021-03-22-415

15. Murali, P., Baker, J.M., Javadi-Abhari, A., Chong, F.T., Martonosi, M.: Noise-
adaptive compiler mappings for noisy intermediate-scale quantum computers. In:
Proceedings of the Twenty-Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. p. 1015–1029. ASPLOS
’19, ACM (2019). https://doi.org/10.1145/3297858.3304075

16. Murali, P., Linke, N.M., Martonosi, M., Abhari, A.J., Nguyen, N.H., et al.: Full-
stack, real-system quantum computer studies: Architectural comparisons and design

https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.1088/2058-9565/ab9359
https://doi.org/10.1088/2058-9565/ab9359
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.4230/LIPIcs.TQC.2019.5
https://doi.org/10.1371/journal.pone.0208561
https://quantum-computing.ibm.com
https://doi.org/10.22331/q-2019-03-25-130
https://doi.org/10.1088/2058-9565/abae7d
https://doi.org/10.22331/q-2021-03-22-415
https://doi.org/10.1145/3297858.3304075

16 M. Salm et al.

insights. In: Proceedings of the 46th International Symposium on Computer Architec-
ture. p. 527–540. ISCA ’19, ACM (2019). https://doi.org/10.1145/3307650.3322273

17. National Academies of Sciences, Engineering, and Medicine: Quantum Computing:
Progress and Prospects. The National Academies Press (2019)

18. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, 10th edn. (2011)

19. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79
(2018). https://doi.org/10.22331/q-2018-08-06-79

20. Quantum AI team and collaborators: Cirq (2020)

21. Resch, S., Karpuzcu, U.R.: Benchmarking quantum computers and the impact of
quantum noise (2019)

22. Rieffel, E., Polak, W.: Quantum Computing: A Gentle Introduction. The MIT
Press, 1st edn. (2011)

23. Rigetti: Docs for the Forest SDK (2021), https://pyquil-docs.rigetti.com/

24. Salm, M., Barzen, J., Breitenbücher, U., Leymann, F., Weder, B., et al.: The
NISQ Analyzer: Automating the Selection of Quantum Computers for Quan-
tum Algorithms. In: Proceedings of the 14th Symposium and Summer School on
Service-Oriented Computing (SummerSOC 2020). pp. 66–85. Springer International
Publishing (2020). https://doi.org/10.1007/978-3-030-64846-6 5

25. Salm, M., Barzen, J., Leymann, F., Weder, B.: About a Criterion of Successfully
Executing a Circuit in the NISQ Era: What wd ≪ 1/ϵeff Really Means. In: Pro-
ceedings of the 1st ACM SIGSOFT International Workshop on Architectures and
Paradigms for Engineering Quantum Software (APEQS 2020). pp. 10–13. ACM
(2020). https://doi.org/10.1145/3412451.3428498

26. Sete, E.A., Zeng, W.J., Rigetti, C.T.: A functional architecture for scalable quantum
computing. In: 2016 IEEE International Conference on Rebooting Computing
(ICRC). pp. 1–6 (2016). https://doi.org/10.1109/ICRC.2016.7738703

27. Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete Log-
arithms on a Quantum Computer. SIAM Journal on Computing 26(5), 1484–1509
(1997). https://doi.org/10.1137/S0036144598347011

28. Singhal, K., Rand, R., Hicks, M.: Verified translation between low-level quantum
languages. The First International Workshop on Programming Languages for
Quantum Computing (2020)

29. Siraichi, M.Y., Santos, V.F.d., Collange, S., Quintão Pereira, F.M.: Qubit Allocation.
In: CGO 2018 - International Symposium on Code Generation and Optimization.
pp. 1–12 (2018). https://doi.org/10.1145/3168822

30. Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington, A., et al.: t|ket⟩: A
retargetable compiler for nisq devices. Quantum Science and Technology 6 (2020).
https://doi.org/10.1088/2058-9565/ab8e92

31. Smith, R.S., Curtis, M.J., Zeng, W.J.: A practical quantum instruction set archi-
tecture (2017)

32. Steiger, D.S., Häner, T., Troyer, M.: Projectq: an open source software framework
for quantum computing. Quantum 2, 49 (2018). https://doi.org/10.22331/q-2018-
01-31-49

33. Tannu, S.S., Qureshi, M.K.: Not all qubits are created equal: A case for variability-
aware policies for nisq-era quantum computers. In: Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems. p. 987–999. ASPLOS ’19, ACM (2019).
https://doi.org/10.1145/3297858.3304007

https://doi.org/10.1145/3307650.3322273
https://doi.org/10.22331/q-2018-08-06-79
https://pyquil-docs.rigetti.com/
https://doi.org/10.1007/978-3-030-64846-6_5
https://doi.org/10.1145/3412451.3428498
https://doi.org/10.1109/ICRC.2016.7738703
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1145/3168822
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.1145/3297858.3304007

Automating the Comparison of Quantum Compilers for Quantum Circuits 17

34. Vietz, D., Barzen, J., Leymann, F., Wild, K.: On Decision Support for Quantum
Application Developers: Categorization, Comparison, and Analysis of Existing
Technologies. In: Computational Science – ICCS 2021. pp. 127–141. Springer
International Publishing (2021). https://doi.org/10.1007/978-3-030-77980-1 10

35. Wild, K., Breitenbücher, U., Harzenetter, L., Leymann, F., Vietz, D., Zimmermann,
M.: TOSCA4QC: Two Modeling Styles for TOSCA to Automate the Deployment
and Orchestration of Quantum Applications. In: 2020 IEEE 24th International
Enterprise Distributed Object Computing Conference (EDOC). IEEE Computer
Society (2020). https://doi.org/10.1109/EDOC49727.2020.00024

36. Zhong, H.S., Wang, H., Deng, Y.H., Chen, M.C., Peng, L.C., et al.: Quantum
computational advantage using photons. Science (2020)

https://doi.org/10.1007/978-3-030-77980-1_10
https://doi.org/10.1109/EDOC49727.2020.00024

	Automating the Comparison of Quantum Compilers for Quantum Circuits

