
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{salm, barzen, leymann, weder}@iaas.uni-stuttgart.de

Prioritization of Compiled Quantum Circuits
for Different Quantum Computers

Marie Salm, Johanna Barzen, Frank Leymann, Benjamin Weder

@inproceedings{Salm2022_PrioritizationCompiledQuantumCircuits,
Author = {Marie Salm and Johanna Barzen and Frank Leymann and Benjamin

Weder},
Title = {{Prioritization of Compiled Quantum Circuits for Different

Quantum Computers}},
Booktitle = {Proceedings of the 2022 IEEE International Conference on

Software Analysis, Evolution and Reengineering (SANER 2022)},
Pages = {1258--1265},
Publisher = {IEEE},
Year = 2022,
Doi = {10.1109/SANER53432.2022.00150}

}

:

Institute of Architecture of Application Systems

© 2022 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

Prioritization of Compiled Quantum Circuits
for Different Quantum Computers

Marie Salm, Johanna Barzen, Frank Leymann, Benjamin Weder
Institute of Architecture of Application Systems, University of Stuttgart, Stuttgart, Germany

{salm, barzen, leymann, weder}@iaas.uni-stuttgart.de

Abstract—Quantum computers can solve certain problems

faster than classical computers. The number of quantum comput-

ers offered via the cloud increases such that a variety is accessible

for the public. However, current quantum computers still suffer

from a small number of qubits and high error rates. Selecting a

quantum computer providing enough qubits and low error rates

is tremendously important to receive stable execution results for

a given quantum circuit. The execution results are also influenced

by the compilation result of the selected quantum compiler for

hardware mapping and optimization. For computing time, the

access is regulated by vendors of quantum computers resulting in

waiting times for the user. Thus, a deep and manifold analysis of

quantum computers and compiled circuits of different quantum

compilers is required to estimate in advance which compiled

circuit will return stable execution results also in consideration of

non-functional requirements such as waiting times. To address this,

we present a framework that analyzes and prioritizes compiled

circuits for different quantum computers using several compilers

based on the requirements of the user. We show the practical

feasibility of our framework by a prototype and two use cases.

Index Terms—quantum computing, compilation, prioritization,

MCDA, decision support, NISQ Analyzer

I. INTRODUCTION

Quantum computers are known to solve specific problems
faster than classical computers [1], [2]. However, applying
quantum algorithms with up to an exponential speedup, such
as the Shor algorithm [3], on real complex problems are not
yet feasible: Also, the next years will be dominated by the
Noisy Intermediate-Scale Quantum (NISQ) era [4]. It represents
current gate-based quantum computers with high error rates
and few qubits limiting the size of executable quantum circuits,
i.e., implemented quantum algorithms [4], [5].

Nevertheless, the number of quantum computers grows con-
tinuously such that already a variety is publicly accessible via
the cloud [6], [7]. They differ in their hardware characteristics,
such as the number of qubits, qubit connectivity, gate set, and
error rates. These characteristics influence whether a circuit is
executable and, if this is the case, directly affect the precision
of the execution result [8], [9]. To execute a given circuit, the
selection of a quantum computer offering a sufficient number
of qubits and low error rates is hampered by the NISQ era [9].
But it is therefore tremendously important to obtain stable
execution results in terms of executing contained error-prone
gates within the decoherence times of the qubits.

However, always selecting the same quantum computer that
has led to successful executions in the past is not advisable:
(i) Quantum computers are regularly re-calibrated causing

varying error rates [10], [11]. (ii) Before executing a circuit, it
has to be mapped, i.e., compiled to the quantum computer [5],
[12]. Based, e.g., on qubit connectivity and implemented gate
set, the compilation may result in a circuit requiring more qubits
and gates and, thus, causing a higher overall error rate [8].
(iii) Furthermore, existing quantum compilers differ in their
mapping algorithms resulting in different compilation results
for the same circuit and quantum computer as the mapping
is NP-hard and can only be solved approximately [12], [13].
Multiple compilers should therefore be considered. (iv) Vendors
offering quantum computers via the cloud regulate the access
for computing time. Thereby, several access methods exist, e.g.,
job queues or time slices [6], [14]. These may cause varying
waiting times for different quantum computers until executing
a circuit. Overall, a deep and versatile analysis of different
quantum computers, their characteristics, and their access
regulation via the cloud is required. Related compilation results
from several compilers of the circuit to be executed should also
be considered to estimate in advance which compiled circuits
will result in stable execution results within short waiting times
and prioritize them according to the needs of the user. Our
first research question (RQ) is therefore as follows:

RQ 1: What are relevant metrics for the analysis and
prioritization of compilation results of a quantum circuit
for different quantum computers?

To address RQ 1, several quantum software development
kits (SDKs) and vendors of quantum computers are analyzed to
identify metrics describing properties of compiled circuits, up-
to-date quantum computer characteristics, and non-functional
requirements such as waiting times influencing the execution
and to serve as a basis for prioritization.

However, retrieving all these metrics requires a lot of manual
effort. Additionally, interpreting them to prioritize compilation
results based on prospects of stable and fast available execution
results requires immense knowledge about quantum computing.
The individual needs of the user must thereby be the focus.
Our second RQ is accordingly the following:

RQ 2: How can compiled circuits of a given quantum circuit
for different quantum computers be automatically prioritized
based on requirements of the user?

To tackle RQ 2, we present a framework that automatically
prioritizes compilation results of a given quantum circuit
for different quantum computers based on a set of metrics
whose importance is stated individually by the user. Besides
automated compilation with multiple compilers [12], the
framework enables to further (i) analyze compiled circuits
and quantum computers and (ii) prioritize them according to
metrics identified by answering RQ 1.

For prioritization, well-known (i) multi-criteria decision
analysis (MCDA) methods are applied. (ii) Use cases are
presented performing experiments to retrieve initial weights
for the metrics accordingly. Additionally, the (iii) user is
enabled to adjust weights according to own needs. We present
a (iv) prototype to demonstrate the feasibility of this framework.
The prototype is a plug-in-based system; thus, further metrics
and prioritization methods can be included.

