
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{vietz, barzen, leymann, wild}@iaas.uni-stuttgart.de

On Decision Support for Quantum Application
Developers: Categorization, Comparison, and

Analysis of Existing Technologies
Daniel Vietz, Johanna Barzen, Frank Leymann, and Karoline Wild

@inproceedings{Vietz2021_OnDecisionSupport,
author = {Vietz, Daniel and Barzen, Johanna and Leymann, Frank and Wild,

Karoline},
title = {{On Decision Support for Quantum Application Developers:

Categorization, Comparison, and Analysis of Existing
Technologies}},

booktitle = {Computational Science -- ICCS 2021},
pages = {127--141},
year = 2021,
month = jun,
publisher = {Springer International Publishing},
doi = {10.1007/978-3-030-77980-1_10}

}

:

Institute of Architecture of Application Systems

© Springer Nature Switzerland AG 2021
This is a post-peer-review, pre-copyedit version of an article published in
Proceedings of the 21st International Conference on Computational
Science (ICCS 2021). The final authenticated version is available at
https://doi.org/10.1007/978-3-030-77980-1_10

On Decision Support for Quantum Application
Developers: Categorization, Comparison, and

Analysis of Existing Technologies

Daniel Vietz[0000−0003−1366−5805], Johanna Barzen[0000−0001−8397−7973],
Frank Leymann[0000−0002−9123−259X], and Karoline Wild[0000−0001−7803−6386]

Institute of Architecture of Application Systems, University of Stuttgart
Universitätsstraße 38, 70569 Stuttgart, Germany
[firstname.lastname]@iaas.uni-stuttgart.de

Abstract. Quantum computers have been significantly advanced in re-
cent years. Offered as cloud services, quantum computers have become
accessible to a broad range of users. Along with the physical advances,
the landscape of technologies supporting quantum application develop-
ment has also grown rapidly in recent years. However, there is a variety
of tools, services, and techniques available for the development of quan-
tum applications, and which ones are best suited for a particular use case
depends, among other things, on the quantum algorithm and quantum
hardware. Thus, their selection is a manual and cumbersome process.
To tackle this challenge, we introduce a categorization and a taxonomy
of available tools, services, and techniques for quantum application de-
velopment to enable their analysis and comparison. Based on that we
further present a comparison framework to support quantum applica-
tion developers in their decision for certain technologies.

Keywords: Quantum Software Development · Quantum Computing
Technologies · Quantum Cloud Services · Decision Support

1 Introduction

Quantum computing promises to solve many problems more efficiently or pre-
cisely than it is possible with classical computers. In recent years, the number
of quantum hardware vendors, such as IBM, Rigetti, or D-Wave has steadily
increased. Via the cloud, quantum computing capacities are made publicly avail-
able. Not only hardware vendors offer various quantum cloud services, e.g., IBM
via IBM Quantum Experience (IBMQ) [25], but also established cloud providers
such as Amazon Web Services (AWS) have added quantum cloud services that
facilitate executing quantum algorithms on quantum hardware to their portfolio.

Typically, a quantum application comprises not only the implementation of a
quantum algorithm, but also pre- and post-processing components [32]. The de-
velopment of quantum applications, however, differs significantly from classical
application development [52] and currently depends heavily on the used hard-
ware. Due to the growing number of hardware vendors, service providers, and

2 D. Vietz et al.

constantly improving quantum hardware, the software landscape for the devel-
opment and execution of quantum applications is also growing steadily: Almost
each quantum cloud provider offers a Software Development Kit (SDK) in order
to compile and run quantum applications on their corresponding hardware, such
as Qiskit [1] for IBMQ [25] and Ocean [13] for D-Wave Leap [14]. But there are
also vendor-agnostic SDKs, such as XACC [33] and ProjectQ [51] that are able
to connect to quantum cloud services of different providers. In addition, there
are libraries, such as Pennylane [8], that not only enable the connection to a
variety of providers but also offer specific algorithms for certain problem classes,
e.g., machine learning. For the implementation of a quantum algorithm, differ-
ent programming languages can also be used, for which specific compilers and
transpilers are required. Finally, for integrating pre- and post-processing compo-
nents with quantum algorithms, orchestration tools, such as Orquestra [57], or
extensions for existing workflow languages, such as QuantMe [53], are proposed.

Thus, a variety of tools, services, and techniques is available that can be used
for developing quantum applications. However, which of these fit best for a cer-
tain use case and how they can be combined depends on (i) the quantum cloud
service provider, (ii) the quantum hardware used for the execution, and (iii) the
implemented quantum algorithm itself. Furthermore, developer preferences and
capabilities, such as the programming language and available tutorials, also play
an important role in the decision which tools to use. Due to the variety of pos-
sibilities and a missing overview and characterization, it is difficult to compare
individual tools and services. The decision for certain tools and services is com-
plex since it requires a lot of knowledge and understanding of their implemented
concepts. Therefore, identifying suitable software tools for realizing a certain use
case is a manual and cumbersome process.