The paper is structured as follows: Sect. II introduces
fundamentals about MCDA. In Sect. III, SDKs and vendors are
analyzed to identify metrics. Sect. IV presents our prioritization
approach. Sect. V shows the system architecture and prototype.
Sect. VI presents two use cases. Sect. VII discusses current
limitations. Sect. VIII presents related work. Sect. IX concludes
the paper and shows future work.

II. MULTI-CRITERIA DECISION ANALYSIS

In several domains such as Cloud Computing [15], fi-
nance [16], and logistics [17], MCDA methods support the
decision-maker to select an alternative out of a set of given
alternatives based on individual needs [18]. Multiple criteria
thereby describe properties of alternatives targeting one of
the defined goals. The significance of single criteria can be
regulated by defining individual weights [18]. When mapping
the concepts to our approach, the compiled circuits jointly
with associated quantum computers can be understood as the
alternatives and our metrics describe the criteria. A goal of
the user might be the fast execution of a circuit described by
metrics about waiting time. The potentially conflicting goals
are stable execution results considered by the metrics about
hardware characteristics and circuit properties [19].

Today, a huge number of MCDA methods exist targeting
different aspects in the multi-criteria analysis field, e.g., by
returning a single alternative or a ranked list [18]. We therefore
use the decision-support system MCDA Method Selection
Tool [18], [20] to select suitable methods for our approach.
The system relies on different criteria, e.g., consideration of
weights, the scale of metric values, and the type of the given
decision problem such as single choice or ranking. As the
impact of the different metrics is to be examined and the
user should be able to reflect their needs, weights should
be supported by the used MCDA methods. The values of
our metrics are quantitatively compared, not, e.g., mapped
to a common scale. Our decision problem is a ranking of
compiled circuits and not a single choice or classification
problem. The considered MCDA methods can either provide a
complete or a partial ranking. Based on the given criteria, 30
MCDA methods are returned. As a first attempt, we support

three of them: Technique for Order Preference by Similarity
to Ideal Solution (TOPSIS) [21], ELimination Et Choice
Translating REality III (ELECTRE III) [22], and Preference
Ranking Organization METHod for Enrichment of Evaluations
II (PROMETHEE II) [23]. All three support quantitative weights
simplifying their handling and are among the most common
MCDA methods [18], [24]. Due to the expandability of our
framework, further MCDA methods can be added.

TOPSIS ranks alternatives according to their distance to the
optimal alternative providing the best metric values regarding
all alternatives and to the anti-optimal alternative providing the
worst values [25]. All metric values and weights are normalized
to enable a comparison of metrics. The optimal and anti-optimal
alternatives are determined and the Euclidean distances between
them and given alternatives is calculated considering defined
weights. Regarding both distances, the relative distance of an
alternative to the optimum is determined. The ranking is the
descending order of relative values.

PROMETHEE, in general, compares alternatives pairwise for
each metric [26]. Thresholds determine which of two regarded
alternatives is preferred by defining the minimum distance
for each metric. The outranking over all metrics between two
alternatives is calculated by summing the products of previously
determined preference distances and related metric weights over
all metrics and normalizing it [19]. Eventually, it is calculated
how far an alternative is more preferred than the others, called
positive flow [26]. On the opposite, it is calculated how far
the other alternatives are more preferred than the regarded one,
called negative flow. In PROMETHEE II, the negative flow is
subtracted from the positive flow resulting in a net flow, i.e., a
total order of alternatives [19].

ELECTRE III also compares alternatives pairwise and uses
thresholds to determine indifference and preference of two
alternatives [27]. The concordance index defines how much
an alternative outranks another for each metric based on given
thresholds. Veto thresholds enable the rejection of outrankings
if metric values of weaker alternatives are better than the
related veto thresholds. The discordance index defines the
opposite using the veto thresholds and is compared with the
concordance index. To get a partial ranking, alternatives are
ordered ascending and descending based on their outranking
degree and both orderings are intersected [22], [27].

III. IDENTIFICATION OF QUANTUM COMPUTER AND
QUANTUM CIRCUIT METRICS

Objectives in executing a quantum circuit on a quantum
computer are, e.g., to obtain stable execution results and,
additionally, to have only a short waiting time until execution. In
this case, we need to consider the compilation result of a circuit
with its properties as well as the related quantum computer
with its hardware characteristics and access regulations [5].
Existing SDKs and vendors already provide methods to analyze
circuits and supported quantum computers. To address RQ 1,
we summarize metrics introduced by [6], [11], [14] and
extend them by analyzing four SDKs and three vendors
to describe properties of compiled circuits and quantum

computers influencing executions and waiting times: Qiskit [28]
with the vendor IBMQ, Cirq [29] with Google, Forest [30]
with Rigetti, and the vendor-independent SDK pytket [31]
supporting all mentioned vendors. The identified set of metrics
is expandable. Further SDK analysis is presented in [32]. While
most circuit metrics can be defined programmatically if not
natively supported as methods, metrics for quantum computers
are limited by the information provided by the vendor. Defined
metrics about hardware characteristics are therefore offered by
all quantum computers of considered vendors. We describe the
identified metrics for circuits and quantum computers hereafter.

A. Quantum Circuit Metrics

A metric describing the number of required qubits of a circuit
is the (i) width [5], [11]. The target quantum computer must
provide at least as many qubits as the compiled circuit [9]. If the
compiler can decrease the number of qubits, the mapping to the
topology of the quantum computer may be optimized reducing
errors caused by qubits, qubit connections, and SWAP gates [8],
[10], [31]. (ii) Depth defines the number of sequentially
executable gates [5]. All gates should be applied before the
qubits of the quantum computer decohere [5], [8]. Furthermore,
errors of sequentially applied gates accumulate, amplifying
the resulting error. As multi-qubit gates have the highest gate
errors, (iii) multi-qubit gate depth describes the number of
sequentially executable multi-qubit gates in a circuit [31]. Each
operation introduces errors, thus, (iv) total number of operations
represents the overall size of a circuit considering gates and
measurement operations [11]. (v) Number of single-qubit gates
counts the number of single-qubit gates whereas (vi) number
of multi-qubit gates counts the error-prone multi-qubit gates in
a circuit [31]. (vii) Number of measurement operations counts
all contained measurement operations.

B. Quantum Computer Metrics

The success of circuit executions relies on the hardware
characteristics of quantum computers. (viii) Average single-
qubit gate error defines the average error rates of all single-
qubit gates as well as (ix) average multi-qubit gate error
for all multi-qubit gates of a given quantum computer [31].
Besides gate errors, also gate times must be considered since
they use the decoherence times of targeting qubits [8], [11].
Thus, (x) average single-qubit gate time and (xi) average
multi-qubit gate time are introduced to represent the mean
value of gate times of single-qubit and multi-qubit gates. The
(xii) average readout error defines the average error of all
measurement operations of a quantum computer causing long
delays and introducing further errors [5], [8]. The decoherence
time consists of T1 measuring the time it takes for a qubit
to relax from state |1i to |0i and T2 measuring the time it
takes for a qubit to exhibit smaller phase errors [10], [11]. The
longer these times are, the higher are the chances of stable
execution results. (xiii) Average T1 and (xiv) average T2 define
the decoherence times of all qubits of a quantum computer. To
target short waiting times until accessing a quantum computer
for execution, (xv) waiting time is introduced. The access

methods [33] defined by vendors of quantum computers are
merged. It represents, e.g., queue sizes, wait time until free
time slices, or scheduled reservations.

IV. PRIORITIZATION OF COMPILED QUANTUM CIRCUITS

We address RQ 2 by presenting a framework to prioritize
compiled circuits of a given circuit for different quantum
computers using several quantum compilers. Fig. 1 gives an
overview of our approach. Light components are from previous
work [9], [11], [12], shaded components are extended, and
dark components are new components introduced in this work.

A. Translation
Present SDKs providing quantum compilers to enable the

compilation of quantum circuits differ in their supported
programming languages and gate sets [6], [12]. Thus, in the
(A) Translation phase, if the given circuit of the user is written
in a programming language not supported by the SDK of one
of the supported compilers, it is automatically translated into
the required language and gate set [12].

B. Compilation
The circuits in the appropriate languages for the different

SDKs are passed to the (B) Compilation phase. Supported
compilers, e.g., t|keti [31] and Qiskit Transpiler [28], are
selected for compilation if their SDKs natively support access
to the individual available quantum computers [12]. The
provenance system QProv [11] is therefore used to provide
uniform up-to-date information such as availabilities, error
rates, and gate sets about the quantum computers of supported
vendors. The selected compilers compile the given circuits on
all supported quantum computers and simulators [12].

C. Circuit and QPU Analysis
In the (C) Circuit and QPU Analysis phase, compiled circuits

and related quantum computers are analyzed to determine
values of metrics identified in Sect. III. Recent values for
quantum computer metrics, e.g., average gate and readout
errors are retrieved [11]. The executability of compiled circuits
on related quantum computers is examined and circuits are
filtered accordingly [9], [12]: The depth of a compiled circuit
is compared with the quotient of average decoherence times of
all qubits divided by the maximum gate time of the quantum
computer [34]. If quantum computers do not provide enough
qubits, compilers automatically cause compilations to fail,
reducing the set of compiled circuits for the next phase [12].

D. Prioritization
The determined metric values of executable compilation

results and quantum computers are handed over to the (D) Pri-
oritization phase where the compiled circuits are prioritized.
To calculate a ranking, the user selects one of the supported
MCDA methods and adjust the weights of the metrics if needed
according to their requirements. The method SMART [35] is
provided to simplify the appropriate selection of weighting
values: The user assigns between 0 and 100 points to each
metric, with 0 being the lowest and 100 being the highest

Circuit Circuits
Translated

Q
uil

…

Translation

Q
ASM

A

t|ket⟩
Q

iskit

…

Compilation

B

Circuits
Compiled

QPU

QProv

Circuit & QPU
Analysis

C

Results
Measurement

TO
PSIS

…

Prioritization

ELECTRE

D

IBM
Q

…

Execution

Rigetti

E
Weight

Adjustment

F

1.2. 3.

Compiled Circuits
Ranking of

DepthT1

Adjusted Weights

Depth 7
Width 3
T1 0.02
... ...

T2 0.04... ...

Depth 5
Width 3
T1 0.02
... ...

T2 0.04... ...

Metrics
Circuit & QPU

Fig. 1. Automated compilation, analysis, and prioritization of compiled circuits for available quantum computers using multiple quantum compilers.

number of points [19]. Metrics with 0 points are not considered
for ranking, thus, different metric sets and MCDA methods
can be combined. For example, if fast execution is the most
important aspect, (xv) waiting time receives 100 points, all
other metrics have accordingly fewer points. Its weight is
calculated by dividing the 100 points by the sum of all
points. Alternatively, TOPSIS [21] with initial values for metric
weights is applied. A ranked list of compiled circuits and their
related quantum computers is finally presented to the user.

E. Execution
The user selects which of the prioritized executable compila-

tion results to execute. In the (E) Execution phase, the selected
circuit is automatically delivered to, e.g., IBMQ or Rigetti
providing the target quantum computer by using the SDK of
the related quantum compiler [12]. Besides the execution on
the quantum computer, a proper compiled circuit is executed
on an available simulator if it fits the resource requirements of
the circuit. Afterward, the returned measurement results of the
execution are shown to the user. To evaluate the quality of the
execution results via a single value, histogram intersection [36]
is applied to the execution results as they are commonly
represented as histograms. The histograms of the simulator and
the quantum computer are therefore overlaid and compared to
determine the deviation due to errors caused by the quantum
computer. The resulting deviation value is shown to the user.