To tackle these issues, this paper introduces (i) a categorization of currently
available technologies and provides (ii) a taxonomy for quantum application
development. Based on the proposed categorization and taxonomy, we further
introduce (iii) a comparison framework that enables to identify and compare
different tools, services, and techniques and, thus, provides decision support to a
certain degree. For this, we analyzed various technologies and literature and ex-
perimented with several tools and services. The categorization gives an overview
of different kinds of technologies and identifies the different building blocks of
current quantum application development. The taxonomy further provides a
broad view on the different aspects that need to be considered in quantum
application development. It enables to understand, analyze, and compare dif-
ferent tools, services, and techniques. We also describe the dependencies and
relationships of the different categories in the comparison framework to identify
interoperabilities of different tools and services.

After having covered the basic principles and related work in Section 2, Sec-
tion 3 provides a detailed problem statement. Section 4 introduces the cate-
gorization, Section 5 the taxonomy, and Section 6 the prototypical comparison
framework developed in the context of this work. Finally, Section 7 gives a con-
clusion and an outlook on future work.

On Decision Support for Quantum Application Developers 3

2 Fundamentals and Related Work

The development of quantum applications differs significantly from the develop-
ment of classical applications [52]. A quantum application typically contains the
implementation of a quantum algorithm, pre- and post-processing components,
and additional glue code for the execution of the quantum algorithm on a quan-
tum computer. The development of quantum applications is supported by a wide
range of different technologies. However, which tools, services, and techniques
shall be used for a particular quantum application depends on several factors.

First, it depends on the used quantum hardware. On the one hand, SDKs
that enable the implementation and execution of quantum applications are often
tailored to the quantum computers of certain vendors and thereby limit the exe-
cution on the respective hardware. E.g., Qiskit [1] (IBM), Strawberry Fields [29]
(Xanadu), and Ocean [13] (D-Wave) are each designed for their own hardware
and by default do not allow quantum applications to run on other hardware. On
the other hand, the physical limitations of current quantum hardware play a cen-
tral role when implementing quantum algorithms. Today’s quantum computers
are ”noisy”, i.e., the computational results are not completely accurate, and their
size is of ”intermediate scale”. Thus, they are called Noisy Intermediate Scale
Quantum (NISQ) computers [43]. Selecting the best quantum computer for a
specific use case is an important task in the current NISQ-era [47] and some ap-
proaches, such as TriQ [39] and t|ket〉 [48], offer compilers with hardware-specific
optimization in order to use available hardware in the best possible way.

Available libraries are also important when selecting specific SDKs since they
come with pre-implemented algorithms that can be adapted to custom use cases,
such as Pennylane [8] provides different libraries in the area of machine learning.
On top of that, technologies for the integration with classical applications are
becoming increasingly important since hybrid applications are emerging as most
promising. A hybrid quantum-classical application comprises quantum compo-
nents as well as classical components. For the integration of these components,
orchestration approaches, such as Orquestra [57] and QuantMe [53] can be used.

In different papers certain aspects of the technology landscape of quantum
application development have already been analyzed. Hassija et al. [22], for ex-
ample, describe the overall landscape of quantum computing, identify the key
players, and compare their technologies. LaRose [30] compare different SDKs in
terms of their requirements, syntax, library support, and simulation abilities.
Quantum programming languages have also been studied in terms of paradigms
and features (e.g., [18] and [23]). Fingerhuth et al. [16] identify available open-
source quantum software projects and their accompanying website1 lists many
available technologies. There are also other websites that list various tools and
cloud services [45]. However, none of them provides an insight on the depen-
dencies and interrelationships, nor does any of them provide decision support.
Gill et al. [20] provide a taxonomy in the area of quantum computing, however,
it focuses on the algorithmic characteristics of tools and libraries.

1 https://qosf.org

https://qosf.org

4 D. Vietz et al.

The existing papers and websites are a first step to compare available tools,
services, and techniques for the development of quantum applications. How-
ever, so far only certain aspects have been considered and the decision support
for quantum application developers is not focused by any work known to us.
Nevertheless, the importance of comparison and decision support frameworks
has already proven in several other domains, such as for service provider selec-
tion [5,15], and deployment automation technologies [56].

3 Problem Statement

As shown in the previous section, a variety of different tools, services, and
techniques exist for the development of quantum applications. The decision on
which SDK and which libraries to use must be made early in the development
phase –– both for the implementation of classical and quantum applications. For
the development of quantum applications, however, this decision restricts very
early on which quantum hardware and which additional libraries can be used.
Hence the portability of quantum applications is currently very limited. There-
fore, the first research question (RQ) is as follows:

RQ 1: What types of tools, services, and techniques enable the develop-
ment and execution of quantum applications and how can they be catego-
rized in order to understand, analyze, and compare them?

Although a detailed categorization and characterization of available tools, ser-
vices, and techniques is a good basis for the analysis and comparison of tech-
nologies, quantum application developers must be supported in their decision for
specific tools, services, and techniques. Therefore, the second RQ is as follows:

RQ 2: How can quantum application developers be supported in the deci-
sion for certain tools, services, and techniques?

To address the introduced RQs, we investigated several technologies and derived
a categorization and taxonomy for quantum application development as well as
a comparison framework, all introduced in the following sections.

4 Overview and Categorization of Existing Technologies
for Quantum Application Development

Based on a systematic literature study on concepts, technologies, and best prac-
tices for integrating quantum applications with classical applications (including
ACM Digital Library, arXiv, IEEE XPlore, Science Direct, Springer Link, and
Wiley Online Library) and a review of related websites ([16,44,45]), we have
identified various technologies for the development of quantum applications.

On Decision Support for Quantum Application Developers 5

Simulators QPUs

Compilers & Transpilers

Local Simulators

Libraries Programming
Languages

Quantum-classical Integration

Graphical Circuit-Modelers

Orquestra QuantMe

Quirk QPS IBMQ
Experience

Quantum Cloud Services
Azure

Quantum
AWS

Braket
D-Wave

LeapIBMQ
Rigetti Quantum
Cloud ServicesXanadu Cloud

Orquestra YML

Python
C++

Q#

Haskell

Silq

QWIRE

QuaFL

Blackbird

OpenQASM

QUIL

openfermion Grove TF Quantum

t|ket> OpenQL ScaffCC

QX Simulator QuEST QuSim

Quantum Execution
Resources

QDK
Qiskit

Strawberry
Fields

SDKs

Forest

Ocean
Cirq

Project Q

pylinalg

MyQLM

Fig. 1. Categories of quantum application development technologies with examples.

Fig. 1 shows the categorization of existing quantum application development
technologies derived from the analysis that we describe in the following. At the
bottom of Fig. 1 the category Quantum Execution Resources is shown that in-
cludes Quantum Processing Units (QPUs) as well as Simulators. Access to these
Quantum Execution Resources is typically provided via the cloud by Quantum
Cloud Services which are not limited to hardware access, e.g., Graphical Circuit-
Modelers are also often provided as services.

Graphical Circuit-Modelers (left in Fig. 1) enable to model a sequence of
operations (called gates) to be applied to the specified qubits. SDKs, which are
either provided by quantum cloud service providers or by third-party providers,
offer advanced developer tools. They can include Libraries that provide imple-
mentations of algorithms from different areas, such as chemistry [34], cryptog-
raphy [41], and machine learning [10]. Furthermore, SDKs contain Compilers
and Transpilers, such as the quilc compiler [50] as part of the Forest SDK [46].
Finally, SDKs often include a Local Simulator to simulate the execution locally,
e.g., MyQLM [7] includes the pylinalg [6] simulator. However, Libraries, Com-
pilers, Transpilers, and Simulators are not necessarily part of an SDK but can
also be available as standalone technologies, such as t|ket〉 [48] and ScaffCC [27].

In order to integrate quantum applications with classical applications, there
are further tools, such as Orquestra [57], allowing to model the control and data
flow between the different components required for pre- and post-processing as
well as the execution of the quantum algorithm. This forms the workflow that
orchestrates classical and quantum application components.

Finally, the programming languages used for implementing quantum appli-
cations are considered as a separate category (on the right of Fig. 1). Since
the different tools and services, such as the SDKs, Compilers, Transpilers, and
Quantum Cloud Services, support different languages, the language plays an
important role when considering the compatibilities between different tools and
services. In the next section the different characteristics are discussed in detail.

6 D. Vietz et al.

5 Quantum Application Development Taxonomy

In the previous section we identified categories of current technologies. Based on
our literature study, related websites and experiments with various services and
tools, we introduce the taxonomy shown in Fig. 2 to enable a systematic analysis
of tools, services, and techniques in quantum application development. The tax-
onomy identifies six main aspects that have to be considered when developing
quantum applications: Quantum Cloud Services, Quantum Execution Resources,
Compilation & Transpilation, Knowledge Reuse, Programming Languages, and
Quantum-Classical Integration.

Each aspect is either divided into multiple sub-aspects or described by its
possible values. These values are the lowest refinement considered in our analysis.
We abstract from further refinements since we aim to provide a broad overview
of current quantum application development. The following subsections describe
each aspect in detail.

5.1 Quantum Cloud Services

The Quantum Cloud Services aspect identifies at which layer services are avail-
able and how these services can be accessed, therefore, the two sub-aspects Ser-
vice Model and Access Methods are considered.

In general, three different kinds of Service Models can be distinguished,
namely Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS) [36]. IaaS offerings provide access to process-
ing, storage, networks, and other fundamental computation resources. Quantum
cloud services, such as AWS Braket [3], IBMQ [25], and D-Wave Leap [14], of-
fer quantum computation capabilities as a service and can be assigned to IaaS.
PaaS offerings provide an application hosting environment to host applications
developed using certain programming languages, libraries, services, and tools.
A popular platform technology in quantum computing often hosted as a ser-
vice is Jupyter Notebook, e.g., offered as a service by IBM [25]. Jupyter Note-
books combine source code, console instructions, and documentation in a single
document-styled format and, thus, are often used for tutorials. SaaS offerings
provide users a fully managed software. For example, graphical circuit modelers,
such as Quirk [19], belong to this category.