F. Weight Adjustment
The results are input for the optional (F) Weight Adjustment

phase. The user can compare the results and histogram intersec-
tion values of the compiled circuits. Based on their requirements
and analysis of the results, the user can adjust the metric
weights from Sect. IV-D. With the adjusted weights, the user
can initiate a re-prioritization of the list of compiled circuits
(Sect. IV-D) but can also start the compilation and prioritization
of another circuit based on these weights (Sect. IV-A).

V. SYSTEM ARCHITECTURE AND PROTOTYPE

In this section, we describe the system architecture of
the prioritization approach, shown in Sect. IV. Further, its
prototypical implementation is presented.

A. System Architecture

Fig. 2 presents the overall system architecture of our
framework. We therefore extended the NISQ Analyzer [9],
[12] by additional components and external services to prior-
itize compiled quantum circuits. Light components are from
previous work, middle gray components are expanded, and dark
components are new. Further, external components which are
integrated are marked with dashed lines. The Translator and
its Translator UI translates given quantum circuits in required
languages based on stored Gate Mappings [12]. To prioritize,
external MCDA Services are invoked providing the execution of
MCDA methods described in Sect. II offered via the cloud. To
invoke required MCDA Services, the Connector of the NISQ
Analyzer is extended. The NISQ Analyzer UI and the HTTP
REST API of the NISQ Analyzer are extended to prioritize and
analyze compilation results in Sect. III. With the additional
metrics and the histogram intersection values for compiled
quantum circuits, the model of stored compilation and execution
Results contain further attributes. The metrics as well as their
weights are stored in a repository. The Performance Extractor
collects and extracts the metric values of compilation results and
supported quantum computers required for the application of
MCDA Services. The Prioritizer invokes the MCDA Services,
interprets the returned results, and stores the rankings of
compiled circuits. Furthermore, it supports the calculation of
histogram intersections as described in Sect. IV. On the right
side of Fig. 2, the SDK Services Forest Service, pytket Service,
and Qiskit Service as well as the provenance system QProv [11]
are extended to support the analysis of compiled circuits and
quantum computers based on the additional metrics [12].

To prioritize compiled circuits of a given quantum circuit for
different quantum computers using multiple compilers, the user
starts the compilation via the NISQ Analyzer UI, as presented
in [12]. All quantum computers and at least one simulator
provided via QProv are therefore considered. The compilation
on a simulator is required for the later histogram intersection. A
detailed description of the translation and compilation process
is presented in [12]. After compilation, the SDK Services
analyze the compiled circuits based on the defined set of

Rigetti

Forest Service
Quilc

Executor

REST API

Translator

REST API

QProv

REST API

Translator UI

diviz SOAP
Service

diviz SOAP
Service

MCDA Service

NISQ Analyzer

REST API

NISQ Analyzer UI

Connector

Selection
Rules

Algorithms,
Impl., SDKs

Results

Rule Handler

Criteria,
Weights,
Rankings

Selector

Compiler Selector

QPU Selector

Impl. Selector

Prioritizer

Performance
Extractor

Gate
Mappings

pytket Service
t|ket⟩

Executor

REST API

Qiskit Service
Transpiler

Executor

REST API

IBMQ

Fig. 2. System architecture to prioritize compiled quantum circuits for different quantum computers using multiple quantum compilers. Adapted from [12].

metrics and return the results to the NISQ Analyzer. The
Selector proofs their executability [9], stores them into the
repository, and they are presented to the user. With the NISQ
Analyzer UI, the user can select which MCDA method to
apply on the non-ranked list of compiled circuits. The user
can adjust given weights of enabled metrics stored in the
repository based on the SMART method [35], see Sect. IV. The
Prioritizer then calls the Performance Extractor to extract metric
values of compilation results for prioritization. The Performance
Extractor also invokes QProv via the Connector to gain metric
values of the considered quantum computers. Metrics, their
values, weights, and the compilation results are returned to
the Prioritizer and are transferred to the MCDA Service of the
selected MCDA method over the Connector. Eventually, the
resulted ranking of compiled circuits is returned to the NISQ
Analyzer. The Prioritizer interprets the ranking, orders the list
of compilation results, and stores the ranking. The ranked list
of compiled circuits is presented via the NISQ Analyzer UI.
The user can select compiled circuits to execute them [9]. The
SDK Service that previously compiled the selected circuit is
therefore invoked [12]. Besides the selected compilation result
of the quantum computer, also the compilation result matching
an available simulator is passed to the Executor. The execution
results of the quantum computer and simulator are returned
to the NISQ Analyzer. Their histogram intersection value is
calculated, stored, and presented to the user if the simulator
offered enough resources to compute its compilation result.
The user can analyze the results and, again, adjust the weights
of defined metrics for further prioritization.

The framework is plug-in based, thus, further MCDA
Services, i.e., MCDA methods, SDK Services, programming
languages, and metrics can be added.

B. Prototype
The NISQ Analyzer and QProv are implemented in Java

using the framework Spring Boot. The UIs are written in
TypeScript using Angular. For the Translator and the SDK

Services, the Python framework Flask is used. For further
details about their prototypical implementations, see [9], [12].
The framework is available open-source [37].

To enable the prioritization of compiled quantum circuits
based on MCDA methods, Decision Deck [38] is integrated.
It is a project to develop and provide open-source software in
the context of MCDA [38]. Combinable parts or entire MCDA
methods are thereby offered as web services that are callable
by the NISQ Analyzer via SOAP. Supported MCDA methods
so far are based on sample workflows of several web services,
see [39]–[41]. After each web service, the NISQ Analyzer
retrieves the returned results and, if the call of another web
service is foreseen in the workflow, forwards them to the next
web service. Processed data is described in XMCDA, an XML
standard tailored for MCDA [38]. The NISQ Analyzer has to
transform metric values, weights, and IDs of compiled quantum
circuits into the required format. Returned final ranking results
of web services in XMCDA have to be parsed to prioritize
compiled quantum circuits accordingly.

VI. CASE STUDY

In this section, we present the usage of our framework
introduced in Sect. V. We therefore present two use cases based
on three circuits of different quantum algorithms provided in
our GitHub repository [37]: The circuit Grover-SAT computes
the Boolean satisfiability problem of the Boolean formula
(A ^B) based on the Grover algorithm [42]. Shor-15 defines
the circuit to calculate the prime factors of the number 15
based on the Shor algorithm [3]. BV-00110 computes the secret
string 00110 based on the Bernstein-Vazirani algorithm [43].
All three circuits are compiled and executed on the IBMQ
quantum computers ibmq_lima [44], ibmq_manila [45], and
ibmq_quito [46] with 8192 shots using the Qiskit Tran-
spiler [28] via Qiskit Service and the t|keti compiler [31]
via pytket Service. (xv) Waiting time is defined by the queue
size of a given quantum computer. The three circuits are also
compiled and executed on the ibmq_qasm_simulator [47] for

TABLE I
RANKINGS OF COMPILED CIRCUITS BASED ON IDENTIFIED METRICS

QPU SDK Depth Multi-Q
Depth

Num.
Ops

Num.
Multi-Q

Multi-Q
Error

Multi-Q
Time (ns)

Readout
Error

T1
(ms) Queue Histo.

Inter. T-A P-A T-B P-B

G
ro

ve
r-

SA
T

Sim. Qiskit 14 6 21 6 0 0 0 1 2 1 1 1 1 1
lima pytket 27 9 45 9 0.010 387 0.0279 94 2 0.874 3 3 2 4

manila pytket 27 9 45 9 0.008 350 0.0276 196 5 0.847 2 2 6 3
quito pytket 27 9 45 9 0.025 277 0.0563 101 1 0.838 6 4 3 2
lima Qiskit 44 13 64 13 0.010 387 0.0279 94 2 0.824 5 7 4 7

manila Qiskit 30 13 48 13 0.008 350 0.0276 196 5 0.811 4 5 7 5
quito Qiskit 42 13 61 13 0.025 277 0.0563 101 1 0.757 7 6 5 6

W.-A 0.10 0.10 0.10 0.11 0.06 0.05 0.06 0.04 0
W.-B 0.08 0.09 0.08 0.10 0.05 0.04 0.05 0.03 0.12

the histogram intersection using the Qiskit Service. In total,
21 compiled circuits are provided for the first approach to
define initial weights. For the use cases, the MCDA methods
TOPSIS, PROMETHEE II, and ELECTRE III from Sect. II
are applied on the set of compiled circuits of each quantum
algorithm circuit. Because of space constraints, in Table I, we
only present a subset of all metrics and rankings of TOPSIS
and PROMETHEE II for Grover-SAT. The compiled circuits
are ordered by the respective histogram intersection values. The
entire table containing all compiled circuits, metrics, weights,
and rankings based on ELECTRE III is shown in [48].

Our first use case focuses on finding an initial weighting
based on the quality of execution results. For this use case,
(xv) waiting time is not considered. For each circuit, we focus
on the histogram intersection results shown in Table I and
compare the metric values to identify why specific compilation
results produce better execution results than others. Based on
detected correlations between histogram intersection values and
metric values, weights are determined. First, for each quantum
algorithm circuit, we propose to determine pre-weighting
values between 0 and 100 for each metric: If a matching
ordering of distances to the optimal metric value can clearly
be identified, the pre-weight 100 is set for this metric. For
example, considering histogram intersection values in Table I,
the compiled circuits of Grover-SAT show an ascending order
for (vi) number of multi-qubit gates which should be minimal.
Note that (vi) number of multi-qubit gates and (iii) multi-qubit
gate depth may also differ for other circuits. If no total ordering
is presented for a metric, but more optimal metric values are
mostly part of more optimal compilation results and vice versa,
80 is defined, e.g., for (ii) depth at Grover-SAT. If no relation
between a metric and the histogram intersection values can be
clearly detected, 50 is set as pre-weight, e.g., at (ix) average
multi-qubit gate error. At Grover-SAT, (xiii) average T1 is set
to 20 as the best metric values are not part of the compiled
circuits with the highest histogram intersection values, however,
they are also not part of the worst once. Finally, if the worst
metric values are related to compilation results with high ranks,
0 is set. For example, for Grover-SAT the highest (xi) average
multi-qubit-gate time values are part of compiled circuits
with the highest histogram intersection value. If pre-weights
for each metric for all three quantum algorithm circuits are
set, they are divided by three and then, the SMART method

presented in Sect. IV is applied to retrieve initial weights. Other
procedures regarding pre-weighting can also be applied. The
resulted weights (W.-A) for the first use case are presented
in Table I. These are passed to the MCDA methods to execute
them on the compilation results for each circuit. The rankings
of TOPSIS (T-A) and PROMETHEE II (P-A) for Grover-SAT
and Shor-15 reflect the histogram intersection values better than
for BV-00110. In Table I, the rankings T-A and P-A present
a rough trend compared to the histogram intersection values.
The rankings between the MCDA methods differ due to their
different approaches [17]. Regarding Grover-SAT and Shor-
15, the t|keti compiler results in higher histogram intersection
values than the Qiskit Transpiler. The characteristics of quantum
computers do not seem to have much influence. Instead, for
BV-00110 the properties of the different compilation results are
similar such that the characteristics of the quantum computers
seem to influence the execution results.

In the second use case, also the waiting time is considered
by setting its pre-weighting value to 100. Previously defined
pre-weights remain unchanged. The resulting weights (W.-
B) are shown in Table I. The ranks of TOPSIS (T-B) and
PROMETHEE II (P-B) in Table I show that ibmq_manila
gets, in general, a lower rank than in the previous use
case as it has the highest queue size. On the other hand,
the rankings considering ibmq_quito improved because this
quantum computer has the smallest queue size.