In order to access a cloud service, providers offer different Access Methods:
SDKs, are a typical way by which quantum cloud service providers offer ac-
cess to their services. For example, Qiskit [1] and Forest [46] offer the ability to
execute written source code on the respective quantum cloud services. Further-
more, access can be provided via Web Services. For example, IBMQ [25] provides
a REST-API [35]. Another way to access quantum cloud services is via Graph-
ical User Interfaces (GUIs). Finally, Command-Line Interfaces (CLIs), such as
AWS CLI [4] can also be used to access quantum cloud services.

On Decision Support for Quantum Application Developers 7

Qu
an

tu
m

 A
pp

lic
at

io
n

De
ve

lo
pm

en
t

Analysis
(sub-) aspect

Possible values of
(sub-) aspect

Legend

Value
...

Service Model

Integration Approach

Separation

Type of Language

Syntax Implementation

Standardization

Optimization Strategy

Language Support

Computation Model

Execution Type

Access Methods

Quantum
Cloud Services

Quantum
Execution Resources

Compilation &
Transpilation

Quantum-Classical
Integration

Programming Languages

Knowledge Reuse

Universal QC
Restricted QC

IaaS
PaaS
SaaS

CLI
SDK
GUI

Web Service

Workflow Language
High-Level

Programming Language
Assembly Language

Visual Circuit
Description Language

Embedded in
Non-Quantum

Programming Language
Standalone Quantum

Programming Language

QPU
Simulator

Hardware-independent
Hardware-specific

Single-Language
Multi-Language

Open Standard
Proprietary Standard

Application Integration
Data Integration

Data Flow
Control Flow

Tutorials
Templates & Blueprints

Patterns
Example Programs

Libraries

Fig. 2. Taxonomy of Quantum Application Development. Notation is based on [54].

8 D. Vietz et al.

5.2 Quantum Execution Resources

The Quantum Execution Resources aspect considers the characteristics of avail-
able quantum execution resources for the execution of quantum algorithms. For
this, the provided Execution Type and the implemented Computation Model are
considered. Since quantum applications currently depend heavily on the Quan-
tum Execution Resources, the available resources must be considered by quantum
application developers early in the development phase.

The Computation Model defines how quantum computation is modeled and
executed. Since it influences the programming style and can further limit the
classes of problems that can be efficiently computed with the respective quantum
computer, developers must select the appropriate computation model at a very
early stage. In general, two kinds of computational models are distinguished:
Universal Quantum Computation and Restricted Quantum Computation. For
example, a Restricted Quantum Computation model is implemented by the QPUs
of D-Wave that support Stoquastic Adiabatic Quantum Computing. A well-known
example for Universal Quantum Computation is the circuit-model (a.k.a. gate-
based model). A detailed view on computation models is given by Miszczak [38].

For the execution of quantum algorithms, two general Execution Types are
available: QPUs and Simulators. QPUs represent physical hardware that is able
to compute quantum programs. Simulators are an alternative as they simulate
quantum programs on classical hardware. Since QPUs are still limited, simulators
are essential for developers to develop and test quantum applications before
migrating them to real hardware at some point. The ease of switching between
execution types is critical to this migration.

5.3 Compilation and Transpilation

The Compilation and Transpilation aspect considers characteristics of compilers
as well as transpilers. Compilers compile source code to lower-level languages,
whereas Transpilers transpile on the same language level. The taxonomy in Fig. 2
comprises the two sub-aspects Optimization Strategies and Language Support.

Compilers and transpilers can have multiple Optimization Strategies im-
plemented each of which is either Hardware-specific or Hardware-independent.
Häner et al. [24], e.g., describe an end-to-end approach having both hardware-
independent and -specific compilation steps implemented. A Hardware-specific
optimization strategy uses properties and information of a concrete Quantum
Execution Resource. This is needed because, for example, different qubit con-
nectivity and gate sets of the QPUs have to be considered [32]. A Hardware-
independent optimization on the other hand provides general optimizations, for
example, to rearrange, combine, or remove operations.

Although, theoretically, language functionalities could be abstracted from,
the dependency on the language is still high and Language Support is an impor-
tant aspect. Some compilers and transpilers are only built for exactly one input
and one output language, such as quilc [50] and ScaffCC [27], and others can
consume various different languages or produce various output languages, such
as t|ket〉 [48] and XACC [33].

On Decision Support for Quantum Application Developers 9

5.4 Knowledge Reuse

Since the implementation of quantum algorithms from scratch requires a lot of
knowledge, there are different ways for Knowledge Reuse. A rather abstract way
is given by Tutorials that can be offered via websites, documents, or packed
within a software. Patterns, such as proposed by Leymann [31] and Weigold
et al. [55], provide an abstract view on common problems and their solutions [2].
Thus, they offer technology-independent knowledge to specific problems. Fur-
thermore, Templates and Blueprints are scaffold implementations that provide
a basic structure for further source code. Example Programs, which are, e.g.,
provided as Jupyter notebooks, allow insights into the implementation of other
applications and can be adapted to own custom use cases. Finally, concrete im-
plementations of algorithms can also be provided as Libraries which can be used
as subroutines in a quantum application [10,34,41].

5.5 Programming Languages

The Programming Language aspect considers the characteristics of available pro-
gramming languages for quantum applications. For this, the Type of Language,
the Syntax Implementation, and Standardization are considered.