VII. DISCUSSION AND LIMITATIONS

With the introduced framework, the user is enabled to
further analyze and prioritize compiled circuits of a given
quantum circuit for different quantum computers using multiple
quantum compilers. With initial weights defined in Sect. VI,
the histogram intersection results are roughly reflected but are
not enabling a precise ranking of compilation results of other
quantum circuits. However, the framework enables the user
to prioritize compiled circuits based on their needs. In the
future, we want to consider a larger set of quantum circuits
and, especially, want to include an automated approach to
learn weights based on past executions. Often, to further
evaluate the stability of resulting rankings of MCDA methods,
sensitivity analyzes are applied [19]. As the focus of this paper
is the collection of metrics and the support of different MCDA
methods, we will provide such sensitivity analyzes in the future.
The applicability of histogram intersection based on simulators

as an indicator of stable execution results is only feasible
as long as the quantum calculation can be simulated [49].
However, also other methods for evaluation can be added, e.g.,
Probability of Successful Trials (PST) [10], as the framework
is plug-in-based. Monetary metrics, e.g., execution costs, are
currently not covered in our set of metrics as we accessed free
accessible quantum computers. Nevertheless, the framework
can be extended to support further metrics. We only consider
gate-based quantum computers, but we also want to analyze
metrics for, e.g., photonic quantum computers in the future [2].

VIII. RELATED WORK

MCDA is applied in a variety of areas, such as finance [16]
and logistics [17]. In the area of Cloud Computing, e.g.,
Garg et al. [15] present a framework that applies an MCDA
method to rank different cloud services based on several quality-
of-service attributes. Nevertheless, cloud offerings for quantum
computers are not considered.

The work of Ravi et al. [50] proposes a framework to
schedule execution jobs to multiple quantum computers in the
cloud. Metrics regarding the fidelities of quantum computers,
compiled circuit properties, and waiting times in their related
queues are therefore considered. They introduce prediction
models to predict waiting times and learn correlations between
different metrics. To select the optimal quantum computer
regarding waiting time and fidelity, a utility function is used.
However, the user is not enabled to prioritize supported
metrics based on their needs. Furthermore, the considered
quantum computers and their queue sizes are simulated, and
no prototypical implementation is provided.

In [51], Ravi et al. present a study similar to the previously
discussed paper [50]. They make theoretical recommendations
considering, e.g., the importance of two-qubit gates, prediction
of waiting times in queues, and optimized compilation strategies
observing past circuit executions [51]. A model to predict
execution times on quantum computers is introduced based on
metrics such as width, depth, number of gates, and number
of qubits. The model is then applied on several quantum
computers. Their work gives an overview of current and future
issues regarding quantum computers and their usability in the
cloud, but no prototypical implementation is presented.

Grossi et al. [52] introduce an architecture that integrates the
API of quantum computer vendors into a classical enterprise
architecture. To execute quantum circuits on quantum hardware,
the quantum computer offering the required number of qubits
and the shortest queue length is selected. However, the require-
ments of the user are not considered by, e.g., prioritization,
and no hardware characteristics such as decoherence times are
taken into account. Besides the number of qubits, no further
properties of quantum circuits are observed.

Cruz-Lemus et al. [53] propose a set of different metrics
to analyze quantum circuits. They consider counts and ratios
of single-qubit gates, multi-qubit gates, measurement gates,
ancillae, and oracles as well as depth, width, and the number
of parallel gates. The proposed metrics still need to be

implemented and validated by experiments. As our framework
is expandable, further metrics can be added.

The well-known Quantum Volume [54] considering the
size of a circuit and the error rate of a quantum computer
enables the comparison of performances between different
quantum computers [8]. However, not all vendors calculate and
provide the resulting performance values of available quantum
computers and Quantum Volume only enables the ranking of
quantum computers, not compiled circuits which are considered
by the approach of Wack et al. [55].

IX. CONCLUSION AND FUTURE WORK

In this work, we presented a framework to prioritize compi-
lation results of a given quantum circuit for different quantum
computers based on estimations of execution results and non-
functional requirements. Especially, compilation results of
several quantum compilers are considered. Besides automated
compilation, the framework supports further (i) analysis of
metrics of quantum computers and compiled circuits, as well
as (ii) prioritization of compiled circuits according to the
needs of the user answering RQ 2. The user is enabled
to determine the weights of individual metrics and select
the MCDA method to prioritize compiled circuits. Initial
metric weights were determined by two presented use cases to
further support the user. Answering RQ 1, SDKs and vendors
of quantum computers were analyzed to identify metrics
describing the properties of quantum computers and compiled
circuits, building the basis of our prioritization framework.

In the future, we plan to support further metrics describing
the hardware characteristics of quantum computers and the
properties of compiled quantum circuits. For example, we plan
to support PST [10] to further improve our analysis. To support
additional SDKs, compilers, and vendors for prioritization, we
want to add more SDK Services. We also want to improve the
initial metric weights and further support the user selecting
compiled quantum circuits promising stable execution results
by automatically learning weights and choosing suitable MCDA
methods based on past executions using Machine Learning [56].
We thereby plan to provide sensitivity analyzes [19] to evaluate
the stability of resulted rankings.

ACKNOWLEDGEMENT

This work was partially funded by the BMWi project
PlanQK (01MK20005N).

REFERENCES

[1] F. Arute et al., “Quantum supremacy using a programmable supercon-
ducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019.

[2] H.-S. Zhong et al., “Quantum computational advantage using photons,”
Science, 2020.

[3] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer,” SIAM Journal on
Computing, vol. 26, no. 5, p. 1484–1509, 1997.

[4] J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum,
vol. 2, p. 79, 2018.

[5] F. Leymann and J. Barzen, “The bitter truth about gate-based quantum
algorithms in the NISQ era,” Quantum Science and Technology, vol. 5,
no. 4, pp. 1–28, 2020.

[6] R. LaRose, “Overview and Comparison of Gate Level Quantum Software
Platforms,” Quantum, vol. 3, p. 130, 2019.

[7] F. Leymann et al., “Quantum in the Cloud: Application Potentials
and Research Opportunities,” in Proceedings of the 10th International
Conference on Cloud Computing and Services Science (CLOSER 2020).
SciTePress, 2020, pp. 9–24.

[8] M. Salm, J. Barzen, F. Leymann, and B. Weder, “About a Criterion of
Successfully Executing a Circuit in the NISQ Era: What wd ⌧ 1/✏eff
Really Means,” in Proceedings of the 1st ACM SIGSOFT International
Workshop on Architectures and Paradigms for Engineering Quantum
Software (APEQS 2020). ACM, 2020, Workshop, pp. 10–13.

[9] M. Salm et al., “The NISQ Analyzer: Automating the Selection of
Quantum Computers for Quantum Algorithms,” in Proceedings of the
14th Symposium and Summer School on Service-Oriented Computing
(SummerSOC 2020). Springer International Publishing, 2020, pp. 66–85.

[10] S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: A
case for variability-aware policies for nisq-era quantum computers,” in
Proceedings of the Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ser.
ASPLOS ’19. ACM, 2019, p. 987–999.

[11] B. Weder, J. Barzen, F. Leymann, M. Salm, and K. Wild, “QProv: A
provenance system for quantum computing,” IET QuantumCommunica-
tion, vol. 2, no. 4, pp. 171–181, Dec. 2021.

[12] M. Salm, J. Barzen, F. Leymann, B. Weder, and K. Wild, “Automating
the Comparison of Quantum Compilers for Quantum Circuits,” in
Proceedings of the 15th Symposium and Summer School on Service-
Oriented Computing (SummerSOC 2021). Springer International
Publishing, Sep. 2021, pp. 64–80.

[13] A. Cowtan et al., “On the Qubit Routing Problem,” in 14th Conference on
the Theory of Quantum Computation, Communication and Cryptography
(TQC 2019), ser. Leibniz International Proceedings in Informatics
(LIPIcs), vol. 135. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2019, pp. 5:1–5:32.

[14] D. Vietz, J. Barzen, F. Leymann, and K. Wild, “On Decision Support
for Quantum Application Developers: Categorization, Comparison, and
Analysis of Existing Technologies,” in Computational Science – ICCS
2021. Springer International Publishing, 2021, Workshop, pp. 127–141.

[15] S. K. Garg, S. Versteeg, and R. Buyya, “SMICloud: A Framework
for Comparing and Ranking Cloud Services,” in 2011 Fourth IEEE
International Conference on Utility and Cloud Computing, 2011, pp.
210–218.

[16] D. Alper and C. Başdar, “A Comparison of TOPSIS and ELECTRE
Methods: an Application on the Factoring Industry,” Business and
Economics Research Journal, vol. 8, no. 3, p. 627, 2017.

[17] M. Velasquez and P. T. Hester, “An analysis of multi-criteria decision
making methods,” International journal of operations research, vol. 10,
no. 2, pp. 56–66, 2013.

[18] J. Wątróbski, J. Jankowski, P. Ziemba, A. Karczmarczyk, and M. Zioło,
“Generalised framework for multi-criteria method selection,” Omega,
vol. 86, pp. 107–124, 2019.

[19] J. Geldermann and N. Lerche, “Leitfaden zur Anwendung von Methoden
der multikriteriellen Entscheidungsunterstützung,” Methode: Promethee,
2014.

[20] J. Wątróbski, J. Jankowski, P. Ziemba, A. Karczmarczyk, and M. Zioło.
(2021) MCDA Method Selection Tool. [Online]. Available: http://mcda.it

[21] C.-L. Hwang and K. Yoon, Methods for Multiple Attribute Decision
Making. Berlin, Heidelberg: Springer Berlin Heidelberg, 1981, pp.
58–191.

[22] J. R. Figueira, V. Mousseau, and B. Roy, ELECTRE Methods. New
York, NY: Springer New York, 2016, pp. 155–185.

[23] J.-P. Brans and B. Mareschal, Promethee Methods. New York, NY:
Springer New York, 2005, pp. 163–186.

[24] Sałabun, Wojciech and Wątróbski, Jarosław and Shekhovtsov, Andrii,
“Are MCDA Methods Benchmarkable? A Comparative Study of TOPSIS,
VIKOR, COPRAS, and PROMETHEE II Methods,” Symmetry, vol. 12,
no. 9, 2020.

[25] A. Bilbao-Terol, M. Arenas-Parra, V. Cañal-Fernández, and J. Antomil-
Ibias, “Using TOPSIS for assessing the sustainability of government
bond funds,” Omega, vol. 49, pp. 1–17, 2014.

[26] S. Corrente, S. Greco, and R. Słowiński, “Multiple Criteria Hierarchy
Process with ELECTRE and PROMETHEE,” Omega, vol. 41, no. 5, pp.
820–846, 2013.

[27] S. S. Hashemi, S. H. R. Hajiagha, E. K. Zavadskas, and H. A. Mahdiraji,
“Multicriteria group decision making with ELECTRE III method based on
interval-valued intuitionistic fuzzy information,” Applied Mathematical
Modelling, vol. 40, no. 2, pp. 1554–1564, 2016.

[28] G. Aleksandrowicz et al., “Qiskit: An Open-source Framework for
Quantum Computing,” 2019.

[29] Quantum AI team and collaborators, “Cirq,” 2020.
[30] Rigetti, “Docs for the Forest SDK,” 2021. [Online]. Available:

https://pyquil-docs.rigetti.com/
[31] S. Sivarajah et al., “t|keti: A retargetable compiler for NISQ devices,”

Quantum Science and Technology, vol. 6, 2020.
[32] M. Fingerhuth, T. Babej, and P. Wittek, “Open source software in quantum

computing,” PLOS ONE, vol. 13, no. 12, pp. 1–28, 2018.
[33] D. Vietz, J. Barzen, F. Leymann, B. Weder, and V. Yussupov, “An

Exploratory Study on the Challenges of Engineering Quantum Appli-
cations in the Cloud,” in Proceedings of the 2nd Quantum Software
Engineering and Technology Workshop (Q-SET 2021) co-located with
IEEE International Conference on Quantum Computing and Engineering
(QCE21). CEUR Workshop Proceedings, Oct. 2021, pp. 1–12.