Currently, four types of programming languages can be distinguished: Work-
flow Languages, High-level Programming Languages, Assembly Languages, and
Graphical Circuit Description Languages. Assembly Languages, such as Open-
QASM [12], eQASM [17], QWIRE [42], and Quil [49], are low level and provide
a textual representation of every operation the quantum computer is to perform.
High-level Programming Languages, such as Quipper [21] and Q# [37], are ma-
chine independent and provide high-level language features, such as loops and
recursion. Workflow Languages, such as offered in Orquestra [57], allow to model
the control flow of (hybrid quantum-classical) applications. Graphical Circuit
Description Languages provide graphical representations of quantum circuits.

For the Syntax Implementation we distinguish between two cases. On the
one hand, there are programming languages that have their own independent
syntax, such as Silq [9] and Scaffold [26] Thus, they are Standalone Quantum
Programming Languages. On the other hand, a programming language can also
be embedded into another programming language, for example, Quipper [21] is
embedded in Haskell, and Qiskit [1], PyQuil [28], and Cirq [11] offer programming
languages embedded in Python.

Standardization is important for the interoperability of different tools and
services and is considered in the last aspect. Open Standards (a.k.a. de-jure
standards) are developed or adopted by standards organizations. For example,
BPMN [40] is an Open Standard of the Object Management Group. Proprietary
Standards (a.k.a. de-facto standards) evolve from vendor-specific solutions and
are widely accepted by a broad base of users. Since OpenQASM [12] is sup-
ported by many tools and services, including Qiskit [1], t|ket〉 [48], XACC [33],
Project Q [51], and Cirq [11], it has a wide acceptance and can be considered as
de-facto standard for describing circuits. However, most of current programming
languages for quantum application development do not implement any standard.

10 D. Vietz et al.

5.6 Quantum-Classical Integration

Hybrid applications that integrate quantum and classical components are in-
creasingly appearing as the most promising solutions at present and in the near
future. Thus, the last aspect of Fig. 2 considers Quantum-Classical Integration.

In general, two Integration Approaches can be distinguished. On the one
hand, Data Integration consolidates data from different sources to provide ap-
plications with a uniform access to this data. On the other hand, Application
Integration integrates different applications on a functional level.

Furthermore, we characterize integration approaches by their ability to sep-
arate business functions from Data Flow and Control Flow. Technologies, such
as Orquestra [57] and QuantMe [53], enable business functions to be defined
separately from data- and control flow. With SDKs, such as Qiskit [1], integra-
tion must be implemented in the source code and, therefore, does not enable
separation of business functions and control flow. In general, Quantum-Classical
Integration is still largely neglected, although it is essential for the realization of
future applications.

6 Comparison Framework

In the previous sections we have introduced a categorization (Section 4) and
taxonomy (Section 5) to characterize existing tools, services, and techniques for
quantum application development. Based on these results, in this section we in-
troduce a comparison framework that supports developers in selecting suitable
technologies. The comparison framework enables the comparison of characteris-
tics and dependencies between tools and services of different categories.

Fig. 3 shows an excerpt of the comparison framework2 considering exem-
plary Software Development Kits (SDKs) and Quantum Cloud Services (QCS).
An SDK, identified by its name, is available for certain programming languages.
Furthermore, since an SDK contains compilers and transpilers that can sup-
port various input and output languages, these are separately listed. Besides the
availability of a local simulator, which is provided by all examples in Fig. 3, it
is finally listed which QCS are directly supported. The category of QCS is an-
other category exemplary sown in Fig. 3. It contains the name, access method,
input language, service model, and available quantum execution resources3. All
further columns of both categories are hidden in Fig. 3 but can be found in the
comparison framework.

The comparison framework implements multi-criteria filtering for all at-
tributes of each category. For example, if Python is chosen as programming
language and the availability of a local simulator is required, only Qiskit [1],
Strawberry Fields [29], and Ocean [13] will be displayed in the example in Fig. 3.
Furthermore, the comparison framework enables to identify interoperabilities be-
tween different categories via cross-category filtering. When selecting IBMQ [25]

2 The framework can be found at http://www.github.com/UST-QuAntiL/Qverview
3 QPUs are grouped by their respective vendor

http://www.github.com/UST-QuAntiL/Qverview

On Decision Support for Quantum Application Developers 11

Name Programming
Language

Compile & Transpile Local
Sim.

QCS
Input Output

Qiskit Python, Javascript OpenQASM OpenQASM true IBMQ, AQT
Strawberry Fields Python - Blackbird true Xanadu
XACC C++ Quil, OpenQASM XASM, Quil, etc. true IBMQ, Rigetti, DW Leap
Ocean Python BQM BQM true D-Wave LEAP

Name Access Methods Input Service Model Quantum Execution Resources
IBMQ SDK:Qiskit, GUI, REST OpenQASM IaaS IBM, Sim.
Xanadu SDK:Strawberry Fields Blackbird IaaS Xanadu, Sim.
DW Leap SDK:Ocean, GUI, REST BQM IaaS D-Wave, Sim.
AWS Braket SDK, GUI, CLI braket.Circuit IaaS IonQ, Rigetti, D-Wave, Sim.