[34] E. A. Sete, W. J. Zeng, and C. T. Rigetti, “A functional architecture for
scalable quantum computing,” in 2016 IEEE International Conference
on Rebooting Computing (ICRC), 2016, pp. 1–6.

[35] W. Edwards, “How to use multiattribute utility measurement for social
decisionmaking,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 7, no. 5, pp. 326–340, 1977.

[36] M. J. Swain and D. H. Ballard, “Color indexing,” International Journal
of Computer Vision, vol. 7, no. 1, pp. 11–32, 1991.

[37] University of Stuttgart. (2021) NISQ Analyzer Content Repository.
[Online]. Available: https://github.com/UST-QuAntiL/nisq-analyzer-
content/tree/paper/prioritization/prioritization

[38] J. C. Ros, Introduction to Decision Deck-Diviz: Examples User Guide.
Departament d’Enginyeria Informàtica i Matemàtiques, 2011.

[39] (2021) PROMETHEE. [Online]. Available: http://www.diviz.org/
workflow.method.PROMETHEE.html

[40] (2021) ELECTRE 3. [Online]. Available: http://www.diviz.org/workflow.
method.ELECTRE-3.html

[41] (2021) AHP-TOPSIS. [Online]. Available: http://www.diviz.org/workflow.
AHP-TOPSIS.html

[42] L. K. Grover, “A fast quantum mechanical algorithm for database search,”
in Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing, 1996, pp. 212–219.

[43] E. Bernstein and U. Vazirani, “Quantum Complexity Theory,” SIAM
Journal on Computing, vol. 26, no. 5, pp. 1411–1473, 1997.

[44] IBMQ team. (2021) 5-qubit backend: IBM Q Lima backend specification
V1.0.23. [Online]. Available: https://quantum-computing.ibm.com

[45] ——. (2021) 5-qubit backend: IBM Q Manila backend specification
V1.0.17. [Online]. Available: https://quantum-computing.ibm.com

[46] ——. (2021) 5-qubit backend: IBM Q Quito backend specification
V1.1.16. [Online]. Available: https://quantum-computing.ibm.com

[47] ——. (2021) 32-qubit simulator: IBM Q QASM simulator specification
V0.1.547. [Online]. Available: https://quantum-computing.ibm.com

[48] University of Stuttgart. (2021) Ranking of Compiled
Circuits Based on Identified Metrics Table. [Online]. Avail-
able: https://github.com/UST-QuAntiL/nisq-analyzer-content/blob/paper/
prioritization/prioritization/rankings-of-compiled-circuits.csv

[49] Y. Zhou, E. M. Stoudenmire, and X. Waintal, “What Limits the Simulation
of Quantum Computers?” Phys. Rev. X, vol. 10, p. 041038, Nov 2020.

[50] G. S. Ravi, K. N. Smith, P. Murali, and F. T. Chong, “Adaptive job and
resource management for the growing quantum cloud,” 2021.

[51] G. S. Ravi, K. N. Smith, P. Gokhale, and F. T. Chong, “Quantum
computing in the cloud: Analyzing job and machine characteristics,”
2021.

[52] M. Grossi et al., “A serverless cloud integration for quantum computing,”
2021.

[53] J. A. Cruz-Lemus, L. A. Marcelo, and M. Piattini, “Towards a set of
metrics for quantum circuits understandability,” in Quality of Information
and Communications Technology, A. C. R. Paiva, A. R. Cavalli,
P. Ventura Martins, and R. Pérez-Castillo, Eds. Cham: Springer
International Publishing, 2021, pp. 239–249.

[54] L. Bishop, S. Bravyi, A. Cross, J. Gambetta, J. Smolin, and March,
“Quantum Volume,” 2017.

[55] A. Wack et al., “Quality, Speed, and Scale: three key attributes to measure
the performance of near-term quantum computers,” 2021.

[56] M. Guo, Q. Zhang, X. Liao, F. Y. Chen, and D. D. Zeng, “A hybrid
machine learning framework for analyzing human decision-making
through learning preferences,” Omega, vol. 101, p. 102263, 2021.

http://mcda.it
https://pyquil-docs.rigetti.com/
https://github.com/UST-QuAntiL/nisq-analyzer-content/tree/paper/prioritization/prioritization
https://github.com/UST-QuAntiL/nisq-analyzer-content/tree/paper/prioritization/prioritization
http://www.diviz.org/workflow.method.PROMETHEE.html
http://www.diviz.org/workflow.method.PROMETHEE.html
http://www.diviz.org/workflow.method.ELECTRE-3.html
http://www.diviz.org/workflow.method.ELECTRE-3.html
http://www.diviz.org/workflow.AHP-TOPSIS.html
http://www.diviz.org/workflow.AHP-TOPSIS.html
https://quantum-computing.ibm.com
https://quantum-computing.ibm.com
https://quantum-computing.ibm.com
https://quantum-computing.ibm.com
https://github.com/UST-QuAntiL/nisq-analyzer-content/blob/paper/prioritization/prioritization/rankings-of-compiled-circuits.csv
https://github.com/UST-QuAntiL/nisq-analyzer-content/blob/paper/prioritization/prioritization/rankings-of-compiled-circuits.csv

	Introduction
	Multi-Criteria Decision Analysis
	Identification of Quantum Computer and Quantum Circuit Metrics
	Quantum Circuit Metrics
	Quantum Computer Metrics

	Prioritization of Compiled Quantum Circuits
	Translation
	Compilation
	Circuit and QPU Analysis
	Prioritization
	Execution
	Weight Adjustment

	System Architecture and Prototype
	System Architecture
	Prototype

	Case Study
	Discussion and Limitations
	Related Work
	Conclusion and Future Work
	References