Q
CS

SD
K

Fig. 3. Excerpt of the Comparison Framework with exemplary SDKs and QCS.

as quantum cloud service, the comparison framework automatically exposes all
interoperable SDKs. In addition to Qiskit [1], which is the SDK provided by
IBMQ [25], XACC [33], for example, can also be used to execute quantum appli-
cations there, as shown in Fig. 3. However, when combined with the programming
language filter, only Qiskit would be shown.

The comparison framework supports a multi-criteria cross-category analysis
of current technologies for quantum application development. Thus, it (i) pro-
vides an overview of technologies of different categories, (ii) enables filtering,
comparison and analysis of technologies within each category, and (iii) enables
identification of cross-category interoperabilities.

7 Conclusion and Future Work

Currently, there are strong dependencies between the tools and services used to
develop quantum applications and the hardware on which they will run. Due
to the limited portability, it is important that quantum application developers
identify the appropriate tools and services at an early stage. To make a first step
towards decision support for quantum application developers, we have intro-
duced in this paper (i) a categorization, (ii) a taxonomy, and (iii) a comparison
framework. This is based on an investigation of a variety of technologies and
publications to provide guidance for quantum application developers.

With the taxonomy, we have introduced several aspects that need to be
considered when selecting specific tools, services, and techniques. While the
comparison framework provides guidance in the complex landscape of quan-
tum technologies, it does not yet provide full-automated decision support. In
the next step, we therefore plan to further extend our comparison framework
to also comprise library support for certain algorithms. This is crucial in order
to make a decision based on the problem at hand. The comparison framework
so far allows filtering based on the presented taxonomy. In addition, we plan to
incorporate weight factors, which will allow categories to be weighted differently.

12 D. Vietz et al.

Acknowledgments

This work was partially funded by the BMWi project PlanQK (01MK20005N)
as well as the WM BW project SEQUOIA.

References

1. Abraham, H., et al.: Qiskit: An Open-source Framework for Quantum Computing
(2019). https://doi.org/10.5281/zenodo.2562110

2. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings,
Construction. Oxford University Press (1977)

3. Amazon Web Services, Inc: AWS Braket (2021), https://aws.amazon.com/braket
4. Amazon.com, Inc: aws-cli (2020), https://github.com/aws/aws-cli
5. Andrikopoulos, V., Gómez Sáez, S., Leymann, F., Wettinger, J.: Optimal Distri-

bution of Applications in the Cloud. In: Proceedings of the 26th International
Conference on Advanced Information Systems Engineering (CAiSE 2014). pp. 75–
90. Springer (2014). https://doi.org/10.1007/978-3-319-07881-6 6

6. Atos SE: qat.pylinalg: Python Linear-algebra simulator (2020), https://myqlm.
github.io/myqlm specific/qat-pylinalg.html

7. Atos SE: MyQLM (2021), https://atos.net/en/lp/myqlm
8. Bergholm, V., et al.: PennyLane: Automatic differentiation of hybrid quantum-

classical computations (2020), arXiv preprint arXiv:1811.04968
9. Bichsel, B., Baader, M., Gehr, T., Vechev, M.: Silq: A high-level quantum lan-

guage with safe uncomputation and intuitive semantics. In: Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. p. 286–300. PLDI ’20, Association for Computing Machinery (2020).
https://doi.org/10.1145/3385412.3386007

10. Broughton, M., et al.: TensorFlow Quantum: A Software Framework for Quantum
Machine Learning (2020), arXiv preprint arXiv:2003.02989

11. Cirq Developers: Cirq (2021). https://doi.org/10.5281/zenodo.4062499
12. Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open Quantum Assem-

bly Language (2017), arXiv preprint arXiv:1707.03429
13. D-Wave Systems Inc: dwave-ocean-sdk (2021), https://github.com/dwavesystems/

dwave-ocean-sdk
14. D-Wave Systems Inc: Leap (2021), https://dwavesys.com/take-leap
15. Farshidi, S., Jansen, S., de Jong, R., Brinkkemper, S.: A Decision Support System

for Cloud Service Provider Selection Problem in Software Producing Organizations.
In: 2018 IEEE 20th Conference on Business Informatics (CBI). vol. 01, pp. 139–148
(2018). https://doi.org/10.1109/CBI.2018.00024

16. Fingerhuth, M., Babej, T., Wittek, P.: Open source software in quantum comput-
ing. PLOS ONE 13(12) (2018). https://doi.org/10.1371/journal.pone.0208561

17. Fu, X., et al.: eQASM: An Executable Quantum Instruction Set Architecture. In:
2019 IEEE International Symposium on High Performance Computer Architecture
(HPCA). pp. 224–237 (2019). https://doi.org/10.1109/HPCA.2019.00040

18. Garhwal, S., Ghorani, M., Ahmad, A.: Quantum Programming Language: A Sys-
tematic Review of Research Topic and Top Cited Languages. Archives of Computa-
tional Methods in Engineering (2019). https://doi.org/10.1007/s11831-019-09372-6

19. Gidney, C., Marwaha, K., Haugeland, J., ebraminio, Kalra, N.: Quirk: Quantum
Circuit Simulator (2021), https://algassert.com/quirk

https://doi.org/10.5281/zenodo.2562110
https://aws.amazon.com/braket
https://github.com/aws/aws-cli
https://doi.org/10.1007/978-3-319-07881-6_6
https://myqlm.github.io/myqlm_specific/qat-pylinalg.html
https://myqlm.github.io/myqlm_specific/qat-pylinalg.html
https://atos.net/en/lp/myqlm
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.5281/zenodo.4062499
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/dwavesystems/dwave-ocean-sdk
https://dwavesys.com/take-leap
https://doi.org/10.1109/CBI.2018.00024
https://doi.org/10.1371/journal.pone.0208561
https://doi.org/10.1109/HPCA.2019.00040
https://doi.org/10.1007/s11831-019-09372-6
https://algassert.com/quirk

On Decision Support for Quantum Application Developers 13

20. Gill, S.S., et al.: Quantum Computing: A Taxonomy, Systematic Review and Future
Directions (2020), arXiv preprint arXiv:2010.15559

21. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper:
A Scalable Quantum Programming Language. In: Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation. p. 333–342. PLDI ’13, Association for Computing Machinery (2013).
https://doi.org/10.1145/2491956.2462177

22. Hassija, V., et al.: Present landscape of quantum computing. IET Quantum Com-
munication 1(2), 42–48 (2020). https://doi.org/10.1049/iet-qtc.2020.0027

23. Heim, B., et al.: Quantum programming languages. Nature Reviews Physics 2(12),
709–722 (2020). https://doi.org/10.1038/s42254-020-00245-7

24. Häner, T., Steiger, D.S., Svore, K., Troyer, M.: A software methodology for com-
piling quantum programs. Quantum Science and Technology 3(2), 020501 (2018).
https://doi.org/10.1088/2058-9565/aaa5cc

25. IBM: IBM Quantum Experience (2021), https://quantum-computing.ibm.com
26. Javadi-Abhari, A., et al.: Scaffold: Quantum Programming Language. Tech. rep.,

Princeton Univ NJ Dept of Computer Science (2012)
27. Javadi-Abhari, A., et al.: ScaffCC: A Framework for Compilation and Analysis

of Quantum Computing Programs. In: Proceedings of the 11th ACM Conference
on Computing Frontiers. CF ’14, Association for Computing Machinery (2014).
https://doi.org/10.1145/2597917.2597939

28. Karalekas, P.J., et al.: PyQuil: Quantum programming in Python (2020).
https://doi.org/10.5281/zenodo.3631770

29. Killoran, N., et al.: Strawberry Fields: A Software Platform for Photonic Quantum
Computing. Quantum 3, 129 (2019). https://doi.org/10.22331/q-2019-03-11-129

30. LaRose, R.: Overview and Comparison of Gate Level Quantum Software Platforms.
Quantum 3, 130 (2019). https://doi.org/10.22331/q-2019-03-25-130

31. Leymann, F.: Towards a Pattern Language for Quantum Algorithms. In: First
International Workshop, QTOP 2019, Munich, Germany, March 18, 2019, Pro-
ceedings. Springer (2019). https://doi.org/10.1007/978-3-030-14082-3 19

32. Leymann, F., Barzen, J.: The bitter truth about gate-based quantum algorithms
in the NISQ era. Quantum Science and Technology pp. 1–28 (2020), https://doi.
org/10.1088/2058-9565/abae7d

33. McCaskey, A.J., Lyakh, D.I., Dumitrescu, E.F., Powers, S.S., Humble,
T.S.: XACC: a system-level software infrastructure for heterogeneous quan-
tum–classical computing. Quantum Science and Technology 5(2), 024002 (2020).
https://doi.org/10.1088/2058-9565/ab6bf6

34. McClean, J.R., et al.: OpenFermion: The Electronic Structure Package for Quan-
tum Computers (2019), arXiv preprint arXiv:1710.07629

35. McKay, D.C., et al.: Qiskit Backend Specifications for OpenQASM and OpenPulse
Experiments (2018), arXiv preprint arXiv:1809.03452

36. Mell, P., Grance, T.: The NIST definition of cloud computing. Tech. Rep.
NIST SP 800-145, National Institute of Standards and Technology (2011).
https://doi.org/10.6028/NIST.SP.800-145

37. Microsoft: Q# Language (2021), https://github.com/microsoft/qsharp-language
38. Miszczak, J.A.: Models of quantum computation and quantum programming lan-

guages. Bulletin of the Polish Academy of Sciences: Technical Sciences 59(3),
305–324 (2011). https://doi.org/10.2478/v10175-011-0039-5

39. Murali, P., Baker, J.M., Javadi-Abhari, A., Chong, F.T., Martonosi, M.: Noise-
Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers.

https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1049/iet-qtc.2020.0027
https://doi.org/10.1038/s42254-020-00245-7
https://doi.org/10.1088/2058-9565/aaa5cc
https://quantum-computing.ibm.com
https://doi.org/10.1145/2597917.2597939
https://doi.org/10.5281/zenodo.3631770
https://doi.org/10.22331/q-2019-03-11-129
https://doi.org/10.22331/q-2019-03-25-130
https://doi.org/10.1007/978-3-030-14082-3_19
https://doi.org/10.1088/2058-9565/abae7d
https://doi.org/10.1088/2058-9565/abae7d
https://doi.org/10.1088/2058-9565/ab6bf6
https://doi.org/10.6028/NIST.SP.800-145
https://github.com/microsoft/qsharp-language
https://doi.org/10.2478/v10175-011-0039-5

14 D. Vietz et al.

In: Proc. of the 24th Int. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems. p. 1015–1029. ASPLOS ’19, Association for Com-
puting Machinery (2019). https://doi.org/10.1145/3297858.3304075

40. OMG: Business Process Model and Notation (BPMN) Version 2.0. Object Man-
agement Group (OMG) (2011)

41. Open Quantum Safe Project: liboqs (2021), https://openquantumsafe.org/liboqs/
42. Paykin, J., Rand, R., Zdancewic, S.: QWIRE: A Core Language for Quantum

Circuits. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages. p. 846–858. POPL 2017, Association for Computing
Machinery (2017). https://doi.org/10.1145/3009837.3009894

43. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79
(2018). https://doi.org/10.22331/q-2018-08-06-79

44. Quantiki: QC simulators (2021), https://quantiki.org/wiki/list-qc-simulators
45. Quantum Computing Report: Tools (2021), https://quantumcomputingreport.

com/tools/
46. Rigetti Computing: Forest SDK (2019), https://pyquil-docs.rigetti.com/
47. Salm, M., Barzen, J., Breitenbücher, U., Leymann, F., Weder, B., Wild, K.: The

NISQ Analyzer: Automating the Selection of Quantum Computers for Quan-
tum Algorithms. In: Proceedings of the 14th Symposium and Summer School
on Service-Oriented Computing (SummerSOC 2020). pp. 66–85. Springer Inter-
national Publishing (2020). https://doi.org/10.1007/978-3-030-64846-6 5

48. Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington, A., Duncan, R.:
t|ket〉: a retargetable compiler for NISQ devices. Quantum Science and Technology
6(1), 014003 (2020). https://doi.org/10.1088/2058-9565/ab8e92

49. Smith, R.S., Curtis, M.J., Zeng, W.J.: A Practical Quantum Instruction Set Ar-
chitecture (2017), arXiv preprint arXiv:1608.03355

50. Smith, R.S., Peterson, E.C., Davis, E.J., Skilbeck, M.G.: quilc: An Optimizing Quil
Compiler (2020). https://doi.org/10.5281/zenodo.3677537

51. Steiger, D.S., Häner, T., Troyer, M.: ProjectQ: an open source software framework
for quantum computing. Quantum 2, 49 (2018). https://doi.org/10.22331/q-2018-
01-31-49

52. Weder, B., Barzen, J., Leymann, F., Salm, M., Vietz, D.: The Quantum Software
Lifecycle. In: Proceedings of the 1st ACM SIGSOFT International Workshop on
Architectures and Paradigms for Engineering Quantum Software (APEQS 2020).
pp. 2–9. ACM (2020). https://doi.org/10.1145/3412451.3428497

53. Weder, B., Breitenbücher, U., Leymann, F., Wild, K.: Integrating Quan-
tum Computing into Workflow Modeling and Execution. In: Proceedings
of the 13th IEEE/ACM International Conference on Utility and Cloud
Computing (UCC 2020). pp. 279–291. IEEE Computer Society (2020).
https://doi.org/10.1109/UCC48980.2020.00046

54. Weerasiri, D., Barukh, M.C., Benatallah, B., Sheng, Q.Z., Ranjan, R.: A Taxonomy
and Survey of Cloud Resource Orchestration Techniques. ACM Comput. Surv.
50(2) (2017). https://doi.org/10.1145/3054177

55. Weigold, M., Barzen, J., Salm, M., Leymann, F.: Data encoding patterns for quan-
tum computing. In: Proceedings of the 27th Conference on Pattern Languages of
Programs. The Hillside Group (2021), accepted for publication

56. Wurster, M., et al.: The Essential Deployment Metamodel: A Systematic Review
of Deployment Automation Technologies. SICS Software-Intensive Cyber-Physical
Systems 35, 63–75 (2019). https://doi.org/10.1007/s00450-019-00412-x

57. Zapata Computing: Orquestra (2021), https://zapatacomputing.com/orquestra/

All links were lastly followed on March 31, 2021.

https://doi.org/10.1145/3297858.3304075
https://openquantumsafe.org/liboqs/
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.22331/q-2018-08-06-79
https://quantiki.org/wiki/list-qc-simulators
https://quantumcomputingreport.com/tools/
https://quantumcomputingreport.com/tools/
https://pyquil-docs.rigetti.com/
https://doi.org/10.1007/978-3-030-64846-6_5
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.5281/zenodo.3677537
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.1145/3412451.3428497
https://doi.org/10.1109/UCC48980.2020.00046
https://doi.org/10.1145/3054177
https://doi.org/10.1007/s00450-019-00412-x
https://zapatacomputing.com/orquestra/

	On Decision Support for Quantum Application Developers: Categorization, Comparison, and Analysis of Existing Technologies

